summaryrefslogtreecommitdiff
path: root/Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb')
-rw-r--r--Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb439
1 files changed, 439 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb b/Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb
new file mode 100644
index 0000000..b6aef58
--- /dev/null
+++ b/Electronic_Communication_by_D_Roddy/20-Fiber_Optic_Communication.ipynb
@@ -0,0 +1,439 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 20: Fiber Optic Communication"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2_1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"// page no 753\n",
+"// prob no 20.2.1\n",
+"// An optic fiber is made of glass with following details\n",
+"n1=1.55;//RI of glass\n",
+"n2=1.51;//RI of clad\n",
+"// NA of the fibe is given as\n",
+"NA=n1*sqrt(2*(n1-n2)/n1);\n",
+"disp(NA,'The numerical aperture is');\n",
+"// Acceptance angle is given as\n",
+"acc_angle=asind(NA);\n",
+"disp(acc_angle,'The acceptance angle is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2_2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 761\n",
+"//prob no. 20.2.2\n",
+"//refer example 20.2.1\n",
+"d=50*10^-6;wav=0.8*10^-6;NA=0.352;\n",
+"//Determination of V number\n",
+"V=(%pi)*d*NA/wav\n",
+"disp(V,'the V no. is');\n",
+"//Determination of approximate number of modes\n",
+"N=(V^2)/2;\n",
+"disp(N,'the approximate no. of modes are ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2_3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 763\n",
+"//prob no. 20.2.3\n",
+"d=5*10^-6;wave=1.3*10^-6;NA=0.35;\n",
+"//Determination of V no.\n",
+"V=(%pi)*d*NA/wave;\n",
+"disp(V,'the v no. is' );\n",
+"disp('from the table it is seen that 6 modes have cut off v less than 4.23 ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2_4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 762\n",
+"//prob no. 20.2.4\n",
+"//refer example 20.2.3\n",
+"a=2;//gradding profile index\n",
+"V=69.1;//normalized cutoff freq.\n",
+"N=2390;//number of modes supported as a step index fiber \n",
+"//Determination of no. of modes supported by graded index fiber\n",
+"N_a=(N*a)/(a+2);\n",
+"disp(N_a,'no. of modes supported by graded index fiber');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2_5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 763\n",
+"//prob no. 20.2.5\n",
+"d=10*10^-6;wav=1.3*10^-6;n1=1.55;V_max=2.405clc;\n",
+"//page no 762\n",
+"//prob no. 20.2.4\n",
+"NA_max=(V_max*wave)/(%pi*d);\n",
+"//a)Dtermination of maximum normailized index difference\n",
+"del=(1/2)*(NA/n1)^2;\n",
+"disp(del,'a)the normilized index difference is');\n",
+"//b)Determination of reffactive index of claddin glass\n",
+"n2=n1*(1-del);\n",
+"disp(n2,'b)cladding index required is');\n",
+"//Determination of the fiber acceptance angle \n",
+"theta_max=asind(NA);\n",
+"disp(theta_max,'the max acceptance angle is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.3_1: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no \n",
+"//prob no. 20.3.1\n",
+"//A silica fiber with \n",
+"A_max=25;A1=2;A2=0.3;\n",
+"//a)Determination of repeater dist at 0.9um wavelength\n",
+"z1=A_max/A1;\n",
+"disp('km',z1,'a)the repeater dist for 0.9um wavelength is');\n",
+"//b)Determination of repeater dist at 1.5um wavelength\n",
+"z2=A_max/A2;\n",
+"disp('km',z2,'a)the repeater dist for 1.5um wavelength is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.4_1: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 772\n",
+"//prob no. 20.4.1\n",
+"//Refer example 20.4.1\n",
+"n1=1.55;del=0.0258;l=12.5;z=1000;c=3*10^8;\n",
+"//a)Determination of intermodal dispersion\n",
+"del_per_km=(n1*z*del)/((1-del)*c);\n",
+"disp('s/km',del_per_km,'the intermodal dispersion is');\n",
+"//b)Determination of intermodal dispersion for l=12.5\n",
+"del_l=del_per_km*l/1000;\n",
+"disp('s',del_l,'the intermodal dispertion for l=12.5 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.4_2: example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 773\n",
+"//prob no. 20.4.2\n",
+"//Refer example 20.4.1\n",
+"n1=1.55;del=0.0258;z=1000;c=3*10^8;z_disp=12.5;\n",
+"del_graded=(n1*z*del^2)/(8*c);\n",
+"//Determination of intermodal dispersion\n",
+"del_total=del_graded*z_disp;\n",
+"disp('sec',del_total,'the intermodal dispersion is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.4_3: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 774\n",
+"//prob no. 20.4.3\n",
+"//Refer example 20.4.1\n",
+"wav_0=0.8*10^-6;Dm=-0.15;wav_3=1.5;z=12.5;\n",
+"del_t=Dm*wav_3;\n",
+"//Determination of total material dispersion\n",
+"del_md=del_t*z;\n",
+"disp('ns',del_md,'The total material dispersion is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.4_4: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 775\n",
+"//prob no. 20.4.4\n",
+"Dm=6.6;z=12.5;del_3=6;\n",
+"del_wg=Dm*z*del_3;\n",
+"disp('ps',del_wg,'Expected waveguide dispersion is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.4_5: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 776\n",
+"//prob no. 20.4.5\n",
+"del_imd=0;del_md=2.81;del_wgd=0.495;t_w=2.5;\n",
+"del_tot=((del_imd^2)+(del_md^2)+(del_wgd^2))^(1/2);\n",
+"disp('ns',del_tot,'The total dispersion is');\n",
+"t_r=((t_w^2)+(del_tot^2))^(1/2)\n",
+"//Determination of max allowed bit rate\n",
+"B=(1000/(2*t_r));\n",
+"disp('Mbps',B,'The max allowed bit rate is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.4_6: example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 778\n",
+"//prob no. 20.4.6\n",
+"//A multimode step index fiber\n",
+"del_t=4;B=10;\n",
+"//a)Determination of BW distance product\n",
+"BDP=1/(2*del_t);\n",
+"disp('Mbps-km',BDP,'a)The BW distance product for fiber is');\n",
+"//b)Determiation of dispersion limited length\n",
+"z_max_disp=BDP/(B*10^-3);\n",
+"disp('km',z_max_disp,'b)The disp limited length for a fiber is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.5_1: example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 780\n",
+"//prob no. 20.5.1\n",
+"//3 semiconductor diodes are given\n",
+"E1=1.9;E2=1.46;E3=0.954;eV=1.9;//All in eV\n",
+"c=3*10^8;//speed of light\n",
+"//a)Determination of wavelength and freq for E1=1.9\n",
+"wav1=1.241/E1;f1=c/(wav1*10^-6);\n",
+"disp('um',wav1,'a)i)the wavelength is');\n",
+"disp('Hz',f1,'a)ii)the freq is');\n",
+"//b)Determination of wavelength and freq for E2=1.46\n",
+"wav2=1.241/E2;f2=c/(wav2*10^-6);\n",
+"disp('um',wav2,'b)i)the wavelength is');\n",
+"disp('Hz',f2,'b)ii)the freq is');\n",
+"//c)Determination of wavelength and freq for E3=0.945\n",
+"wav3=1.241/E3;f3=c/(wav3*10^-6);\n",
+"disp('um',wav3,'c)i)the wavelength is');\n",
+"disp('Hz',f3,'c)ii)the freq is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.8_1: example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//page no 799\n",
+"//prob no. 20.8.1\n",
+"//A fiber link is given\n",
+"pt=0;pr=-57;Nc=2;BER=10^-9;N=5;Lpt=6;Lpr=6;Lc=1;Ls=0.5;Lf=2;M=5;del_t=0.505;B=35;Ns=5;\n",
+"//a)Determination of loss-limited fiber length\n",
+"z=(pt-pr-M-(Nc*Lc)-(Ns*Ls)-Lpt-Lpr)/Lf;\n",
+"disp('km',z,'a)the loss-limited fiber is');\n",
+"//b)Determination of max BW for loss-limited fiber length\n",
+"B_max=1/(5*del_t*z);\n",
+"disp('Gbps',B_max,'b)the max BW for loss-limited length is');\n",
+"//c)Determination of dispersion-limited length \n",
+"z_disp=1000/(5*del_t*B);\n",
+"disp('km',z_disp,'the dispertion limited length is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}