summaryrefslogtreecommitdiff
path: root/Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb')
-rw-r--r--Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb1004
1 files changed, 1004 insertions, 0 deletions
diff --git a/Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb b/Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb
new file mode 100644
index 0000000..013ed63
--- /dev/null
+++ b/Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb
@@ -0,0 +1,1004 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Ac circuit"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: power_dissipated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the power dissipiated in resistance\n",
+"//v=200 sind 314t\n",
+"Vm=200;\n",
+"o=314; //@=omega\n",
+"//i=50 sind 314t\n",
+"Im=50\n",
+"o=314\n",
+"R=Vm/Im\n",
+"I=Im/1.414\n",
+"P=(I*I*R)\n",
+"disp( 'power dissipiated in resistance='+string(P)+' watts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: inductive_reactance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the inductive reactance of the coil\n",
+"L=0.25;//henry....inductance\n",
+"f=50;//hertz...frequency\n",
+"X=2*3.14*f*L\n",
+"disp('value of inductive reactance='+string(X)+'ohms');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the current flowing through the coil\n",
+"L=0.05\n",
+"V=230\n",
+"f=60\n",
+"X=(2*%pi*f*L)\n",
+"I=V/X\n",
+"disp(' the current flowing through the coil='+string(I)+'amps')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.16: inductance_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//detrmine the value of inductance\n",
+"I=5;//amp\n",
+"V=200;//volt\n",
+"f=50;//hertz\n",
+"X=V/I;\n",
+"L=40/(2*%pi*50);\n",
+"disp('the value of inductive.reactance='+string (X)+'ohms' , 'value of inductors='+string(L)+'henry');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.17: voltage_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//write the time equation for voltage and current\n",
+"Vrms=150\n",
+"Vm=2*1.414*Vrms\n",
+"f=50\n",
+"L=0.2\n",
+"X=2*3.14*f*L\n",
+"Im=Vm/X\n",
+"disp('current equation i=212.132sin(314)t' , 'voltage equation v=3.376sin(314t-90)' , ' Im= '+string(Im)+ ' ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.18: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the current\n",
+"C=25e-6;\n",
+"V=200\n",
+"f=60 //frequency half\n",
+"f2=120 //frequency doubled\n",
+"Xc=1/(2*%pi*f*C)\n",
+"Xc=1/(2*%pi*f2*C)\n",
+"I=V/Xc\n",
+"disp('frequency half='+string(f)+'hz' , 'frequency douled='+string(f2)+'hz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.19: capacitance_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of capacitance nd current\n",
+"Xc=25\n",
+"V=200\n",
+"f=50\n",
+"C=1/(2*%pi*f*Xc)\n",
+"I=V/Xc\n",
+"disp('the value of capacitance ='+string(C)+'farad', 'the value of current='+string(I)+'amps')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: voltage_and_current_factors.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//\n",
+"//i=40sin 314t \n",
+"//i=Imsin wt\n",
+"Im=40\n",
+"w=314\n",
+"Iav=Im/1.414\n",
+"Irms=Im*2/3.14\n",
+"f=w/(2*3.14)\n",
+"Ff=Irms/Iav\n",
+"Pf=Im/Irms\n",
+"disp('peak factor='+string(Pf)+ ' ' , 'form factor='+string(Ff)+ ' ' , 'frequency ='+string(f)+ ' ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.20: frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the frquency\n",
+"Vrms=110\n",
+"c=15e-6\n",
+"I=0.518\n",
+"Xc=Vrms/I\n",
+"f=1/(2*%pi*Xc*c)\n",
+"disp('value of frequency='+string(f)+'hz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.21: phase_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the value of current\n",
+"R=10;//ohms\n",
+"L=0.02;//henry\n",
+"V=250;//volt\n",
+"f=50;//hertz\n",
+"X=(2*%pi*f*L)\n",
+"Z=sqrt(R^2+X^2)\n",
+"I=V/Z\n",
+"coso=R/Z\n",
+"o=acosd(coso)\n",
+"disp('phase angle='+string(o)+'degree', 'current flowing through coil='+string(I)+'amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.22: voltage_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the inductance impd,curent,power factr,voltage.power\n",
+"R=50;//ohms\n",
+"L=0.5;//henry\n",
+"V=200;//volt\n",
+"f=50;//hertz\n",
+"X=(2*%pi*f*L)\n",
+"Z=sqrt(R^2+X^2)\n",
+"I=V/Z\n",
+"coso=R/Z\n",
+"sino=R/Z\n",
+"o=acosd(coso)\n",
+"o1=asind(sino)\n",
+"Vr=I*R\n",
+"Vl=I*X\n",
+"AP=V*I*coso\n",
+"RP=V*I*sino\n",
+"APP=V*I;\n",
+"//disp('Apprent power='+string(AP)+'degree''phase angle='+string(o)+'degree', 'crnt flowing through coil='+string(I)+'amp')\n",
+"disp('The time equation of current = 1.711sin(314t-72.34)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.23: voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the supply voltage \n",
+"R=15;//ohms \n",
+"L=0.15;//henry\n",
+"I=20;//ampss\n",
+"f=50;//hertz\n",
+"X=2*%pi*50*0.15\n",
+"Z=sqrt(R^2+X^2)\n",
+"V=I*Z\n",
+"disp('supply voltage = '+string(V)+'volts');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.24: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the supply voltage \n",
+"V=200;//ohms \n",
+"L=0.4;//henry\n",
+"I=0.5;//ampss\n",
+"f=50;//hertz\n",
+"Z=V/I\n",
+"X=2*%pi*f*L\n",
+"R=sqrt(Z^2+X^2)\n",
+"disp('Resistance = '+string(R)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.25: inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the inductance of the coil\n",
+"R=6\n",
+"V=250;//volts\n",
+"I=1.5;//amps\n",
+"Z=V/I;//impedance\n",
+"f=60;//hetrz\n",
+"X=sqrt(Z^2-R^2)\n",
+"L=X/(2*%pi*f)\n",
+"disp('inductance of coil='+string(L)+ 'henry')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.27: voltage_across_choking_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the inductance of the coil and voltage across each element\n",
+"I=7\n",
+"V=200\n",
+"f=50\n",
+"R=10\n",
+"r=1.5 //rasistance choke coil\n",
+"V1=I*R\n",
+"V3=I*r\n",
+"V2=sqrt(V^2-(V1+V3)^2)\n",
+"X=V2/I //inductive reactance\n",
+"L=X/(2*%pi*f)\n",
+"V4=sqrt(V2^2+V3^2) ///voltage across choking coil\n",
+"disp('voltage across choking coil='+string(V4)+'volts' , 'inductor='+string(L)+'henry')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.28: time_equation_for_v_and_i.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"4.28//voltage across R$C \n",
+"C=15e-6;//farad..\n",
+"R=100;//ohms\n",
+"V=100;//volts\n",
+"f=50;//hertz\n",
+"Xc=1/(2*%pi*f*C);\n",
+"Z=sqrt(R^2+(Xc^2));\n",
+"I=V/Z;\n",
+"coso=R/Z;\n",
+"sino=R/Z\n",
+"o=acosd(coso);\n",
+"o=asind(sino)\n",
+"Vr=I*R;\n",
+"Vc=I*Xc;\n",
+"AP=V*I*coso\n",
+"RP=V*I*sino\n",
+"APP=V*I;\n",
+"disp('The time equation of current i = (0.426)1.414sin(314t-64.34)' , 'Apparent power ='+string(APP)+'vars ' , 'ACTIVE POWER ='+string(AP)+ ' watts' )\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.29: current_and_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the frequency\n",
+"R=30;//ohms\n",
+"L=0.5;//henry\n",
+"f=50;//hertz\n",
+"X=(2*%pi*f*L)\n",
+"Z=R+%i*X\n",
+"V=86.6+%i*50\n",
+"I=V/Z\n",
+"disp('current = '+string(I)+ 'A')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: voltage_equatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the voltage sin wave\n",
+"f=50\n",
+"V=50\n",
+"Vm=V*1.414\n",
+"w=2*3.14*f\n",
+"t=(0:0.1:5*%pi)';\n",
+"plot2d1('onn',t,[5*sin(t)])\n",
+"disp('voltage equation v=70.7sin(314)t')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.30: voltage_across_R_and_C.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the equation of voltage and current \n",
+"C=10e-6;//farad..\n",
+"R=300;//ohms\n",
+"//i=2 sin 314t\n",
+"V=100;//volts\n",
+"f=50;//hertz\n",
+"Xc=1/(2*%pi*f*C);\n",
+"Z=sqrt(R^2+(Xc^2));\n",
+"Im=2\n",
+"Vm=2*Z\n",
+"coso=R/Z;\n",
+"o=acosd(coso);\n",
+"disp('The time equation of voltage Vr = 600sin(314t)' , 'The time equation of voltage Vc = 636sin(wt-90)')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.31: resistance_and_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the value of RESISTANCE AND CAPACITANCE \n",
+"I=2.5;//amps\n",
+"V=150;//volts\n",
+"f=50;//hetz\n",
+"Z=V/I;\n",
+"P=100;//watt..power\n",
+"R=P/(I*I)\n",
+"Xc=sqrt(Z^2-R^2)\n",
+"C=1/(2*3.14*f*Xc);// capacitance\n",
+"disp('find tha value of capacitance='+string(C)+'farad');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.32: capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of capacitance\n",
+"V1=100;//volts\n",
+"V=250;//volts\n",
+"f=50;//hertz\n",
+"P=500;//watt\n",
+"I=P/V;\n",
+"V2=sqrt(V^2-V1^2);//volts\n",
+"Xc=V2/I;\n",
+"C=1/(2*%pi*f*Xc);\n",
+"disp('determine the value of capacitance='+string(C)+'farad');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.33: voltage_across_RLC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the ind.reactance nd capacitance nd voltage across R L C\n",
+"R=25\n",
+"C=20e-6\n",
+"L=0.15\n",
+"V=250\n",
+"f=50\n",
+"X=2*%pi*f*L\n",
+"Xc=1/(2*%pi*f*C)\n",
+"Z=sqrt(R^2+(X-Xc)^2)\n",
+"I=V/Z\n",
+"coso=R/Z\n",
+"o=acosd(coso)\n",
+"Vr=I*R\n",
+"Vl=I*X\n",
+"Vc=I*Xc\n",
+"disp('Vr='+string(Vr)+'volts' , 'Vl='+string(Vl)+'volts' , 'Vc='+string(Vc)+'volts' , 'phase angle='+string(o)+'degree' , 'current='+string(I)+'amps' , 'impedence='+string(Z)+'ohms' , 'ind.reactance='+string(X)+'ohms' , 'ind capacitance='+string(Xc)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.34: current_and_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the current also V1 nd V2\n",
+"V=250\n",
+"f=50\n",
+"R1=10\n",
+"L1=0.15\n",
+"C1=10e-6\n",
+"X1=2*%pi*f*L1\n",
+"Xc1=1/(2*%pi*f*C1)\n",
+"R2=8\n",
+"L2=0.25\n",
+"X2=2*%pi*f*L2\n",
+"Z=sqrt((R1+R2)^2+[(X1+X2)-Xc1]^2)\n",
+"I=V/Z\n",
+"Z1=sqrt(R1^2+(X1-Xc1)^2)\n",
+"V1=I*Z1\n",
+"Z2=sqrt(R2^2+X2^2)\n",
+"V2=I*Z2\n",
+"disp('value of current='+string(I)+'amps' , 'v1='+string(V1)+'volts', 'V2='+string(V2)+'volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.35: maximum_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of max. current\n",
+"C=30e-6;//farad\n",
+"R=12;//ohms\n",
+"L=0.2;//henry\n",
+"V=200;//volt\n",
+"I=V/R\n",
+"f=1/(2*%pi*sqrt (L*C))\n",
+"disp('frequency='+string(f)+'hertz','maximum crnt='+string(I)+'amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.36: frequency_response.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate freq at resonance\n",
+"C=30*10^-6\n",
+"L=0.2\n",
+"R=12\n",
+"F= sqrt(1/(L*C)-R^2/(L*L))\n",
+"f=1/(2*3.14)*F\n",
+"disp(('freq at resonance='+string(f)+'hz'))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.37: current_voltage_and_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the current also power nd power factor\n",
+"V=200+%i*0\n",
+"f=50\n",
+"R1=30\n",
+"L1=0.2\n",
+"C1=10e-6\n",
+"X1=2*%pi*f*L1\n",
+"Z1=R1+%i*X1\n",
+"R2=40\n",
+"L2=0.12\n",
+"X2=2*%pi*f*L2\n",
+"Z2=R2+%i*X2\n",
+"Z=(Z1*Z2)/(Z1+Z2)\n",
+"I=V/Z\n",
+"R=18.858//calculatimg Z and I we get R and Z,I\n",
+"Z=31.06\n",
+"coso=R/Z\n",
+"I=6.44\n",
+"P=I^2*R\n",
+"I1=(I*Z1)/(Z1+Z2)\n",
+"I2=(I*Z1)/(Z1+Z2)\n",
+"coso1=R1/Z1\n",
+"P1=I1^2*R1\n",
+"coso2=R2/Z2\n",
+"P2=(I2)^2*R2\n",
+"disp('P2 ='+string(P2)+ 'watt' ,'P1 ='+string(P1)+ 'watt ' , 'Total power factr='+string(coso)+'' , 'Total power='+string(P)+'watt' , 'total current ='+string(I)+'amps' , 'total impedance='+string(Z)+'ohms' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.38: current_and_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the current also power nd power factor\n",
+"V=200+%i*0\n",
+"f=50\n",
+"R1=10\n",
+"X1=12\n",
+"Z1=R1+%i*X1\n",
+"R2=15\n",
+"Xc2=20\n",
+"Z2=R2-%i*Xc2\n",
+"Z=(Z1*Z2)/(Z1+Z2)\n",
+"I=V/Z//calculatimg Z and I we get R and Z,I\n",
+"R=14.36\n",
+"I=13.46\n",
+"coso=R/Z\n",
+"P=I*I*R\n",
+"I1=(I*Z2)/(Z1+Z2)\n",
+"I2=(I*Z1)/(Z1+Z2)\n",
+"coso1=R1/Z1\n",
+"P1=I1*I1*R1\n",
+"coso2=R2/Z2\n",
+"P2=I2*I2*R2\n",
+"disp('P2 ='+string(P2)+ 'watt' ,'P1 ='+string(P1)+ 'watt ' , 'Total power factr='+string(coso)+'' , 'Total power='+string(P)+'watt' , 'total current ='+string(I)+'amps' , 'total impedance Z ='+string(Z)+'ohms' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: volatage_and_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the time taken to reach the intantaneous of 150\n",
+"f=50\n",
+"Vr=200\n",
+"Vm=Vr*1.414\n",
+"t=2.5e-3\n",
+"w=2*3.14*f*t\n",
+"v=Vm*sind(w*180/%pi)\n",
+"v1=150 //v1=Vmsimwt\n",
+"t=1/18000*asind(150/282.8)\n",
+"disp( 'voltage equation='+string(v)+' volts ' , 'time='+string(t)+' seconds ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.40: voltage_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the line currnt nd voltage\n",
+"R=200\n",
+"Vl=440\n",
+"f=50\n",
+"V=Vl/1.732//star connection\n",
+"I=V/R\n",
+"Il=I\n",
+"coso=1\n",
+"P=3*V*I*coso\n",
+"Vp=440//delta connection\n",
+"Vl=440\n",
+"I1=1.732*I\n",
+"P1=3*Vp*I*coso\n",
+"disp('active power='+string(P)+'watt' , 'active power='+string(P1)+'watt' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.41: power_absorbed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate total power absrbed\n",
+"R=15\n",
+"L=0.25\n",
+"f=50\n",
+"X=2*%pi*f*L\n",
+"Z=sqrt(R^2+X^2)\n",
+"Vl=400\n",
+"V=Vl/1.732 //in star connection\n",
+"I=V/Z\n",
+"Il=I\n",
+"coso=R/Z\n",
+"P=3*V*Il*coso\n",
+"disp('total power absorbed='+string(P)+'watt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.42: power_absorbed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate resistance nd reactance of circuit\n",
+"P=15000; //power\n",
+"Vl=400;//line voltage\n",
+"V=Vl/1.732\n",
+"I=35;//line current equal to phase current\n",
+"Z=V/I\n",
+"coso=15e3/(1.732*400*35)\n",
+"R=Z*coso\n",
+"X=sqrt(Z^2-R^2)\n",
+"disp('reactance='+string(X)+'ohms' ,'resistance='+string(R)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.43: power_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate power factor\n",
+"W1=5000//W1=V*L*cos(30+o)\n",
+"W2=3000//W2=V*L*cos(30-o)\n",
+"o=atand (1.732*(W1-W2)/(W1+W2))\n",
+"disp('power factor='+string(o)+' ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}