diff options
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb')
-rw-r--r-- | Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb b/Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb new file mode 100644 index 0000000..b6aef58 --- /dev/null +++ b/Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb @@ -0,0 +1,439 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 20: Fiber Optic Communication" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2_1: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"// page no 753\n", +"// prob no 20.2.1\n", +"// An optic fiber is made of glass with following details\n", +"n1=1.55;//RI of glass\n", +"n2=1.51;//RI of clad\n", +"// NA of the fibe is given as\n", +"NA=n1*sqrt(2*(n1-n2)/n1);\n", +"disp(NA,'The numerical aperture is');\n", +"// Acceptance angle is given as\n", +"acc_angle=asind(NA);\n", +"disp(acc_angle,'The acceptance angle is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2_2: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 761\n", +"//prob no. 20.2.2\n", +"//refer example 20.2.1\n", +"d=50*10^-6;wav=0.8*10^-6;NA=0.352;\n", +"//Determination of V number\n", +"V=(%pi)*d*NA/wav\n", +"disp(V,'the V no. is');\n", +"//Determination of approximate number of modes\n", +"N=(V^2)/2;\n", +"disp(N,'the approximate no. of modes are ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2_3: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 763\n", +"//prob no. 20.2.3\n", +"d=5*10^-6;wave=1.3*10^-6;NA=0.35;\n", +"//Determination of V no.\n", +"V=(%pi)*d*NA/wave;\n", +"disp(V,'the v no. is' );\n", +"disp('from the table it is seen that 6 modes have cut off v less than 4.23 ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2_4: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 762\n", +"//prob no. 20.2.4\n", +"//refer example 20.2.3\n", +"a=2;//gradding profile index\n", +"V=69.1;//normalized cutoff freq.\n", +"N=2390;//number of modes supported as a step index fiber \n", +"//Determination of no. of modes supported by graded index fiber\n", +"N_a=(N*a)/(a+2);\n", +"disp(N_a,'no. of modes supported by graded index fiber');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2_5: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 763\n", +"//prob no. 20.2.5\n", +"d=10*10^-6;wav=1.3*10^-6;n1=1.55;V_max=2.405clc;\n", +"//page no 762\n", +"//prob no. 20.2.4\n", +"NA_max=(V_max*wave)/(%pi*d);\n", +"//a)Dtermination of maximum normailized index difference\n", +"del=(1/2)*(NA/n1)^2;\n", +"disp(del,'a)the normilized index difference is');\n", +"//b)Determination of reffactive index of claddin glass\n", +"n2=n1*(1-del);\n", +"disp(n2,'b)cladding index required is');\n", +"//Determination of the fiber acceptance angle \n", +"theta_max=asind(NA);\n", +"disp(theta_max,'the max acceptance angle is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.3_1: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no \n", +"//prob no. 20.3.1\n", +"//A silica fiber with \n", +"A_max=25;A1=2;A2=0.3;\n", +"//a)Determination of repeater dist at 0.9um wavelength\n", +"z1=A_max/A1;\n", +"disp('km',z1,'a)the repeater dist for 0.9um wavelength is');\n", +"//b)Determination of repeater dist at 1.5um wavelength\n", +"z2=A_max/A2;\n", +"disp('km',z2,'a)the repeater dist for 1.5um wavelength is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4_1: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 772\n", +"//prob no. 20.4.1\n", +"//Refer example 20.4.1\n", +"n1=1.55;del=0.0258;l=12.5;z=1000;c=3*10^8;\n", +"//a)Determination of intermodal dispersion\n", +"del_per_km=(n1*z*del)/((1-del)*c);\n", +"disp('s/km',del_per_km,'the intermodal dispersion is');\n", +"//b)Determination of intermodal dispersion for l=12.5\n", +"del_l=del_per_km*l/1000;\n", +"disp('s',del_l,'the intermodal dispertion for l=12.5 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4_2: example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 773\n", +"//prob no. 20.4.2\n", +"//Refer example 20.4.1\n", +"n1=1.55;del=0.0258;z=1000;c=3*10^8;z_disp=12.5;\n", +"del_graded=(n1*z*del^2)/(8*c);\n", +"//Determination of intermodal dispersion\n", +"del_total=del_graded*z_disp;\n", +"disp('sec',del_total,'the intermodal dispersion is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4_3: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 774\n", +"//prob no. 20.4.3\n", +"//Refer example 20.4.1\n", +"wav_0=0.8*10^-6;Dm=-0.15;wav_3=1.5;z=12.5;\n", +"del_t=Dm*wav_3;\n", +"//Determination of total material dispersion\n", +"del_md=del_t*z;\n", +"disp('ns',del_md,'The total material dispersion is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4_4: example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 775\n", +"//prob no. 20.4.4\n", +"Dm=6.6;z=12.5;del_3=6;\n", +"del_wg=Dm*z*del_3;\n", +"disp('ps',del_wg,'Expected waveguide dispersion is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4_5: example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 776\n", +"//prob no. 20.4.5\n", +"del_imd=0;del_md=2.81;del_wgd=0.495;t_w=2.5;\n", +"del_tot=((del_imd^2)+(del_md^2)+(del_wgd^2))^(1/2);\n", +"disp('ns',del_tot,'The total dispersion is');\n", +"t_r=((t_w^2)+(del_tot^2))^(1/2)\n", +"//Determination of max allowed bit rate\n", +"B=(1000/(2*t_r));\n", +"disp('Mbps',B,'The max allowed bit rate is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4_6: example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 778\n", +"//prob no. 20.4.6\n", +"//A multimode step index fiber\n", +"del_t=4;B=10;\n", +"//a)Determination of BW distance product\n", +"BDP=1/(2*del_t);\n", +"disp('Mbps-km',BDP,'a)The BW distance product for fiber is');\n", +"//b)Determiation of dispersion limited length\n", +"z_max_disp=BDP/(B*10^-3);\n", +"disp('km',z_max_disp,'b)The disp limited length for a fiber is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.5_1: example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 780\n", +"//prob no. 20.5.1\n", +"//3 semiconductor diodes are given\n", +"E1=1.9;E2=1.46;E3=0.954;eV=1.9;//All in eV\n", +"c=3*10^8;//speed of light\n", +"//a)Determination of wavelength and freq for E1=1.9\n", +"wav1=1.241/E1;f1=c/(wav1*10^-6);\n", +"disp('um',wav1,'a)i)the wavelength is');\n", +"disp('Hz',f1,'a)ii)the freq is');\n", +"//b)Determination of wavelength and freq for E2=1.46\n", +"wav2=1.241/E2;f2=c/(wav2*10^-6);\n", +"disp('um',wav2,'b)i)the wavelength is');\n", +"disp('Hz',f2,'b)ii)the freq is');\n", +"//c)Determination of wavelength and freq for E3=0.945\n", +"wav3=1.241/E3;f3=c/(wav3*10^-6);\n", +"disp('um',wav3,'c)i)the wavelength is');\n", +"disp('Hz',f3,'c)ii)the freq is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.8_1: example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 799\n", +"//prob no. 20.8.1\n", +"//A fiber link is given\n", +"pt=0;pr=-57;Nc=2;BER=10^-9;N=5;Lpt=6;Lpr=6;Lc=1;Ls=0.5;Lf=2;M=5;del_t=0.505;B=35;Ns=5;\n", +"//a)Determination of loss-limited fiber length\n", +"z=(pt-pr-M-(Nc*Lc)-(Ns*Ls)-Lpt-Lpr)/Lf;\n", +"disp('km',z,'a)the loss-limited fiber is');\n", +"//b)Determination of max BW for loss-limited fiber length\n", +"B_max=1/(5*del_t*z);\n", +"disp('Gbps',B_max,'b)the max BW for loss-limited length is');\n", +"//c)Determination of dispersion-limited length \n", +"z_disp=1000/(5*del_t*B);\n", +"disp('km',z_disp,'the dispertion limited length is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |