summaryrefslogtreecommitdiff
path: root/Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb')
-rw-r--r--Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb378
1 files changed, 378 insertions, 0 deletions
diff --git a/Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb b/Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb
new file mode 100644
index 0000000..aac1bf1
--- /dev/null
+++ b/Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb
@@ -0,0 +1,378 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: concept of electric current and laws"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: resistance_of_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//what is the resistance of each coil\n",
+"V=200\n",
+"I=25\n",
+"P1=1500\n",
+"R1=(V*V)/P1\n",
+"R=V/I //total resistance\n",
+"R2=R*R1/(R1-R)\n",
+"disp('R2='+string(R2)+' ohms' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//what is the resistance of each coil\n",
+"V=100\n",
+"P=1500\n",
+"R=(V^2/P)/2\n",
+"Ra=R\n",
+"Rb=R\n",
+"Rc=R\n",
+"R1=((Ra*Rc)/(Ra+Rc))+Rb\n",
+"I=V/R1\n",
+"I1=(I*Ra)/(Ra+Rc)\n",
+"I2=(I*Ra)/(Ra+Rc)\n",
+"Pa=I*I*Ra\n",
+"Pb=I1*I1*Rb\n",
+"Pc=I2*I2*Rc\n",
+"disp( 'Pc='+string(Pc)+' watts' , 'Pb='+string(Pb)+' watts' , 'Pa='+string(Pa)+' watts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: Bill_amount.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the energy consume in a house in the month \n",
+"L=3600//six lamp 1000 watt each for six days\n",
+"H=3000//one haeter\n",
+"M=735.5//single phase motor\n",
+"F=2400//four fans 75W\n",
+"T=L+H+M+F//total energy consumed in watt \n",
+"TE=T*30/1000\n",
+"C=0.9//cost of energy\n",
+"B=TE*0.9//Bil amount\n",
+"disp('B= '+string(B)+' ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//convert the delta circuit\n",
+"Rry=4\n",
+"Ryb=1\n",
+"Rbr=5\n",
+"Rr=(Rbr*Rry)/(Rry+Rbr+Ryb)\n",
+"Ry=(Rry*Ryb)/(Rry+Rbr+Ryb)\n",
+"Rb=(Rbr*Ryb)/(Rry+Rbr+Ryb)\n",
+"disp('Rb='+string(Rb)+ 'ohms' , 'Ry='+string(Ry)+ ' ohms' , 'Rr='+string(Rr)+' ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.19: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//convert star circuit\n",
+"Rr=2\n",
+"Ry=0.67\n",
+"Rb=1\n",
+"Rry=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Rb\n",
+"Ryb=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Rr\n",
+"Rbr=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Ry\n",
+"disp('Rbr='+string(Rbr)+'ohms' , 'Ryb='+string(Ryb)+'ohms' , 'Rry='+string(Rry)+ 'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: specific_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+" //find the specific resistance of the material\n",
+"L =12 //meter\n",
+"A=0.01*10^-4 //m^2\n",
+"R=0.2 //ohm\n",
+"p=R*A/L //specific resistance\n",
+"disp('value of specific resistance='+string(p)+' ohm -meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//resistance at 40 degree\n",
+"a0=0.0043\n",
+"t1=27\n",
+"t2=40\n",
+"R1=1.5\n",
+"R2=R1*(1+a0*t2)/(1+a0*t1)\n",
+"disp('value of resistance='+string(R2)+ ' ohm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: resistance_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the total R.I.V \n",
+"R1=5\n",
+"R2=10\n",
+"R3=15\n",
+"V=120\n",
+"R=R1+R2+R3\n",
+"I=V/R\n",
+"V1=I*R1\n",
+"V2=I*R2\n",
+"V3=I*R3\n",
+"disp('Voltage V3='+string(V3)+'volts' , 'Voltage V2='+string(V2)+'volt' , 'Voltage V1='+string(V1)+'volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the eqvivalent rasistance of series parallel combination\n",
+"Rab=(2*4)/(2+4)\n",
+"Rbc=(6*8)/(6+8)\n",
+"Rac=Rab+Rbc\n",
+"disp('rasistance across AC='+string(Rac)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the eqvivalent resistance of series parallel combination\n",
+"Rab=4\n",
+"Rbc=(12*8)/(12+8)\n",
+"Rcd=(3*6)/(3+6)\n",
+"Rad=Rab+Rbc+Rcd\n",
+"disp('resistance across AC='+string(Rad)+' ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//what resistance must be connected in parallel\n",
+"R1=8\n",
+"R2=48/2//R1*R2/R1+R2\n",
+"disp('R2='+string(R2)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the current I1.I2\n",
+"I=12\n",
+"R1=6\n",
+"R2=8\n",
+"I1=I*R2/(R1+R2)\n",
+"I2=I*R1/(R1+R2)\n",
+"disp('I1='+string(I1)+'amps' , 'I2 ='+string(I2)+'amps')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find how current divide in circuit\n",
+"R1=0.02\n",
+"R2=0.03\n",
+"I1=(10*R2)/(R1+R2)\n",
+"I2=(10*R1)/(R1+R2)\n",
+"disp('I2='+string(I2)+ 'amps' , 'I1= '+string(I1)+ 'amps')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}