summaryrefslogtreecommitdiff
path: root/Applied_Physics_i_by_I_A_Shaikh
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics_i_by_I_A_Shaikh')
-rw-r--r--Applied_Physics_i_by_I_A_Shaikh/1-Crystallography.ipynb2374
-rw-r--r--Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb813
-rw-r--r--Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb1129
-rw-r--r--Applied_Physics_i_by_I_A_Shaikh/4-Acoustics_and_Ultrasonics.ipynb1261
4 files changed, 5577 insertions, 0 deletions
diff --git a/Applied_Physics_i_by_I_A_Shaikh/1-Crystallography.ipynb b/Applied_Physics_i_by_I_A_Shaikh/1-Crystallography.ipynb
new file mode 100644
index 0000000..14d34af
--- /dev/null
+++ b/Applied_Physics_i_by_I_A_Shaikh/1-Crystallography.ipynb
@@ -0,0 +1,2374 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Crystallography"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_10: calculate_free_electron_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_10,pg 1-62\n",
+"\n",
+"A=63.546 //atomic weight of Cu\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"p=8930 //Density\n",
+"\n",
+"n=1.23 //no.of electron per atom\n",
+"\n",
+"//density=mass/volume\n",
+"\n",
+"//therfore 1/volume=density/mass\n",
+"\n",
+"//since electron concentration is needed, let us find out no of atoms/volume(x)\n",
+"\n",
+"x=N*p/A\n",
+"\n",
+"//now one atom contribute n=1.23 electron\n",
+"\n",
+"//therefore x atoms contribute y no of free electron\n",
+"\n",
+"y=x*n\n",
+"\n",
+"printf('free electron concentration=')\n",
+"\n",
+"disp(y)\n",
+"\n",
+"printf('electron/m^3')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_11: calculate_Y_and_Z_intercept.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_11,pg 1-62\n",
+"\n",
+"//primitive vectors\n",
+"\n",
+"a=1.5 //in amstrong unit\n",
+"\n",
+"b=2 //in amstrong unit\n",
+"\n",
+"c=4 //in amstrong unit\n",
+"\n",
+"//miller indices of the plane\n",
+"\n",
+"h=3\n",
+"\n",
+"k=2\n",
+"\n",
+"l=6\n",
+"\n",
+"//therefore intercepts are a/h,b/k,c/l\n",
+"\n",
+"x=a/h\n",
+"\n",
+"y=b/k\n",
+"\n",
+"z=c/l\n",
+"\n",
+"//this gives intercepts along x axis as x amstrong but it is given that plane cut x axis at 1.2 amstrong .\n",
+"\n",
+"t=1.5/x\n",
+"\n",
+"//this shows that the plane under consideration is another plane which is parallel to it(to keep miller indices same)\n",
+"\n",
+"n=t*y //Y intercept\n",
+"\n",
+"p=t*z //Z intercept\n",
+"\n",
+"printf(' 1) Y intercept=')\n",
+"\n",
+"disp(n)\n",
+"\n",
+"printf('amstrong')\n",
+"\n",
+"printf(' 2)Z intercept=')\n",
+"\n",
+"disp(p)\n",
+"\n",
+"printf('amstrong')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_12: calculate_Number_of_atom_per_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_12,pg 1-63\n",
+"\n",
+"ro=7.87 //density of metal\n",
+"\n",
+"A=55.85 //atomic wt of metal\n",
+"\n",
+"N=6.023*10^23 //Avogadro's number\n",
+"\n",
+"a=2.9*10^-8 //lattice constant of metal\n",
+"\n",
+"n=(N*(a^3)*ro)/A\n",
+"\n",
+"printf('Number of atom per unit cell of a metal=')\n",
+"\n",
+"disp(int32(n))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_13: calculate_Lattice_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_13,pg 1-63\n",
+"\n",
+"n=2 //BCC structure\n",
+"\n",
+"ro=9.6*10^2 //density of sodium crystal\n",
+"\n",
+"A=23 //atomic weight of sodium crystal\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"a=((n*A)/(N*ro))^(1/3)\n",
+"\n",
+"printf('Lattice constant=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_15: calculate_Number_of_atom_per_unit_cell_and_atomic_radius.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_15,pg 1-64\n",
+"\n",
+"ro=2.7*10^3 //density of metal\n",
+"\n",
+"A=27 //atomic wt of metal\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"a=4.05*10^-10 //lattice constant of metal\n",
+"\n",
+"n=(N*(a^3)*ro)/A\n",
+"\n",
+"printf('1) Number of atom per unit cell of a metal=')\n",
+"\n",
+"disp(int32(n))\n",
+"\n",
+"r=sqrt(2)*a/4 //radius of metal\n",
+"\n",
+"printf('2) atomic radius of a metal=')\n",
+"\n",
+"disp(r)\n",
+"\n",
+"printf('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_16: calculate_Lattice_constant_and_APF.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_16,pg 1-64\n",
+"\n",
+"n=2 //BCC structure\n",
+"\n",
+"ro=5.98*10^3 //density of chromium\n",
+"\n",
+"A=50 //atomic wt of chromium\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"a=((n*A)/(N*ro))^(1/3)\n",
+"\n",
+"printf(' 1) Lattice constant=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('m')\n",
+"\n",
+"//for BCC\n",
+"\n",
+"r=sqrt(3)*a/4 //radius of chromium\n",
+"\n",
+"APF=(n*(4/3)*%pi*(r^3))/(a^3)\n",
+"\n",
+"printf(' 2) A.P.F. for chromium=')\n",
+"\n",
+"disp(APF)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_17: calculate_Lattice_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_17,pg 1-65\n",
+"\n",
+"n=4 //FCC structure\n",
+"\n",
+"ro=6250 //density\n",
+"\n",
+"M=60.2 //molecular weight\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"a=((n*M)/(N*ro))^(1/3)\n",
+"\n",
+"printf('Lattice constant=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_19: calculate_wavlength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_19,pg 1-66\n",
+"\n",
+"a=2.82*10^-9 //lattice constant\n",
+"\n",
+"n=2 //FCC crystal\n",
+"\n",
+"t=17.167 //glancing angle in degree\n",
+"\n",
+"q=%pi/180*t //glancing angle in radians\n",
+"\n",
+"//assuming reflection in (1,0,0) plane\n",
+"\n",
+"h=1\n",
+"\n",
+"k=0\n",
+"\n",
+"l=0\n",
+"\n",
+"d=a/sqrt(h^2+k^2+l^2)\n",
+"\n",
+"//using Bragg's law , 2*d*sin(q)=n*la\n",
+"\n",
+"la=2*d*sin(q)/n\n",
+"\n",
+"printf('wavlength of X-ray=')\n",
+"\n",
+"disp(la)\n",
+"\n",
+"printf('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_1: calculate_lattice_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_1,pg 1-58\n",
+"\n",
+"n=4 //FCC structure\n",
+"\n",
+"ro=2180 //density of NaCl\n",
+"\n",
+"M=23+35.5 //molecular weight of NaCl\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"a=((n*M)/(N*ro))^(1/3)\n",
+"\n",
+"printf('Lattice constant=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_20: calculate_Lattice_constant_and_atomic_radius.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_20,pg 1-66\n",
+"\n",
+"n=8 //Diamond structure\n",
+"\n",
+"ro=2.33*10^3 //density of diamond\n",
+"\n",
+"M=28.9 //atomic weight of diamond\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"a=((n*M)/(N*ro))^(1/3)\n",
+"\n",
+"printf(' 1) Lattice constant=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('m')\n",
+"\n",
+"r=sqrt(3)*a/8 //radius of diamond structure\n",
+"\n",
+"printf(' 2) atomic radius of a metal=')\n",
+"\n",
+"disp(r)\n",
+"\n",
+"printf('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_21: calculate_mass_of_one_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_21,pg 1-66\n",
+"\n",
+"n=2 //BCC structure\n",
+"\n",
+"ro=8.57*10^3 //density of chromium\n",
+"\n",
+"d=2.86*10^-10 //nearest atoms distance\n",
+"\n",
+"//d=sqrt(3)/2*a\n",
+"\n",
+"a=2*d/sqrt(3)\n",
+"\n",
+"//now use formulae a^3*ro=n*A/N\n",
+"\n",
+"//therefore a^3*ro/n=mass of unit cell/(no of atoms pre unit cell)=mass of one atom\n",
+"\n",
+"m=a^3*ro/n\n",
+"\n",
+"printf('mass of one atom=')\n",
+"\n",
+"disp(m)\n",
+"\n",
+"printf('kg')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_2: calculate_Lattice_constant_and_diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_2,pg 1-58\n",
+"\n",
+"n=4 //FCC structure\n",
+"\n",
+"ro=8.9 //density of Cu atom\n",
+"\n",
+"A=63.55 //atomic weight of Cu atom\n",
+"\n",
+"N=6.023*10^23 //Avogadro's number\n",
+"\n",
+"a=((n*A)/(N*ro))^(1/3)\n",
+"\n",
+"printf(' 1) Lattice constant=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('cm')\n",
+"\n",
+"r=sqrt(2)*a/4 //radius of Cu atom\n",
+"\n",
+"d=2*r //diameter of Cu atom\n",
+"\n",
+"printf(' 2) Diameter of Cu atom=')\n",
+"\n",
+"disp(d)\n",
+"\n",
+"printf('cm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_3: calculate_Density_of_diamond.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_3,pg 1-59\n",
+"\n",
+"n=8 //diamond structure\n",
+"\n",
+"A=12.01 //atomic wt\n",
+"\n",
+"N=6.023*10^23 //Avogadro's number\n",
+"\n",
+"a=3.75*10^-8 //lattice constant of diamond\n",
+"\n",
+"ro=(n*A)/(N*(a^3))\n",
+"\n",
+"printf('Density of diamond=')\n",
+"\n",
+"disp(ro)\n",
+"\n",
+"printf('gm/cc')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_4: calculate_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_4,pg 1-59\n",
+"\n",
+"//intercept of planeare in proportion 3a:4b:infinity (plane parallel to z axis)\n",
+"\n",
+"//as a,b and c are basic vectors the proportin of intercepts 3:4:infinity\n",
+"\n",
+"//therefore reciprocal\n",
+"\n",
+"r1=1/3\n",
+"\n",
+"r2=1/4\n",
+"\n",
+"r3=0\n",
+"\n",
+"//taking LCM\n",
+"\n",
+"v=int32([3,4])\n",
+"\n",
+"l=double(lcm(v))\n",
+"\n",
+"m1=(l*r1)\n",
+"\n",
+"m2=(l*r2)\n",
+"\n",
+"m3=(l*r3)\n",
+"\n",
+"printf('miler indices=')\n",
+"\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_5: calculate_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_5,pg 1-59\n",
+"\n",
+"//intercept of planeare in proportion 3a:-2b:3/2c\n",
+"\n",
+"//as a,b and c are basic vectors the proportin of intercepts 3:-2:3/2\n",
+"\n",
+"//therefore reciprocal\n",
+"\n",
+"r1=1/3\n",
+"\n",
+"r2=-1/2\n",
+"\n",
+"r3=2/3\n",
+"\n",
+"//taking LCM\n",
+"\n",
+"v=int32([3,2,3/2])\n",
+"\n",
+"l=double(lcm(v))\n",
+"\n",
+"m1=(l*r1)\n",
+"\n",
+"m2=(l*r2)\n",
+"\n",
+"m3=(l*r3)\n",
+"\n",
+"printf('miler indices=')\n",
+"\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_6: calculate_ratio_of_intercepts.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_6,pg 1-59\n",
+"\n",
+"//if a plane cut at length m,n,p on the three crystal axes,then\n",
+"\n",
+"//m:n:p=xa:yb:zc\n",
+"\n",
+"//when primitive vectors of unit cell and numbers x,y,z,are related to miller indices (h,k,l)of the plane by relation\n",
+"\n",
+"//1/x:1/y:1/z=h:k:l\n",
+"\n",
+"//since a=b=c (crystal is simple cubic)\n",
+"\n",
+"//and (h,k,l)=(1,2,3)\n",
+"\n",
+"//therefore reciprocal\n",
+"\n",
+"r1=1/1\n",
+"\n",
+"r2=1/2\n",
+"\n",
+"r3=1/3\n",
+"\n",
+"//taking LCM\n",
+"\n",
+"v=int32([1,2,3])\n",
+"\n",
+"l=double(lcm(v))\n",
+"\n",
+"m=(l*r1)\n",
+"\n",
+"n=(l*r2)\n",
+"\n",
+"p=(l*r3)\n",
+"\n",
+"printf('ratio of intercepts=')\n",
+"\n",
+"disp(m)\n",
+"\n",
+"disp(n)\n",
+"\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_7: calculate_y_and_z_intercepts.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_7,pg 1-60\n",
+"\n",
+"//primitive vectors\n",
+"\n",
+"a=1.2 //in amstrong unit\n",
+"\n",
+"b=1.8 //in amstrong unit\n",
+"\n",
+"c=2 //in amstrong unit\n",
+"\n",
+"//miller indices of the plane\n",
+"\n",
+"h=2\n",
+"\n",
+"k=3\n",
+"\n",
+"l=1\n",
+"\n",
+"//therefore intercepts are a/h,b/k,c/l\n",
+"\n",
+"x=a/h\n",
+"\n",
+"y=b/k\n",
+"\n",
+"z=c/l\n",
+"\n",
+"//this gives intercepts along x axis as x amstrong but it is given tthat plane cut x axis at 1.2 amstrong .\n",
+"\n",
+"t=1.2/x\n",
+"\n",
+"//this shows that the plane under consideration is another plane which is parallel to it(to keep miller indices same)\n",
+"\n",
+"n=t*y //Y intercept\n",
+"\n",
+"p=t*z //Z intercept\n",
+"\n",
+"printf(' 1) Y intercept=')\n",
+"\n",
+"disp(n)\n",
+"\n",
+"printf('amstrong')\n",
+"\n",
+"printf(' 2)Z intercept=')\n",
+"\n",
+"disp(p)\n",
+"\n",
+"printf('amstrong')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_8: calculate_radius.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_8,pg 1-61\n",
+"\n",
+"//the interplanar spacing of plane\n",
+"\n",
+"h=1\n",
+"\n",
+"k=1\n",
+"\n",
+"l=0\n",
+"\n",
+"d=2 //interpanar spacing in amstrong unit\n",
+"\n",
+"//we know that d=a/sqrt(h^2+k^2+l^2) therefore\n",
+"\n",
+"a=d*sqrt(h^2+k^2+l^2)\n",
+"\n",
+"//for FCC structure\n",
+"\n",
+"r=sqrt(2)*a/4\n",
+"\n",
+"printf('radius r=')\n",
+"\n",
+"disp(r)\n",
+"\n",
+"printf('amstrong')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14_9: calculate_density_and_diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_14_9,pg 1-61\n",
+"\n",
+"n=4 //for FCC structure\n",
+"\n",
+"//the interplanar spacing of plane\n",
+"\n",
+"h=1\n",
+"\n",
+"k=1\n",
+"\n",
+"l=1\n",
+"\n",
+"d=2.08*10^-10 //distance\n",
+"\n",
+"A=63.54 //atomic weight of Cu\n",
+"\n",
+"N=6.023*10^26 //amstrong no\n",
+"\n",
+"//we know that d=a/sqrt(h^2+k^2+l^2) therefore\n",
+"\n",
+"a=d*sqrt(h^2+k^2+l^2)\n",
+"\n",
+"//also (a^3*q)=n*A/N\n",
+"\n",
+"q=n*A/(N*a^3)\n",
+"\n",
+"printf(' 1)density=')\n",
+"\n",
+"disp(q)\n",
+"\n",
+"printf('kg/m^3')\n",
+"\n",
+"//for FCC structure\n",
+"\n",
+"r=sqrt(2)*a/4\n",
+"\n",
+"d=r*2\n",
+"\n",
+"printf(' 2)radius r=')\n",
+"\n",
+"disp(r)\n",
+"\n",
+"printf('m')\n",
+"\n",
+"printf(' 3)diameter d=')\n",
+"\n",
+"disp(d)\n",
+"\n",
+"printf('m')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_10: calculate_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_10,pg 1-73\n",
+"\n",
+"//for line -A\n",
+"\n",
+"n1=1 //1st order maximum\n",
+"\n",
+"q1=30 //glancing angle in degree\n",
+"\n",
+"//using Bragg's law for line A n1*l1=2*d1*sin(q1)\n",
+"\n",
+"//d1=n1*l1/(2*sin(q1))\n",
+"\n",
+"//for line B\n",
+"\n",
+"l2=0.97 //wavelength in amstrong unit\n",
+"\n",
+"n2=3 //1st order maximum\n",
+"\n",
+"q2=60 //glancing angle in degree\n",
+"\n",
+"//using Bragg's law for line B n2*l2=2*d2*sin(q2)\n",
+"\n",
+"//since for both lines A and B we use same plane of same crystal,therefore\n",
+"\n",
+"//d1=d2\n",
+"\n",
+"//therefore equution became n2*l2=2*n1*l1/(2*sin(q1))*sin(q2)\n",
+"\n",
+"//by arranging terms we get\n",
+"\n",
+"\n",
+"l1=n2*l2*2*sind(q1)/(2*n1*sind(q2))\n",
+"\n",
+"printf('wavelength of the line A=')\n",
+"\n",
+"disp(l1)\n",
+"\n",
+"printf('amstrong')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_11: calculate_glancing_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_11,pg 1-74\n",
+"\n",
+"n=1 //first order minimum\n",
+"\n",
+"d=5.5*10^-11 //atomic spacing\n",
+"\n",
+"e=1.6*10^-19 //charge on one electron\n",
+"\n",
+"Ee=10*10^3 //energy in eV\n",
+"\n",
+"E=e*Ee //energy in Joule\n",
+"\n",
+"m=9.1*10^-31 //mass of elelctron\n",
+"\n",
+"h=6.63*10^-34 //plank's constant\n",
+"\n",
+"l=h/sqrt(2*m*E) //wavelength\n",
+"\n",
+"//using Bragg's law\n",
+"\n",
+"Q=asind((n*l)/(2*d)) //glancing angle\n",
+"\n",
+"printf('glancing angle=')\n",
+"\n",
+"disp(Q)\n",
+"\n",
+"printf('degree')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_12: calculate_glancing_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_12,pg 1-74\n",
+"\n",
+"a=2.814*10^-10 //lattice constant\n",
+"\n",
+"//for rock salt\n",
+"\n",
+"d=a/2 //interplaner spacing\n",
+"\n",
+"n=1 //first order maximum\n",
+"\n",
+"l=1.541*10^-10 //wavelength of rock salt crystal\n",
+"\n",
+"//using Bragg's law\n",
+"\n",
+"m=asin((n*l)/(2*d)) //glancing angle\n",
+"\n",
+"Q=m*180/%pi\n",
+"\n",
+"printf('glancing angle=')\n",
+"\n",
+"disp(Q)\n",
+"\n",
+"printf('degree')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_1: calculate_glancing_angle_and_highest_order.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_1,pg 1-68\n",
+"\n",
+"d=4.255*10^-10 //interplaner spacing\n",
+"\n",
+"l=1.549*10^-10 //wavelength of x ray\n",
+"\n",
+"//part 1: for smallest glancing angle(n=1)\n",
+"\n",
+"n1=1\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"q=asind(n1*l/(2*d))\n",
+"\n",
+"printf(' 1)glancing angle=')\n",
+"\n",
+"disp(q)\n",
+"\n",
+"printf('degree')\n",
+"\n",
+"//part 2: for highst order\n",
+"\n",
+"//for highest order sin(q) not exceed one i.e maximum value is one\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"n2=2*d/l //since sin(q)is one\n",
+"\n",
+"printf(' 2)highest order possible =')\n",
+"\n",
+"disp(floor(n2))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_2: calculate_glancing_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_2,pg 1-69\n",
+"\n",
+"a=2.125*10^-10 //lattice constant\n",
+"\n",
+"d=a/2 //interplaner spacing\n",
+"\n",
+"n=2 //second order maximum\n",
+"\n",
+"l=0.592*10^-10 //wavelength of rock salt crystal\n",
+"\n",
+"//using Bragg's law\n",
+"\n",
+"m=asin((n*l)/(2*d)) //glancing angle\n",
+"\n",
+"Q=m*180/%pi\n",
+"\n",
+"printf('glancing angle=')\n",
+"\n",
+"disp(Q)\n",
+"\n",
+"printf('degree')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_3: calculate_second_order_reflection_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_3,pg 1-69\n",
+"\n",
+"n1=1 //for 1st order\n",
+"\n",
+"n2=2 //for 2nd order\n",
+"\n",
+"t=3.4 //angle where 1st order reflection done\n",
+"\n",
+"t1=t*%pi/180 //convert degree to radian\n",
+"\n",
+"m=sin(t1)\n",
+"\n",
+"//but from Bragg's law\n",
+"\n",
+"//n*l=2*d*sin(t)\n",
+"\n",
+"//for for constant distance(d) and wavelength(l) \n",
+"\n",
+"//order(n) is directly proportionl to sine of angle i.e (sin(t))\n",
+"\n",
+"//n1/n2=sin(t1)/sin(t2)\n",
+"\n",
+"//assume sin(t2)=a\n",
+"\n",
+"a=n2/n1*m\n",
+"\n",
+"t2=asind(a) //taking sin inverese in degree\n",
+"\n",
+"printf('second order reflection take place at an angle=')\n",
+"\n",
+"disp(t2)\n",
+"\n",
+"printf('degree')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_4: calculate_shortest_wavelength_and_glancing_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_4,pg 1-70\n",
+"\n",
+"V=50*10^3 //operating voltage of x-ray\n",
+"\n",
+"M=74.6 //molecular weight\n",
+"\n",
+"p=1.99*10^3 //density\n",
+"\n",
+"n=4 //no of atoms per unit cell(for FCC structure)\n",
+"\n",
+"h=6.63*10^-34 //plank's constant\n",
+"\n",
+"c=3*10^8 //velocity \n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"//step 1:clculating shortest wavelength\n",
+"\n",
+"l=h*c/(e*V)\n",
+"\n",
+"printf(' 1)shortest wavelength=')\n",
+"\n",
+"disp(l)\n",
+"\n",
+"printf('m')\n",
+"\n",
+"//step:2 calculating distance(d)\n",
+"\n",
+"//now a^3*p=n*M/N therefore,\n",
+"\n",
+"a=(n*M/(N*p))^(1/3)\n",
+"\n",
+"//since KCl is ionic crystal herefore,\n",
+"\n",
+"d=a/2\n",
+"\n",
+"//step 3: calculaing glancing angle\n",
+"\n",
+"//using Bragg's law\n",
+"\n",
+"//n*l=2*d*sin(t)\n",
+"\n",
+"//assume sin(t)=a, wavelength is minimum i.e l and n=1\n",
+"\n",
+"n=1\n",
+"\n",
+"a=n*l/(2*d)\n",
+"\n",
+"t=asind(a) //taking sin inverese in degree\n",
+"\n",
+"printf(' 2) glancing angle=')\n",
+"\n",
+"disp(t)\n",
+"\n",
+"printf('degree')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_5: find_possible_solution_of_planes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_5,pg 1-70\n",
+"\n",
+"n=1 //first order maximum\n",
+"\n",
+"l=0.82*10^-10 //wavelength of X ray\n",
+"\n",
+"qd=7 //glancing angle in degree\n",
+"\n",
+"qm=51/60 //glancing angle in minute\n",
+"\n",
+"qs=48/3600 //glancing angle in second\n",
+"\n",
+"q=qd+qm+qs //total glancin angle in degree\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"d=n*l/(2*sind(q))\n",
+"\n",
+"a=3*10^-10 //lattice constant\n",
+"\n",
+"//we know that d=a/root(h^2+k^2+l^2)\n",
+"\n",
+"//assume root(h^2+k^2+l^2) =m\n",
+"\n",
+"//arranging terms we get\n",
+"\n",
+"m=a/d\n",
+"\n",
+"printf('square root(h^2+k^2+l^2)=') \n",
+"\n",
+"disp(int32(m))\n",
+"\n",
+"printf('hence possible solutions are (100),(010),(001)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_6: calculate_cubic_lattice_structure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_6,pg 1-71\n",
+"\n",
+"n=1 //first order maximum\n",
+"\n",
+"l=%i //wavelength of X ray\n",
+"\n",
+"//part 1:for(100)\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"q1=5.4 //glancing angle in degree\n",
+"\n",
+"dl1=n*l/(2*sind(q1))\n",
+"\n",
+"//part 2:for(110)\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"q2=7.6 //glancing angle in degree\n",
+"\n",
+"dl2=n*l/(2*sind(q2))\n",
+"\n",
+"//part 3:for(111)\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"q3=9.4 //glancing angle in degree\n",
+"\n",
+"dl3=n*l/(2*sind(q3))\n",
+"\n",
+"//for taking ratio divide all dl by dl1\n",
+"\n",
+"d1=dl1/dl1\n",
+"\n",
+"d2=dl2/dl1\n",
+"\n",
+"d3=dl3/dl1\n",
+"\n",
+"printf('cubic lattice structure is=')\n",
+"\n",
+"disp(d3,d2,d1)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_7: calculate_lattice_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_7,pg 1-71\n",
+"\n",
+"n=1 //first order maximum\n",
+"\n",
+"l=1.54*10^-10 //wavelength of rock salt crystal\n",
+"\n",
+"q=21.7 //glancing angle in degree\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"d=n*l/(2*sind(q))\n",
+"\n",
+"printf('lattice constant of crystal=')\n",
+"\n",
+"disp(d)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_8: calculate_glancing_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_8,pg 1-72\n",
+"\n",
+"a=2.814*10^-10 //lattice constant\n",
+"\n",
+"//the interplanar spacing of plane\n",
+"\n",
+"h=1\n",
+"\n",
+"k=0\n",
+"\n",
+"l=0\n",
+"\n",
+"d=a/sqrt(h^2+k^2+l^2)\n",
+"\n",
+"n=2 //first order maximum\n",
+"\n",
+"l=0.714*10^-10 //wavelength of X-ray crystal\n",
+"\n",
+"//using Bragg's law\n",
+"\n",
+"m=asin((n*l)/(2*d)) //glancing angle\n",
+"\n",
+"Q=m*180/%pi\n",
+"\n",
+"printf('glancing angle=')\n",
+"\n",
+"disp(Q)\n",
+"\n",
+"printf('degree')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15_9: calculate_wavelength_and_glancing_angle_and_highest_order.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_15_9,pg 1-72\n",
+"\n",
+"d=2.82*10^-10 //interplaner spacing\n",
+"\n",
+"t=10 //glancing angle\n",
+"\n",
+"//for part 1\n",
+"\n",
+"n=1 //first order maximum\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(t)\n",
+"\n",
+"l=2*d*sind(t)/n\n",
+"\n",
+"printf(' 1)wavelength=')\n",
+"\n",
+"disp(l)\n",
+"\n",
+"printf('meter')\n",
+"\n",
+"//for part 2\n",
+"\n",
+"n1=2\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"q=asind(n1*l/(2*d))\n",
+"\n",
+"printf(' 2)glancing angle=')\n",
+"\n",
+"disp(q)\n",
+"\n",
+"printf('degree')\n",
+"\n",
+"//for part 3\n",
+"\n",
+"//for highest order sin(q) not exceed one i.e maximum value is one\n",
+"\n",
+"//using Bragg's law n*l=2*d*sin(q)\n",
+"\n",
+"n2=2*d/l //since sin(q)is one\n",
+"\n",
+"printf(' 3)highest order possible =')\n",
+"\n",
+"disp(floor(n2))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16_1: calculate_ratio_of_vacancies.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_16_1,pg 1-75\n",
+"\n",
+"Ev=1.08 //average energy required to creaet a vacancy\n",
+"\n",
+"k=1.38*10^-23 //boltzman constant in J/K\n",
+"\n",
+"e=1.6*10^-19 //charge on 1 electron\n",
+"\n",
+"K=k/e //boltzman constant in eV/K\n",
+"\n",
+"//for a low concentration of vacancies a relation is\n",
+"\n",
+"//n=Nexp(-Ev/KT)\n",
+"\n",
+"//since total no atom is 1 hence N=1\n",
+"\n",
+"//at 1000k\n",
+"\n",
+"T1=1000 //temperature\n",
+"\n",
+"n1=exp(-Ev/(K*T1))\n",
+"\n",
+"//at 500k\n",
+"\n",
+"T2=500 //temperature\n",
+"\n",
+"n2=exp(-Ev/(K*T2))\n",
+"\n",
+"v=(n1)/(n2) //ratio of vacancies\n",
+"\n",
+"printf('ratio of vacancies=')\n",
+"\n",
+"disp(v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16_2: calculate_ratio_of_vacancies_to_no_of_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_16_2,pg 1-75\n",
+"\n",
+"Ev=1.95 //average energy required to creaet a vacancy\n",
+"\n",
+"k=1.38*10^-23 //boltzman constant in J/K\n",
+"\n",
+"e=1.6*10^-19 //charge on 1 electron\n",
+"\n",
+"K=k/e //boltzman constant in eV/K\n",
+"\n",
+"T=500 //temperature\n",
+"\n",
+"//for a low concentration of vacancies a relation is\n",
+"\n",
+"//n=Nexp(-Ev/KT)\n",
+"\n",
+"m=exp(-Ev/(K*T)) //ratio of no of vacancies to no of atoms n/N\n",
+"\n",
+"printf('ratio of no of vacancies to no of atoms=')\n",
+"\n",
+"disp(m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16_3: calculate_ratio_of_vacancies.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_16_3,pg 1-76\n",
+"\n",
+"Ev=1.8 //average energy required to creaet a vacancy\n",
+"\n",
+"k=1.38*10^-23 //boltzman constant in J/K\n",
+"\n",
+"e=1.6*10^-19 //charge on 1 electron\n",
+"\n",
+"K=k/e //boltzman constant in eV/K\n",
+"\n",
+"//for a low concentration of vacancies a relation is\n",
+"\n",
+"//n=Nexp(-Ev/KT)\n",
+"\n",
+"//ratio of vacancy is n/N assume be r=exp(-Ev/KT)\n",
+"\n",
+"//since total no atom is 1 hence N=1\n",
+"\n",
+"//at 1000k\n",
+"\n",
+"t1=-119 //temperature in degree\n",
+"\n",
+"T1=t1+273 //temperature in kelvine\n",
+"\n",
+"r1=exp(-Ev/(K*T1))\n",
+"\n",
+"printf('1)ratio of vacancies at -119 degree=')\n",
+"\n",
+"disp(r1)\n",
+"\n",
+"//at 500k\n",
+"\n",
+"t2=80 //temperature in degree\n",
+"\n",
+"T2=t2+273 //temperature in kelvine\n",
+"\n",
+"r2=exp(-Ev/(K*T2))\n",
+"\n",
+"v=(r1)/(r2) //ratio of vacancies\n",
+"\n",
+"printf('2)ratio of vacancies at 80 degree=')\n",
+"\n",
+"disp(r2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16_4: calculate_no_of_frankel_defects.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_16_4,pg 1-76\n",
+"\n",
+"Ev=1.5 //energy of formaton of frankel defect\n",
+"\n",
+"k=1.38*10^-23 //boltzman constant in J/K\n",
+"\n",
+"e=1.6*10^-19 //charge on 1 electron\n",
+"\n",
+"K=k/e //boltzman constant in eV/K\n",
+"\n",
+"T=700 //temperature\n",
+"\n",
+"N=6.023*10^26 //avogadro's no\n",
+"\n",
+"//for a low concentration of vacancies a relation is\n",
+"\n",
+"//n=Nexp(-Ev/KT)\n",
+"\n",
+"m=exp(-Ev/(2*K*T)) //ratio of no of vacancies to no of atoms n/N\n",
+"\n",
+"qs=5.56 //specific density\n",
+"\n",
+"q=5.56*10^3 //real density ke/m^3\n",
+"\n",
+"M=0.143 //molecular weight in kg/m^3\n",
+"\n",
+"ma=M/N //mass of one molecule\n",
+"\n",
+"v=ma/q //vol of one molecule\n",
+"\n",
+"//v volume containe 1 molecule\n",
+"\n",
+"//therefore 1 m^3 containe x molecule\n",
+"\n",
+"x=1/v\n",
+"\n",
+"d=m*x //defect per m^3\n",
+"\n",
+"dm=d*10^-9 //defect per mm^3\n",
+"\n",
+"printf('number of frankel defects per mm^3=')\n",
+"\n",
+"disp(dm)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_1: calculate_Unit_cell_dimension.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_3_1,pg 1-14\n",
+"\n",
+"A=26.98 //atomic weight of Al\n",
+"\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"\n",
+"p=2700 //Density\n",
+"\n",
+"n=4 //FCC structure\n",
+"\n",
+"a=(n*A/(N*p))^(1/3)\n",
+"\n",
+"printf('Unit cell dimension of Al=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_2: calculate_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_3_2,pg 1-15\n",
+"\n",
+"As=28.1 //atomic weight of Si\n",
+"\n",
+"Ag=69.7 //atomic weight of Ga\n",
+"\n",
+"Aa=74.9 //atomic weight of As\n",
+"\n",
+"as=5.43*10^-8 //lattice constant of Si\n",
+"\n",
+"aga=5.65*10^-8 //lattice constant of GaAs\n",
+"\n",
+"ns=8 //no of atoms/unit cell in Si\n",
+"\n",
+"nga=4 //no of atoms/unit cell in GaAs\n",
+"\n",
+"N=6.023*10^23 //Avogadro's number\n",
+"\n",
+"//p=(n*A)/(N*a^3) this is formula for density\n",
+"\n",
+"//for Si\n",
+"\n",
+"ps=(ns*As)/(N*as^3)\n",
+"\n",
+"printf(' 1) Density of Si=')\n",
+"\n",
+"disp(ps)\n",
+"\n",
+"printf('gm/cm^3')\n",
+"\n",
+"//for GaAs\n",
+"\n",
+"Aga=Ag+Aa //molecular wt of GaAs\n",
+"\n",
+"pga=(nga*Aga)/(N*aga^3)\n",
+"\n",
+"printf(' 2) Density of GaAs=')\n",
+"\n",
+"disp(pga)\n",
+"\n",
+"printf('gm/cm^3')\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_3: calculate_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_3_3,pg 1-16\n",
+"\n",
+"A=63.5 //atomic weight of Cu\n",
+"\n",
+"N=6.023*10^23 //Avogadro's number\n",
+"\n",
+"n=4 //FCC structure\n",
+"\n",
+"r=1.28*10^-8 //atomic radius of Cu\n",
+"\n",
+"//for FCC\n",
+"\n",
+"a=4*r/(sqrt(2)) //lattice constant\n",
+"\n",
+"p=(n*A)/(N*a^3)\n",
+"\n",
+"printf('Density of Cu=')\n",
+"\n",
+"disp(p)\n",
+"\n",
+"printf('gm/cm^3')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_4: calculate_APF.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_3_4,pg 1-17\n",
+"\n",
+"A=50 //atomic weight of chromium\n",
+"\n",
+"N=6.023*10^23 //Avogadro's number\n",
+"\n",
+"p=5.96 //Density\n",
+"\n",
+"n=2 //BCC structure\n",
+"\n",
+"//step 1 : claculation for lattice constant (a)\n",
+"\n",
+"a=(n*A/(N*p))^(1/3)\n",
+"\n",
+"//step 2 : radius of an atom in BCC\n",
+"\n",
+"r=sqrt(3)*a/4\n",
+"\n",
+"//step 3 : Atomic packing factor (APF)\n",
+"\n",
+"APF=n*((4/3)*%pi*r^3)/a^3\n",
+"\n",
+"printf('Atomic packing factor (APF)=')\n",
+"\n",
+"disp(APF)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_5: calculate_no_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_3_5,pg 1-17\n",
+"\n",
+"A=120 //atomic weight of chromium\n",
+"\n",
+"N=6.023*10^23 //Avogadro's number\n",
+"\n",
+"p=5.2 //Density\n",
+"\n",
+"n=2 //BCC structure\n",
+"\n",
+"m=20 //mass\n",
+"\n",
+"//step 1 : claculation for volume of unit cell(a^3)\n",
+"\n",
+"a=(n*A/(N*p))\n",
+"\n",
+"//step 2 : volume of 20 gm of the element\n",
+"\n",
+"v=m/p\n",
+"\n",
+"//step 3 :no of unit cell\n",
+"\n",
+"x=v/a\n",
+"\n",
+"printf('no of unit cell=')\n",
+"\n",
+"disp(x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_6: calculate_no_of_atoms_per_meter_cube.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_3_6,pg 1-18\n",
+"A=132.91 //atomic weight of chromium\n",
+"N=6.023*10^26 //Avogadro's number\n",
+"p=1900 //Density\n",
+"a=6.14*10^-10 //lattice constant\n",
+"//step 1 : type of structure\n",
+"n=(p*N*a^3)/A\n",
+"printf('n =')\n",
+"disp(round(n))\n",
+"printf('BCC structure')\n",
+"//step 2: no of atoms/m^3\n",
+"x=n/a^3\n",
+"printf(' no of atoms/m^3=')\n",
+"disp(x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_7: calculate_no_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_3_6,pg 1-18\n",
+"\n",
+"a=0.4049*10^-9 //lattice constant\n",
+"\n",
+"t=0.006*10^-2 //thickness of Al foil\n",
+"\n",
+"A=50*10^-4 //Area of foil\n",
+"\n",
+"V1=a^3 //volume of unit cell\n",
+"\n",
+"V=A*t //volume of the foil\n",
+"\n",
+"N=V/V1 //no of unit cell in the foil\n",
+"\n",
+"printf('no of unit cell in the foil=')\n",
+"\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5_1: calcukate_critical_radius_ratio_of_ligancy_three.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_5_1,pg 1-29\n",
+"\n",
+"//refer diagram from textbook\n",
+"\n",
+"//on joining centre of 3 anions,an equilateral triangle is formed and on joining centres of any anion and cation a right angle triangle ABC os formed\n",
+"\n",
+"//where AC=rc+ra\n",
+"\n",
+"//and BC=ra\n",
+"\n",
+"//m(angle (ACB))=30 degree\n",
+"\n",
+"//therefore cos (30)=ra/(rc+ra)\n",
+"\n",
+"//assume rc/ra=r\n",
+"\n",
+"r=(1-cosd(30))/cosd(30) //by arrangimg terms we get value of r\n",
+"\n",
+"printf('critical radius ratio of ligancy 3=')\n",
+"\n",
+"disp(r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5_2: calculate_critical_radius_ratio_for_ligancy_six.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_5_2,pg 1-30\n",
+"\n",
+"//refer diagram from textbook\n",
+"\n",
+"//in the said arrangement a cation is squeezed into 4 anions in a plane and 5th anion is in upper layer and 6th in bottom layer \n",
+"\n",
+"//join cation anion centres E and B and complete the triangle EBF\n",
+"\n",
+"//in triangle EBF m(angle F)=90 and EF=BF\n",
+"\n",
+"//m(angle B)=m(angle E)=45\n",
+"\n",
+"//and EB=rc+ra and BF=ra\n",
+"\n",
+"//cos(45)=ra/(rc+ra)\n",
+"\n",
+"//assume rc/ra=r\n",
+"\n",
+"r=(1-cosd(45))/cosd(45) //by arrangimg terms we get value of r\n",
+"\n",
+"printf('critical radius ratio for ligancy 6 =')\n",
+"\n",
+"disp(r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5_3: calculate_critical_radius_ratio_for_octohedral.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_5_3,pg 1-30\n",
+"\n",
+"//refer diagram from textbook\n",
+"\n",
+"//since plane is square hence it is same as ligancy 6\n",
+"\n",
+"//in the said arrangement a cation is squeezed into 4 anions in a plane and 5th anion is in upper layer and 6th in bottom layer \n",
+"\n",
+"//join cation anion centres E and B and complete the triangle EBF\n",
+"\n",
+"//in triangle EBF m(angle F)=90 and EF=BF\n",
+"\n",
+"//m(angle B)=m(angle E)=45\n",
+"\n",
+"//and EB=rc+ra and BF=ra\n",
+"\n",
+"//cos(45)=ra/(rc+ra)\n",
+"\n",
+"//assume rc/ra=r\n",
+"\n",
+"r=(1-cosd(45))/cosd(45) //by arrangimg terms we get value of r\n",
+"\n",
+"printf('critical radius ratio for ligancy 8 =')\n",
+"\n",
+"disp(r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5_4: calculate_critical_radius_ratio_for_ligancy_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_5_4,pg 1-31\n",
+"\n",
+"//a tetrahedron CAEH can be considered with C as the apex of the tetrahedron.\n",
+"\n",
+"//the edges AE,AH and EH of the tetrahedron will then be the face of the cube faces ABEF,ADHF,EFHG resp.\n",
+"\n",
+"//from fig\n",
+"\n",
+"//AO=ra+rc and AJ=ra\n",
+"\n",
+"//AE=root(2)*a and AG=root(3)*a\n",
+"\n",
+"//AO/AJ=AG/AE=(ra+rc)/ra=root(3)*a/root(2)*a\n",
+"\n",
+"//assume rc/ra=r\n",
+"\n",
+"r=(sqrt(3)-sqrt(2))/sqrt(2)\n",
+"\n",
+"printf('critical radius ratio for ligancy 4 =')\n",
+"\n",
+"disp(r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5_5: calculate_critical_radius_ratio_for_ligancy_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_5_5,pg 1-32\n",
+"\n",
+"//ligancy 8 represents cubic arrangment .8 anions are at the corners and touch along cube edgs.Along the body diagonal the central cation and the corner anion are in contact.\n",
+"\n",
+"//cube edge=2*ra\n",
+"\n",
+"//refer diagram from textbook\n",
+"\n",
+"//and body diagonal=root(3)*cube edge=root(3)[2*(rc+ra)]\n",
+"\n",
+"//assume rc/ra=r\n",
+"\n",
+"r=sqrt(3)-1\n",
+"\n",
+"printf('critical radius ratio of ligancy 8=')\n",
+"\n",
+"disp(r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5_6: calculate_critical_radius_ratio_for_ligancy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_5_6,pg 1-32\n",
+"\n",
+"//for an ionic crystal exibiting HCP structure the arrangment of ions refere from textbook\n",
+"\n",
+"//at centre we have a cation with radius rc=OA\n",
+"\n",
+"//it is an touch with 6 anions with radius ra=AB\n",
+"\n",
+"//OB=OC=ra+rc\n",
+"\n",
+"//intrangle ODB ,m(angle (OBC))=60 degree ,m(angle (ODB))=90 degree\n",
+"\n",
+"//therefore cos(60)=BD/OB=AB/(OA+OB)=ra/(rc+ra)\n",
+"\n",
+"//assume rc/ra=r\n",
+"\n",
+"r=(1-cosd(60))/cosd(60) //by arrangimg terms we get value of r\n",
+"\n",
+"printf('critical radius ratio 0f HCP structure=')\n",
+"\n",
+"disp(r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_2: calculate_miller_indices_of_plane.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_6_2,pg 1-35\n",
+"\n",
+"//intercept of planeare in proportion a,b/3,2*c\n",
+"\n",
+"//as a,b and c are basic vectors the proportin of intercepts 1:1/3:2\n",
+"\n",
+"//therefore reciprocal\n",
+"\n",
+"r1=1\n",
+"\n",
+"r2=3\n",
+"\n",
+"r3=1/2\n",
+"\n",
+"//taking LCM\n",
+"\n",
+"v=int32([2,1])\n",
+"\n",
+"l=double(lcm(v))\n",
+"\n",
+"m1=(l*r1)\n",
+"\n",
+"m2=(l*r2)\n",
+"\n",
+"m3=(l*r3)\n",
+"\n",
+"printf('miler indices=')\n",
+"\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_4: calculate_interplanar_spacing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-1,Example1_6_4,pg 1-38\n",
+"\n",
+"r=1.414 //atomic radius in amstrong unit\n",
+"\n",
+"//for FCC structure\n",
+"\n",
+"a=4*r/sqrt(2)\n",
+"\n",
+"//part 1: plane(2,0,0)\n",
+"\n",
+"//the interplanar spacing of plane\n",
+"\n",
+"h1=2\n",
+"\n",
+"k1=0\n",
+"\n",
+"l1=0\n",
+"\n",
+"//we know that d=a/sqrt(h^2+k^2+l^2)\n",
+"\n",
+"d1=a/sqrt(h1^2+k1^2+l1^2)\n",
+"\n",
+"printf(' 1)interplanar spacing for (2,0,0) plane=')\n",
+"\n",
+"disp(d1)\n",
+"\n",
+"printf('amstrong')\n",
+"\n",
+"//part 2: plane(1,1,1)\n",
+"\n",
+"//the interplanar spacing of plane\n",
+"\n",
+"h2=1\n",
+"\n",
+"k2=1\n",
+"\n",
+"l2=1\n",
+"\n",
+"//we know that d=a/sqrt(h^2+k^2+l^2)\n",
+"\n",
+"d2=a/sqrt(h2^2+k2^2+l2^2)\n",
+"\n",
+"printf(' 2)interplanar spacing for(1,1,1) plane=')\n",
+"\n",
+"disp(d2)\n",
+"\n",
+"printf('amstrong')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb b/Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb
new file mode 100644
index 0000000..042e19e
--- /dev/null
+++ b/Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb
@@ -0,0 +1,813 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Semiconductor Physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_1: calculate_mobility_of_electro.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_21_1,pg 2-47\n",
+"\n",
+"ro=1.72*10^-8 //resistivity of Cu\n",
+"\n",
+"s=1/ro //conductivity of Cu\n",
+"\n",
+"n=10.41*10^28 //no of electron per unit volume\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"u=s/(n*e)\n",
+"\n",
+"printf('mobility of electron in Cu =')\n",
+"\n",
+"disp(u)\n",
+"\n",
+"printf('m^2/volt-sec')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_2: calculate_Resistivity_of_Cu.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_21_2,pg 2-47\n",
+"\n",
+"m=63.5 //atomic weight\n",
+"\n",
+"u=43.3 //mobility of electron\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"N=6.02*10^23 //Avogadro's number\n",
+"\n",
+"d=8.96 //density\n",
+"\n",
+"Ad=N*d/m //Atomic density\n",
+"\n",
+"n=1*Ad\n",
+"\n",
+"ro=1/(n*e*u)\n",
+"\n",
+"printf('Resistivity of Cu =')\n",
+"\n",
+"disp(ro)\n",
+"\n",
+"printf('ohm-cm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_3: calculate_Resistivity_of_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_21_3,pg 2-47\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"ne=2.5*10^19 //density of carriers\n",
+"\n",
+"nh=ne //for intrinsic semiconductor\n",
+"\n",
+"ue=0.39 //mobility of electron\n",
+"\n",
+"uh=0.19 //mobility of hole\n",
+"\n",
+"s=ne*e*ue+nh*e*uh //conductivity of Ge\n",
+"\n",
+"ro=1/s //resistivity of Ge\n",
+"\n",
+"printf('Resistivity of Ge =')\n",
+"\n",
+"disp(ro)\n",
+"\n",
+"printf('ohm-m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_5: calculate_Ratio_between_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_21_5,pg 2-48\n",
+"\n",
+"Eg=1.2 //energy gap\n",
+"\n",
+"T1=600 //temperature\n",
+"\n",
+"T2=300 //temperature\n",
+"\n",
+"//since ue>>uh for intrinsic semiconductor\n",
+"\n",
+"//s=ni*e*ue\n",
+"\n",
+"K=8.62*10^-5 //Boltzman constant\n",
+"\n",
+"s=%s\n",
+"\n",
+"s1=s*exp((-Eg)/(2*K*T1))\n",
+"\n",
+"s2=s*exp((-Eg)/(2*K*T2))\n",
+"\n",
+"m=(s1/s2)\n",
+"\n",
+"printf('Ratio between conductivity =')\n",
+"\n",
+"disp(m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_6: calculate_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_21_6,pg 2-49\n",
+"\n",
+"c=5*10^28 //concentration of Si atoms\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"u=0.048 //mobility of hole\n",
+"\n",
+"s=4.4*10^-4 //conductivity of Si\n",
+"\n",
+"//since millionth Si atom is replaced by an indium atom\n",
+"\n",
+"n=c*10^-6\n",
+"\n",
+"sp=u*e*n //conductivity of resultant\n",
+"\n",
+"printf('conductivity =')\n",
+"\n",
+"disp(sp)\n",
+"\n",
+"printf('mho/m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_7: calculate_hole_concentration_and_mobility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_21_7,pg 2-49\n",
+"\n",
+"m=28.1 //atomic weight of Si\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"N=6.02*10^26 //Avogadro's number\n",
+"\n",
+"d=2.4*10^3 //density of Si\n",
+"\n",
+"p=0.25 //resistivity\n",
+"\n",
+"//no. of Si atom/m^3\n",
+"\n",
+"Ad=N*d/m //Atomic density\n",
+"\n",
+"//impurity level is 0.01 ppm i.e. 1 atom in every 10^8 atoms of Si\n",
+"\n",
+"n=Ad/10^8 //no of impurity atoms\n",
+"\n",
+"//since each impurity produce 1 hole\n",
+"\n",
+"nh=n\n",
+"\n",
+"printf('1) hole concentration =')\n",
+"\n",
+"disp(n)\n",
+"\n",
+"printf('holes/m^3')\n",
+"\n",
+"up=1/(e*p*nh)\n",
+"\n",
+"printf(' 2) mobility =')\n",
+"\n",
+"disp(up)\n",
+"\n",
+"printf('m^2/volt.sec') "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22_1: calculate_probability_of_an_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_22_1,pg 2-50\n",
+"\n",
+"t=27 //temp in degree \n",
+"\n",
+"T=t+273 //temp in kelvin\n",
+"\n",
+"K=8.62*10^-5 //Boltzman constant in eV\n",
+"\n",
+"Eg=1.12 //Energy band gap\n",
+"\n",
+"//For intrensic semiconductor (Ec-Ev)=Eg/2\n",
+"\n",
+"//let (Ec-Ev)=m\n",
+"\n",
+"m=Eg/2\n",
+"\n",
+"a=(m/(K*T))\n",
+"\n",
+"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n",
+"\n",
+"p=1/(1+exp(a))\n",
+"\n",
+"\n",
+"printf('probability of an electron being thermally excited to conduction band=')\n",
+"\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22_2: calculate_probability_of_an_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_22_2,pg 2-50\n",
+"\n",
+"T=300 //temp in kelvin\n",
+"\n",
+"K=8.62*10^-5 //Boltzman constant in eV\n",
+"\n",
+"m=0.012 //energy level(Ef-E)\n",
+"\n",
+"a=(m/(K*T))\n",
+"\n",
+"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n",
+"\n",
+"p=1/(1+exp(a))\n",
+"\n",
+"p1=1-p\n",
+"\n",
+"printf('probability of an energy level not being occupied by an electron=')\n",
+"\n",
+"disp(p1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22_3: calculate_probability_of_an_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_22_3,pg 2-51\n",
+"\n",
+"t=20 //temp in degree \n",
+"\n",
+"T=t+273 //temp in kelvin\n",
+"\n",
+"K=8.62*10^-5 //Boltzman constant in eV\n",
+"\n",
+"Eg=1.12 //Energy band gap\n",
+"\n",
+"//For intrensic semiconductor (Ec-Ev)=Eg/2\n",
+"\n",
+"//let (Ec-Ev)=m\n",
+"\n",
+"m=Eg/2\n",
+"\n",
+"a=(m/(K*T))\n",
+"\n",
+"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n",
+"\n",
+"p=1/(1+exp(a))\n",
+"\n",
+"\n",
+"printf('probability of an electron being thermally excited to conduction band=')\n",
+"\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22_4: calculate_energy_for_different_probability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_22_4,pg 2-51\n",
+"\n",
+"T=300 //temp in kelvin\n",
+"\n",
+"K=8.62*10^-5 //Boltzman constant in eV\n",
+"\n",
+"Eg=2.1 //Energy band gap\n",
+"\n",
+"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n",
+"\n",
+"m=K*T\n",
+"\n",
+"//for f(E)=0.99\n",
+"\n",
+"p1=0.99\n",
+"\n",
+"b=1-1/p1\n",
+"\n",
+"a=log(b) //a=(E-2.1)/m\n",
+"\n",
+"E=2.1+m*a\n",
+"\n",
+"printf('1) Energy for which probability is 0.99=')\n",
+"\n",
+"disp(real(E))\n",
+"\n",
+"printf('eV')\n",
+"\n",
+"//for f(E)=0.01\n",
+"\n",
+"p2=0.01\n",
+"\n",
+"b2=1-1/p2\n",
+"\n",
+"a1=log(b2) //a=(E-2.1)/m\n",
+"\n",
+"E1=2.1+m*a1\n",
+"\n",
+"printf('2)Energy for which probability is 0.01=')\n",
+"\n",
+"disp(real(E1))\n",
+"\n",
+"printf('eV')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23_1: calculate_Potential_barrier_for_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_23_1,pg 2-52\n",
+"\n",
+"ni=2.4*10^19 //density of intrensic semiconductor\n",
+"\n",
+"n=4.4*10^28 //no atom in Ge crystal\n",
+"\n",
+"Nd=n/10^6 //density\n",
+"\n",
+"Na=Nd\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"T=300 //temerature at N.T.P.\n",
+"\n",
+"K=1.38*10^-23 //Boltzman constant\n",
+"\n",
+"Vo=(K*T/e)*log(Na*Nd/(ni^2))\n",
+"\n",
+"printf('Potential barrier for Ge =')\n",
+"\n",
+"disp(Vo)\n",
+"\n",
+"printf('Volts')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23_2: calculate_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_23_2,pg 2-52\n",
+"\n",
+"B=0.6 //magnetic field\n",
+"\n",
+"d=5*10^-3 //distancebetween surface\n",
+"\n",
+"J=500 //current density\n",
+"\n",
+"Nd=10^21 //density\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"Vh=(B*J*d)/(Nd*e) //due to Hall effect\n",
+"\n",
+"printf('Hall voltage =')\n",
+"\n",
+"disp(Vh)\n",
+"\n",
+"printf('Volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23_3: calculate_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_23_3,pg 2-53\n",
+"\n",
+"Rh=6*10^-7 //Hall coefficient\n",
+"\n",
+"B=1.5 //magnetic field\n",
+"\n",
+"I=200 //current in strip\n",
+"\n",
+"W=1*10^-3 //thickness of strip\n",
+"\n",
+"Vh=Rh*(B*I)/W //due to Hall effect\n",
+"\n",
+"printf('Hall voltage =')\n",
+"\n",
+"disp(Vh)\n",
+"\n",
+"printf('Volt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23_4: calculate_Resistivity_of_P_type_silico.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_23_4,pg 2-53\n",
+"\n",
+"Rh=2.25*10^-5 //Hall coefficient\n",
+"\n",
+"u=0.025 //mobility of hole\n",
+"\n",
+"r=Rh/u\n",
+"\n",
+"printf('Resistivity of P type silicon =')\n",
+"\n",
+"disp(r)\n",
+"\n",
+"printf('ohm-m')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23_5: calculate_hall_voltage_hall_coefficient_and_hall_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_23_5,pg 2-53\n",
+"\n",
+"B=0.55 //magnetic field\n",
+"\n",
+"d=4.5*10^-3 //distancebetween surface\n",
+"\n",
+"J=500 //current density\n",
+"\n",
+"n=10^20 //density\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"Rh=1/(n*e) //Hall coefficient\n",
+"\n",
+"Vh=Rh*B*J*d //Hall voltage\n",
+"\n",
+"printf(' 1) Hall voltage =')\n",
+"\n",
+"disp(Vh)\n",
+"\n",
+"printf('Volts')\n",
+"\n",
+"printf(' 2) Hall coefficient =')\n",
+"\n",
+"disp(Rh)\n",
+"\n",
+"printf('m^3/C')\n",
+"\n",
+"u=0.17 //mobility of electrom\n",
+"\n",
+"m=atan(u*B)\n",
+"\n",
+"a=m*180/%pi //conversion randian into degree\n",
+"\n",
+"printf(' 3) Hall angle =')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"printf('degree')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23_6: calculate_density_and_mobility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_23_6,pg 2-54\n",
+"\n",
+"Rh=3.66*10^-4 //Hall coefficient\n",
+"\n",
+"r=8.93*10^-3 //resistivity \n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"//Hall coefficient Rh=1/(n*e)\n",
+"\n",
+"n=1/(Rh*e) //density\n",
+"\n",
+"printf(' 1) density(n) =')\n",
+"\n",
+"disp(n)\n",
+"\n",
+"printf('/m^3')\n",
+"\n",
+"u=Rh/r //mobility of electron\n",
+"\n",
+"printf(' 2) mobility (u) =')\n",
+"\n",
+"disp(u)\n",
+"\n",
+"printf('m^2/v-s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23_7: calculate_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_23_7,pg 2-55\n",
+"\n",
+"B=0.2 //magnetic field\n",
+"\n",
+"e=1.6*10^-19 //charge on electron\n",
+"\n",
+"ue=0.39 //mobility of electron\n",
+"\n",
+"l=0.01 //length\n",
+"\n",
+"A=0.001*0.001 //cross section area of bar\n",
+"\n",
+"V=1*10^-3 //Applied voltage\n",
+"\n",
+"d=0.001 //sample of width \n",
+"\n",
+"r=1/(ue*e) //resistivity\n",
+"\n",
+"R=r*l/A //resistance of Ge bar\n",
+"\n",
+"//using ohm's law\n",
+"\n",
+"I=V/R\n",
+"\n",
+"Rh=r*ue //hall coefficient\n",
+"\n",
+"//using formulae for hall effect\n",
+"\n",
+"J=I/A //current density\n",
+"\n",
+"Vh=Rh*B*J*d\n",
+"\n",
+"printf('Hall voltage =')\n",
+"\n",
+"disp(Vh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.24_1: calculate_fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-2,Example2_24_1,pg 2-55\n",
+"\n",
+"x1=0.4 //difference between fermi level and conduction band(Ec-Ef)\n",
+"\n",
+"T=300 //temp in kelvin\n",
+"\n",
+"K=8.62*10^-5 //Boltzman constant in eV\n",
+"\n",
+"//ne=N*e^(-(Ec-Ef)/(K*T))\n",
+"\n",
+"//ne is no of electron in conduction band\n",
+"\n",
+"//since concentration of donor electron is doubled\n",
+"\n",
+"a=2 //ratio of no of electron\n",
+"\n",
+"//let x2 be the difference between new fermi level and conduction band(Ec-Ef')\n",
+"\n",
+"x2=-log(a)*(K*T)+x1 //arranging equation ne=N*e^(-(Ec-Ef)/(K*T))\n",
+"\n",
+"printf('Fermi level will be shifted towards conduction band by')\n",
+"\n",
+"disp(x2)\n",
+"\n",
+"printf('eV')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb b/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb
new file mode 100644
index 0000000..e7d7b69
--- /dev/null
+++ b/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb
@@ -0,0 +1,1129 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Dielectric And Magnetic Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_10: calculate_Horizontal_component_of_magnetic_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_10,pg 3-38\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"B=10.9*10^-5 //flux density\n",
+"\n",
+"H=B/u0 //magnetic field\n",
+"\n",
+"printf('Horizontal component of magnetic field =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('A-m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_11: calculate_current_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_11,pg 3-39\n",
+"\n",
+"phi=5.9*10^-3 //magnetic flux\n",
+"\n",
+"ur=900 //relative permeability of material\n",
+"\n",
+"n=700 //number of turns\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=60*10^-4 //cross section area of ring\n",
+"\n",
+"l=2 //mean circumference of ring\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"H=B/(u0*ur) //magnetic field\n",
+"\n",
+"At=H*l //Amp-turns required\n",
+"\n",
+"I=At/n //current required\n",
+"\n",
+"printf('Current required to produce a flux=')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp')\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_12: calculate_Current_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_12,pg 3-39\n",
+"\n",
+"phi=2.7*10^-3 //magnetic flux\n",
+"\n",
+"A=25*10^-4 //cross section area of ring\n",
+"\n",
+"r=25*10^-2 //mean circumference of ring\n",
+"\n",
+"la=10^-3 //air gap\n",
+"\n",
+"ur=900 //relative permeability of material\n",
+"\n",
+"n=400 //number of turns\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"d=40*10^-2 //mean diameter of ring\n",
+"\n",
+"li=2*%pi*r //mean circumference of ring\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"//for air gap\n",
+"\n",
+"Ha=B/(u0) //magnetic field for air gap\n",
+"\n",
+"//for iron ring\n",
+"\n",
+"Hi=B/(u0*ur) //magnetic field for iron ring\n",
+"\n",
+"//therefore, Amp turn in air gap\n",
+"\n",
+"Ata=Ha*la //Amp-turns required\n",
+"\n",
+"//therefore, Amp-turn in ring\n",
+"\n",
+"Ati=Hi*li //Amp-turns required\n",
+"\n",
+"//therrfore total mmf required\n",
+"\n",
+"mmf=Ata+Ati\n",
+"\n",
+"//Current required\n",
+"\n",
+"I=mmf/n //current required\n",
+"\n",
+"printf('Current required =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_13: calculate_1_magnetic_intensity_2_magnetization_3_Relative_Permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_13,pg 3-40\n",
+"\n",
+"n1=10 //no of turns per cm\n",
+"\n",
+"i=2 //current\n",
+"\n",
+"B=1 //flux density\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"n=n1*100 //no turns per m\n",
+"\n",
+"H=n*i\n",
+"\n",
+"printf(' 1) magnetic intensity =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('Amp-turn/meter')\n",
+"\n",
+"//calculation for magnetization\n",
+"\n",
+"I=B/u0-H\n",
+"\n",
+"printf(' 2) magnetization =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp-turn/meter')\n",
+"\n",
+"//relative permeability\n",
+"\n",
+"ur=B/(u0*H)\n",
+"\n",
+"printf(' 3) Relative Permeability of the ring =')\n",
+"\n",
+"disp(int(ur))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_14: calculate_Loss_of_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_14,pg 3-40\n",
+"\n",
+"m=40 //wt of the core\n",
+"\n",
+"d=7.5*10^3 //density of iron\n",
+"\n",
+"n=100 //frequency\n",
+"\n",
+"V=m/d //volume of the iron core\n",
+"\n",
+"E1=3800*10^-1 //loss of energy in core per cycles/cc\n",
+"\n",
+"E2=E1*V //loss of energy in core per cycles\n",
+"\n",
+"N=60*n //no of cycles per minute\n",
+"\n",
+"E=E2*N //loss of energy per minute\n",
+"\n",
+"printf('Loss of energy per minute =')\n",
+"\n",
+"disp(E)\n",
+"\n",
+"printf('Joule')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_15: calculate_various_parameter_of_magnetic_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_15,pg 3-40\n",
+"\n",
+"l=30*10^-2 //length of ring\n",
+"\n",
+"A=1*10^-4 //cross section area of ring\n",
+"\n",
+"i=0.032 //current\n",
+"\n",
+"phi=2*10^-6 //magnetic flux\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"N=300 //no of turns in the coil\n",
+"\n",
+"//1) flux density\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"printf('1) Flux density in the ring =')\n",
+"\n",
+"disp(B)\n",
+"\n",
+"printf('Wb/m^2')\n",
+"\n",
+"//2) magnetic intensity of ring\n",
+"\n",
+"n=N/l //no of turns per unit length\n",
+"\n",
+"H=n*i //magnetic intensity\n",
+"\n",
+"printf(' 2) magnetic intensity =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('Amp-turn/meter')\n",
+"\n",
+"//3) permeability and relative permeability of the ring\n",
+"\n",
+"u=B/H\n",
+"\n",
+"printf(' 3) Permeability of the ring =')\n",
+"\n",
+"disp(u)\n",
+"\n",
+"printf('Wb/A-m')\n",
+"\n",
+"ur=u/u0\n",
+"\n",
+"printf(' 4) Relative Permeability of the ring =')\n",
+"\n",
+"disp(ur)\n",
+"\n",
+"//4)Susceptibility\n",
+"\n",
+"Xm=ur-1\n",
+"\n",
+"printf('5) magnetic Susceptibility of the ring =')\n",
+"\n",
+"disp(Xm)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_16: calculate_loss_of_energy_per_hour.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_16,pg 3-41\n",
+"\n",
+"E=3000 //loss of energy per cycle per cm^3\n",
+"\n",
+"m=12*10^3 //wt of the core\n",
+"\n",
+"d=7.5 //density of iron\n",
+"\n",
+"n=50 //frequency\n",
+"\n",
+"V=m/d //volume of the core\n",
+"\n",
+"El=E*V*n*60*60 //loss of energy per hour\n",
+"\n",
+"printf('Loss of energy per hour =')\n",
+"\n",
+"disp(El)\n",
+"\n",
+"printf('Erg')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_17: calculate_Hysteresis_power_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_17,pg 3-41\n",
+"\n",
+"n=50 //frequency\n",
+"\n",
+"V=10^-3 //volume of the specimen\n",
+"\n",
+"//Area of B-H loop\n",
+"\n",
+"A=0.5*10^3*1\n",
+"\n",
+"P=n*V*A\n",
+"\n",
+"printf('Hysteresis power loss =')\n",
+"\n",
+"disp(P)\n",
+"\n",
+"printf('Watt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_18: calculate_current_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_18,pg 3-42\n",
+"\n",
+"phi=1.5*10^-4 //magnetic flux\n",
+"\n",
+"ur=900 //relative permeability of material\n",
+"\n",
+"n=600 //number of turns\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=5.8*10^-4 //cross section area of ring\n",
+"\n",
+"d=40*10^-2 //mean diameter of ring\n",
+"\n",
+"li=%pi*d //mean circumference of ring\n",
+"\n",
+"la=5*10^-3 //air gap\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"//for air gap\n",
+"\n",
+"Ha=B/(u0) //magnetic field for air gap\n",
+"\n",
+"//for iron ring\n",
+"\n",
+"Hi=B/(u0*ur) //magnetic field for iron ring\n",
+"\n",
+"//therefore, Amp turn in air gap\n",
+"\n",
+"Ata=Ha*la //Amp-turns required\n",
+"\n",
+"//therefore, Amp-turn in ring\n",
+"\n",
+"Ati=Hi*li //Amp-turns required\n",
+"\n",
+"//therrfore total mmf required\n",
+"\n",
+"mmf=Ata+Ati\n",
+"\n",
+"//Current required\n",
+"\n",
+"I=mmf/n //current required\n",
+"\n",
+"printf('Current required =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_19: calculate_reluctance_and_mmf.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_19,pg 3-42\n",
+"\n",
+"la=1*10^-2 //air gap\n",
+"\n",
+"r=0.5 //radius of ring\n",
+"\n",
+"A=5*10^-4 //cross section area of ring\n",
+"\n",
+"i=5 //current\n",
+"\n",
+"u=6*10^-3 //permeability of iron\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"N=900 //no of turns in the coil\n",
+"\n",
+"//let reluctance of iron ring with air gap be S\n",
+"\n",
+"S=la/(u0*A)+(2*%pi*r-la)/(u*A)\n",
+"\n",
+"printf(' 1) Reluctance =')\n",
+"\n",
+"disp(S)\n",
+"\n",
+"printf('A-T/Wb')\n",
+"\n",
+"mmf=N*i\n",
+"\n",
+"printf(' 2) m.m.f =')\n",
+"\n",
+"disp(mmf)\n",
+"\n",
+"printf('Amp-turn')\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_1: calculate_resultant_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_1,pg 3-35\n",
+"\n",
+"A=650*10^-6 //area\n",
+"\n",
+"d=4*10^-3 //seperation of plate\n",
+"\n",
+"Q=2*10^-10 //charge\n",
+"\n",
+"er=3.5 //relative permitivity\n",
+"\n",
+"e0=8.85*10^-12 //absolute permitivity\n",
+"\n",
+"V=(Q*d)/(e0*er*A)\n",
+"\n",
+"printf('voltage across capacitor =')\n",
+"\n",
+"disp(V)\n",
+"\n",
+"printf('Volt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_20: calculate_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_20,pg 3-43\n",
+"\n",
+"//the magnetization force is given by,\n",
+"\n",
+"//H=NI/l\n",
+"\n",
+"H=5*10^3 //coercivity of bar magnet\n",
+"\n",
+"l=10*10^-2 //length of solenoid\n",
+"\n",
+"N=50 //number of turns\n",
+"\n",
+"I=l*H/N\n",
+"\n",
+"printf('current =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Ampere')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_21: calculate_Reluctance_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_21,pg 3-43\n",
+"\n",
+"ur=380 //relative permeability of air\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=5*10^-4 //cross section area of ring\n",
+"\n",
+"n=200 //number of turns\n",
+"\n",
+"d=20*10^-2 //mean diameter of ring\n",
+"\n",
+"l=%pi*d //mean circumference of ring\n",
+"\n",
+"phi=2*10^-3 //magnetic flux\n",
+"\n",
+"S=l/(u0*ur*A) //reluctance\n",
+"\n",
+"//using ohm's law for magnetic circuit\n",
+"\n",
+"//phi=N*I/S\n",
+"\n",
+"I=S*phi/n\n",
+"\n",
+"printf(' 1) Reluctance =')\n",
+"\n",
+"disp(S)\n",
+"\n",
+"printf('A-T/Wb')\n",
+"\n",
+"\n",
+"printf(' 2) current =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Ampere')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_22: calculate_various_parameter_of_magnetic_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_22,pg 3-43\n",
+"\n",
+"ur=1 //relative permeability of air\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=6*10^-4 //cross section area of torroid\n",
+"\n",
+"n=500 //number of turns\n",
+"\n",
+"r=15*10^-2 //radius of torroid\n",
+"\n",
+"I=4 //current in coil\n",
+"\n",
+"l=2*%pi*r //mean circumference of torroid\n",
+"\n",
+"MMF=n*I\n",
+"\n",
+"printf('1) MMF (NI) =')\n",
+"\n",
+"disp(MMF)\n",
+"\n",
+"printf('AT')\n",
+"\n",
+"R=l/(u0*ur*A) //Reluctance\n",
+"\n",
+"printf(' 2) Reluctance (R) =')\n",
+"\n",
+"disp(R)\n",
+"\n",
+"printf('AT/Wb')\n",
+"\n",
+"phi=MMF/R //flux\n",
+"\n",
+"printf(' 3) Magnetic flux =')\n",
+"\n",
+"disp(phi)\n",
+"\n",
+"printf('Wb')\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"printf(' 4) Flux density =')\n",
+"\n",
+"disp(B)\n",
+"\n",
+"printf('Wb/m^2')\n",
+"\n",
+"H=B/(u0*ur) //magnetic field intensity\n",
+"\n",
+"printf(' 5) Magnetic field intensity =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('A/m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_23: calculate_Number_of_AmpereTurns.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_23,pg 3-44\n",
+"\n",
+"phi=10^-3 //magnetic flux\n",
+"\n",
+"ur=1000 //relative permeability of iron\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=5*10^-4 //cross section area of ring\n",
+"\n",
+"la=2*10^-3 //air gap\n",
+"\n",
+"d=20*10^-3 //mean diameter of ring\n",
+"\n",
+"li=%pi*d-la //mean circumference of ring\n",
+"\n",
+"//using KVL for magnetic circuit\n",
+"\n",
+"//AT(total)=AT(iron)+AT(air gap)\n",
+"\n",
+"ATt=(phi/(u0*A))*((li/ur)+la)\n",
+"\n",
+"printf('Number of Ampere-Turns required =')\n",
+"\n",
+"disp(round(ATt))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_24: calculate_intensity_magnetization_and_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_24,pg 3-44\n",
+"\n",
+"X=0.5*10^-5 //susceptibility of material\n",
+"\n",
+"H=10^6 //magnetic field strength\n",
+"\n",
+"I=X*H //intensity of magnetization\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"B=u0*(H+I) //flux density\n",
+"\n",
+"printf(' 1) intensity magnetization =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp/m')\n",
+"\n",
+"printf(' 2) flux density in the material =')\n",
+"\n",
+"disp(B)\n",
+"\n",
+"printf('wb/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_2: find_capacitance_of_capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_2,pg 3-36\n",
+"\n",
+"A=2000*10^-6 //area\n",
+"\n",
+"d=0.5*10^-6 //seperation of plate\n",
+"\n",
+"er=8 //relative permitivity\n",
+"\n",
+"e0=8.85*10^-12 //absolute permitivity\n",
+"\n",
+"C=(e0*er*A)/d\n",
+"\n",
+"printf('capacitance for capacitor =')\n",
+"\n",
+"disp(C)\n",
+"\n",
+"printf('Faraday')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_3: calculate_relative_permittivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_3,pg 3-36\n",
+"\n",
+"E=1000 //electric field\n",
+"\n",
+"P=4.3*10^-8 //polarization\n",
+"\n",
+"e0=8.854*10^-12 //absolute permitivity\n",
+"\n",
+"er=(P/(e0*E))+1 //as P/E=e0(er-1)\n",
+"\n",
+"printf('relative permittivity =')\n",
+"\n",
+"disp(er)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_4: ratio_of_two_capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_4,pg 3-36\n",
+"\n",
+"//As C=e0*er*A/d\n",
+"\n",
+"e0=%e //absolute permitivity\n",
+"\n",
+"Ag=%s\n",
+"\n",
+"Ap=Ag //Assuming Area of glass plate and plastic film is same\n",
+"\n",
+"//for glass\n",
+"\n",
+"erg=6 //relative permitivity\n",
+"\n",
+"dg=0.25 //thickness\n",
+"\n",
+"Cg=e0*erg*Ag/dg\n",
+"\n",
+"//for plastic film\n",
+"\n",
+"erp=3 //relative permitivity\n",
+"\n",
+"dp=0.1 //thickness\n",
+"\n",
+"Cp=e0*erp*Ap/dp\n",
+"\n",
+"m=Cg/Cp\n",
+"\n",
+"printf('since Cg/Cp=')\n",
+"\n",
+"disp(m)\n",
+"\n",
+"printf('plastic film holds more charge')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_5: calculate_electronic_polarizability_and_radius_of_He_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_5,pg 3-37\n",
+"\n",
+"N=2.7*10^25 //no of atoms per m^3\n",
+"\n",
+"er=1.0000684 //dielectric constant of He atom at NTP\n",
+"\n",
+"e0=8.854*10^-12 //absolute permitivity\n",
+"\n",
+"a=e0*(er-1)/N //electronic polarizability\n",
+"\n",
+"printf('1) electronic polarizability=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"R=(a/(4*%pi*e0))^(1/3) //radius of helium atom\n",
+"\n",
+"printf('2) radius of He atoms =')\n",
+"\n",
+"disp(R)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_6: calculate_electric_susceptibility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_6,pg 3-37\n",
+"\n",
+"er=1.000014 //dielectric constant of He atom at NTP\n",
+"\n",
+"Xe=er-1 //electric susceptibility\n",
+"\n",
+"printf('electric susceptibility =')\n",
+"\n",
+"disp(Xe)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_7: calculate_relative_permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_7,pg 3-37\n",
+"\n",
+"T=300 //temperature of paramagnetic material\n",
+"\n",
+"X=3.7*10^-3 //susceptibility of material\n",
+"\n",
+"C=X*T //using Curie's law\n",
+"\n",
+"T1=250 //temperature\n",
+"\n",
+"T2=600 //temperature\n",
+"\n",
+"u1=C/T1 //relative permeability of material at 250k\n",
+"\n",
+"u2=C/T2 //relative permeability of material at 350k\n",
+"\n",
+"printf('relative permeability at temp 250K=')\n",
+"\n",
+"disp(u1)\n",
+"\n",
+"printf('relative permeability at temp 600K =')\n",
+"\n",
+"disp(u2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_8: calculate_Temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_8,pg 3-38\n",
+"\n",
+"u=0.8*10^-23 //magnetic dipole moment of an atom \n",
+"\n",
+"B=0.8 //magnetic field\n",
+"\n",
+"K=1.38*10^-23 //boltzmann constant\n",
+"\n",
+"T=(2*u*B)/(3*K) //temperature\n",
+"\n",
+"printf('Temperature at which average thermal energy of an atom is equal to magntic energy=')\n",
+"\n",
+"disp(T)\n",
+"\n",
+"printf('K')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_9: calculate_magnetization_of_paramagnetic_material.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_9,pg 3-38\n",
+"\n",
+"B=0.5 //magnetic field\n",
+"\n",
+"t=27 //temperature in degree celcius\n",
+"\n",
+"T=273+t //temperature in kelvin\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"C=2*10^-3 //Curie's constant\n",
+"\n",
+"M=(C*B)/(u0*T) //magnetization of material\n",
+"\n",
+"printf('magnetization of paramagnetic material =')\n",
+"\n",
+"disp(M)\n",
+"\n",
+"printf('A/m')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Applied_Physics_i_by_I_A_Shaikh/4-Acoustics_and_Ultrasonics.ipynb b/Applied_Physics_i_by_I_A_Shaikh/4-Acoustics_and_Ultrasonics.ipynb
new file mode 100644
index 0000000..44762f5
--- /dev/null
+++ b/Applied_Physics_i_by_I_A_Shaikh/4-Acoustics_and_Ultrasonics.ipynb
@@ -0,0 +1,1261 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Acoustics and Ultrasonics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11_1: calculate_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_11_1,pg 4-17\n",
+"\n",
+"d=8900 //density\n",
+"\n",
+"Y=20.8*10^10 //Young's modulus\n",
+"\n",
+"n=40*10^3 //frequency of wave\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"l=(k/(2*n))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"printf('length =')\n",
+"\n",
+"disp(l)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12_1: calculate_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_12_1,pg 4-20\n",
+"\n",
+"d=2.65*10^3 //density\n",
+"\n",
+"Y=8*10^10 //Young's modulus\n",
+"\n",
+"n=1*10^6 //frequency of wave\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"t=(k/(2*n))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"printf('thickness =')\n",
+"\n",
+"disp(t)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_10: calculate_depth_of_seabed_and_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_10,pg 4-31\n",
+"\n",
+"f=0.07*10^6 //frequency\n",
+"\n",
+"t=0.65 //time\n",
+"\n",
+"v=1700 //velocity of sound\n",
+"\n",
+"d=v*t/2 //depth of seabed\n",
+"\n",
+"printf('1) depth of seabed =')\n",
+"\n",
+"disp(d)\n",
+"\n",
+"printf('meter')\n",
+"\n",
+"l=v/f //wavelength\n",
+"\n",
+"printf('2) wavelength =')\n",
+"\n",
+"disp(l)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_11: calculate_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_11,pg 4-31\n",
+"\n",
+"t=1*10^-3 //thicknesss of crystal\n",
+"\n",
+"d=2.65*10^3 //density\n",
+"\n",
+"Y=8*10^10 //Young's modulus\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"n=(k/(2*t))*sqrt(Y/d) //formula of natural frequency\n",
+"\n",
+"printf(' natural frequency =')\n",
+"\n",
+"disp(n)\n",
+"\n",
+"printf('Hz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_12: calculate_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_12,pg 4-32\n",
+"\n",
+"d=2650 //density\n",
+"\n",
+"Y=8*10^10 //Young's modulus\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"//case 1\n",
+"\n",
+"n1=3.8*10^6 //frequency of wave\n",
+"\n",
+"t1=(k/(2*n1))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"printf('1) thickness =')\n",
+"\n",
+"disp(t1)\n",
+"\n",
+"printf('meter')\n",
+"\n",
+"//case 2\n",
+"\n",
+"n2=300*10^3 //frequency of wave\n",
+"\n",
+"t2=(k/(2*n2))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"printf('2) thickness =')\n",
+"\n",
+"disp(t2)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_13: calculate_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_13,pg 4-32\n",
+"\n",
+"d=2650 //density\n",
+"\n",
+"Y=8*10^10 //Young's modulus\n",
+"\n",
+"n=2*10^6 //frequency of wave\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"t=(k/(2*n))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"printf('thickness =')\n",
+"\n",
+"disp(t)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_14: calculate_distance_between_two_ships.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_14,pg 4-33\n",
+"\n",
+"f=50*10^3 //frequency\n",
+"\n",
+"v1=348 //velocity of ultrasound in atmosphere\n",
+"\n",
+"v2=1392 //velocity of ultrasound in sea water\n",
+"\n",
+"t=2 //time difference\n",
+"\n",
+"//distance is constant hence v1*t1=v2*t2\n",
+"\n",
+"m=v2/v1 //assuming constant as m\n",
+"\n",
+"//(t1-t2=d) and (t1=m*t2) therefore\n",
+"\n",
+"t2=t/(m-1)\n",
+"\n",
+"d=v2*t2 //distance between two ship\n",
+"\n",
+"printf('distance between two ships =')\n",
+"\n",
+"disp(d)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_15: calculate_natural_frequency_and_change_in_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_15,pg 4-34\n",
+"\n",
+"//for case1\n",
+"t1=2*10^-3 //thicknesss of plate\n",
+"\n",
+"d=2.65*10^3 //density\n",
+"\n",
+"Y=8*10^10 //Young's modulus\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"n1=(k/(2*t1))*sqrt(Y/d) //formula of natural frequency\n",
+"\n",
+"printf(' 1)natural frequency =')\n",
+"\n",
+"disp(n1)\n",
+"\n",
+"printf('Hz')\n",
+"\n",
+"//for case2\n",
+"\n",
+"n2=3*10^6 //frequency\n",
+"\n",
+"t2=(k/(2*n2))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"t=t1-t2 //change in thickness\n",
+"\n",
+"printf(' 2)change in thickness =')\n",
+"\n",
+"disp(t)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_16: calculate_depth_of_sea_bed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_16,pg 4-34\n",
+"\n",
+"S=10 //salinity\n",
+"\n",
+"t=2 //time\n",
+"\n",
+"T=20 //temperature\n",
+"\n",
+"v=1510+1.14*S+4.21*T-0.037*T^2 //velocity of ultrasound in sea\n",
+"\n",
+"d=v*t/2 //depth of sea bed\n",
+"\n",
+"printf('depth of sea bed =')\n",
+"\n",
+"disp(d)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_17: calculate_depth_of_sea_bed_and_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_17,pg 4-35\n",
+"\n",
+"S=29 //salinity\n",
+"\n",
+"t=2 //time\n",
+"\n",
+"l=0.01 //wavelength\n",
+"\n",
+"T=30 //temperature\n",
+"\n",
+"v=1510+1.14*S+4.21*T-0.037*T^2 //velocity of ultrasound in sea\n",
+"\n",
+"d=v*t/2 //depth of sea bed\n",
+"\n",
+"printf('1)depth of sea bed =')\n",
+"\n",
+"disp(d)\n",
+"\n",
+"printf('meter')\n",
+"\n",
+"f=v/l //frequency\n",
+"\n",
+"printf('2) frequency =')\n",
+"\n",
+"disp(f)\n",
+"\n",
+"printf('Hz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_18: calculate_real_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_18,pg 4-35\n",
+"\n",
+"v1=5.9*10^3 //velocity of UW in mild steel\n",
+"\n",
+"v2=4.3*10^3 //velocity of UW in brass\n",
+"\n",
+"t2=15*10^-3 //thickness of brass plate\n",
+"\n",
+"t1=v2*t2/v1 //since ve;ocity is inversly proportional to thickness\n",
+"\n",
+"printf('real thickness =')\n",
+"\n",
+"disp(t1)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_19: calculate_thickness_of_crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_19,pg 4-36\n",
+"\n",
+"t1=4*10^-3 //thickness of 1st crystal\n",
+"\n",
+"n1=400*10^3 //frequency of 1st crystal\n",
+"\n",
+"n2=500*10^3 //frequency of 2nd crystal\n",
+"\n",
+"t2=n1*t1/n2 //since frquency is inversly proportional to thickness\n",
+"\n",
+"printf('thickness of 2nd crystal =')\n",
+"\n",
+"disp(t2)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_1: calculate_Reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_1,pg 4-25\n",
+"\n",
+"l=20 //length of room\n",
+"\n",
+"b=15 //bredth of room\n",
+"\n",
+"h=10 //height of room\n",
+"\n",
+"V=l*b*h //volume of room\n",
+"\n",
+"a=0.106 //absorption coefficient\n",
+"\n",
+"S=2*(l*b+b*h+h*l) //surface area of hall\n",
+"\n",
+"T=(0.161*V)/(a*S) //Reverberation time,using Sabine's formula\n",
+"\n",
+"printf('Reverberation time =')\n",
+"\n",
+"disp(T)\n",
+"\n",
+"printf('sec')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_20: calculate_distance_at_which_defect_has_occurred.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_20,pg 4-36\n",
+"\n",
+"t2=30*10^-6 //pulse arrival time of defective steel bar\n",
+"\n",
+"t1=80*10^-6 //pulse arrival time of non defective steel bar\n",
+"\n",
+"d=40*10^-2 //bar thickness\n",
+"\n",
+"x=(t2/t1)*d\n",
+"\n",
+"printf('distance at which defect has occurred =')\n",
+"\n",
+"disp(x)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_21: calculate_echo_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_21,pg 4-37\n",
+"\n",
+"d=18*10^-3 //thickness\n",
+"\n",
+"v=5.9*10^3 //velocity\n",
+"\n",
+"t=(2*d)/v //echo time\n",
+"\n",
+"printf('echo time =')\n",
+"\n",
+"disp(t)\n",
+"\n",
+"printf('sec')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_22: calculate_frquency_of_vibration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_22,pg 4-37\n",
+"\n",
+"t=1*10^-3 //thickness of quartz crystal\n",
+"\n",
+"//given t=l/2\n",
+"\n",
+"l=t*2 //wavelength\n",
+"\n",
+"Y=7.9*10^10 //young's module of crystal\n",
+"\n",
+"p=2650 //density of crystal\n",
+"\n",
+"v=sqrt(Y/p) //velocity of vibration\n",
+"\n",
+"n=v/l //frequency of vibration\n",
+"\n",
+"printf('frquency of vibration =')\n",
+"\n",
+"disp(n)\n",
+"\n",
+"printf('Hz')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_23: calculate_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_23,pg 4-38\n",
+"\n",
+"d=7.23*10^3 //density\n",
+"\n",
+"Y=11.6*10^10 //Young's modulus\n",
+"\n",
+"n=20*10^3 //frequency of wave\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"l=(k/(2*n))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"printf('length =')\n",
+"\n",
+"disp(l)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_24: calculate_natural_frequency_and_change_in_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_24,pg 4-38\n",
+"\n",
+"//for case1\n",
+"t1=2*10^-3 //thicknesss of plate\n",
+"\n",
+"d=2.65*10^3 //density\n",
+"\n",
+"Y=8*10^10 //Young's modulus\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"n1=(k/(2*t1))*sqrt(Y/d) //formula of natural frequency\n",
+"\n",
+"printf(' 1)natural frequency =')\n",
+"\n",
+"disp(n1)\n",
+"\n",
+"printf('Hz')\n",
+"\n",
+"//for case2\n",
+"\n",
+"n2=3*10^6 //frequency\n",
+"\n",
+"t2=(k/(2*n2))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"t=t1-t2 //change in thickness\n",
+"\n",
+"printf(' 2)change in thickness =')\n",
+"\n",
+"disp(t)\n",
+"\n",
+"printf('meter')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_25: calculate_average_absorption_coefficien_and_total_absorption.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_25,pg 4-39\n",
+"\n",
+"l=20 //length of room\n",
+"\n",
+"b=15 //bredth of room\n",
+"\n",
+"h=10 //height of room\n",
+"\n",
+"V=l*b*h //volume of room\n",
+"\n",
+"S=2*(l*b+b*h+h*l) //surface area of hall\n",
+"\n",
+"T=3 //Reverberation time\n",
+"\n",
+"a=(0.161*V)/(T*S) //using Sabine's formula\n",
+"\n",
+"printf('1) average absorption coefficient =')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"m=a*S //total absorption\n",
+"\n",
+"printf('2) total absorption of surface =')\n",
+"\n",
+"disp(m)\n",
+"\n",
+"printf('m^2/sec')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_26: calculate_natural_frequency_and_change_in_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_26,pg 4-39\n",
+"\n",
+"//for case1\n",
+"t1=1.8*10^-3 //thicknesss of plate\n",
+"\n",
+"d=2.65*10^3 //density\n",
+"\n",
+"Y=8*10^10 //Young's modulus\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"n1=(k/(2*t1))*sqrt(Y/d) //formula of natural frequency\n",
+"\n",
+"printf(' 1)natural frequency =')\n",
+"\n",
+"disp(n1)\n",
+"\n",
+"printf('Hz')\n",
+"\n",
+"//for case2\n",
+"\n",
+"n2=2*10^6 //frequency\n",
+"\n",
+"t2=(k/(2*n2))*sqrt(Y/d) //arranging formula of natural frequency\n",
+"\n",
+"t=t1-t2 //change in thickness\n",
+"\n",
+"printf(' 2)change in thickness =')\n",
+"\n",
+"disp(t)\n",
+"\n",
+"printf('meter')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_27: calculate_Youngs_modulus.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_27,pg 4-39\n",
+"\n",
+"n=0.4999*10^6 //frequency\n",
+"\n",
+"t=5.5*10^-3 //thicknesss of plate\n",
+"\n",
+"d=2.65*10^3 //density\n",
+"\n",
+"k=1 //consider 1st harmonic\n",
+"\n",
+"Y=4*(t^2)*(n^2)*d/k //arranging formula of natural frequency\n",
+"\n",
+"printf('Youngs modulus =')\n",
+"\n",
+"disp(Y)\n",
+"\n",
+"printf('N/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_2: calculate_change_in_intensity_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_2,pg 4-26\n",
+"\n",
+"m=%i //original sound intensity\n",
+"\n",
+"n=1000*%i //increased intensity value\n",
+"\n",
+"l=10*log10(n/m) //change in intensity level\n",
+"\n",
+"printf('change in intensity level =')\n",
+"\n",
+"disp(l)\n",
+"\n",
+"printf('dB')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_3: clculate_average_sound_absorption_coefficient_and_reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_3,pg 4-26\n",
+"\n",
+"S1=220 //wall area\n",
+"\n",
+"a1=0.03 //absorption coefficient for the wall\n",
+"\n",
+"S2=120 //floor area\n",
+"\n",
+"a2=0.8 //absorption coefficient for the floor\n",
+"\n",
+"S3=120 //ceiling area\n",
+"\n",
+"a3=0.06 //absorption coefficient for the ceiling\n",
+"\n",
+"V=600 //volume of room\n",
+"\n",
+"S=S1+S2+S3 //total surface area\n",
+"\n",
+"a=(a1*S1+a2*S2+a3*S3)/S //average sound absorption coefficient\n",
+"\n",
+"printf('1) average sound absorption coefficient =')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"T=(0.161*V)/(a*S) //Reverberation time,using Sabine's formula\n",
+"\n",
+"printf('2) Reverberation time =')\n",
+"\n",
+"disp(T)\n",
+"\n",
+"printf('sec')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_4: calculate_average_absorption_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_4,pg 4-27\n",
+"\n",
+"V=5500 //volume\n",
+"\n",
+"T=2.3 //Reverberation time\n",
+"\n",
+"S=750 //sound absorption coefficient\n",
+"\n",
+"a=(0.161*V)/(S*T) //using Sabine's formula\n",
+"\n",
+"printf('average absorption coefficient =')\n",
+"\n",
+"disp(a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_5: claculate_average_absorption_coefficient_and_area_of_floor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_5,pg 4-27\n",
+"\n",
+"l=20 //length of room\n",
+"\n",
+"b=12 //bredth of room\n",
+"\n",
+"h=12 //height of room\n",
+"\n",
+"V=l*b*h //volume of room\n",
+"\n",
+"S=2*(l*b+b*h+h*l) //surface area of hall\n",
+"\n",
+"T1=2.5 //Reverberation time\n",
+"\n",
+"a=(0.161*V)/(T1*S) //using Sabine's formula\n",
+"\n",
+"printf('1) average absorption coefficient =')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"a1=0.5 //absorption coefficient\n",
+"\n",
+"T2=2 //Reverberation time\n",
+"\n",
+"S1=(0.161*V/(a1-a))*(1/T2-1/T1)\n",
+"\n",
+"printf('2) carpet area required =')\n",
+"\n",
+"disp(S1)\n",
+"\n",
+"printf('m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_6: calculate_reverberation_time_for_various_case.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_6,pg 4-28\n",
+"\n",
+"Ac=10*12 //area of carpet covering entire floor\n",
+"\n",
+"ac=0.06 //absorption coefficient of carpet\n",
+"\n",
+"aS1=Ac*ac //absorption due to carpet\n",
+"\n",
+"Af=10*12 //area of false celling\n",
+"\n",
+"af=0.03 //absorption coefficient of celling\n",
+"\n",
+"aS2=Af*af //absorption due to celling\n",
+"\n",
+"As=100*1 //area of cushioned sets\n",
+"\n",
+"as=1 //absorption coefficient of cushion sets\n",
+"\n",
+"aS3=As*as //absorption due to cusion sets\n",
+"\n",
+"Aw=346*1 //area of walls covered with absorbent\n",
+"\n",
+"aw=0.2 //absorption coefficient of walls\n",
+"\n",
+"aS4=Aw*aw //absorption due to walls\n",
+"\n",
+"Ad=346*1 //area of wooden door\n",
+"\n",
+"ad=0.2 //absorption coefficient of wooden door\n",
+"\n",
+"aS5=Ad*ad //absorption due to wooden door\n",
+"\n",
+"aS=aS1+aS2+aS3+aS4 //total absorption\n",
+"\n",
+"ap=0.46 //absorption coefficient of audience/person\n",
+"\n",
+"l=12 //assuming length of wall\n",
+"\n",
+"b=10 //assuming breadth of wall\n",
+"\n",
+"h=8 //assuming height of wall\n",
+"\n",
+"V=l*b*h //volume of hall\n",
+"\n",
+"//case 1 :(no one inside/emptey hall)\n",
+"\n",
+"T1=(0.161*V)/aS //reverberation time\n",
+"\n",
+"printf(' 1)reverberation time of empty hall =')\n",
+"\n",
+"disp(T1)\n",
+"\n",
+"printf('sec')\n",
+"\n",
+"//case 2 :(50 person inside hall)\n",
+"\n",
+"T2=(0.161*V)/(aS+50*0.46) //reverberation time\n",
+"\n",
+"printf(' 2)reverberation time of hall with 50 person =')\n",
+"\n",
+"disp(T2)\n",
+"\n",
+"printf('sec')\n",
+"\n",
+"//case 2 :(100 person inside hall/full capacity of hall)\n",
+"\n",
+"T3=(0.161*V)/(aS+100*0.46) //reverberation time\n",
+"\n",
+"printf(' 3)reverberation time of hall with 100 person =')\n",
+"\n",
+"disp(T3)\n",
+"\n",
+"printf('sec')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_7: calculate_average_absorption_coefficient_and_total_absorption.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_7,pg 4-30\n",
+"\n",
+"l=20 //length of room\n",
+"\n",
+"b=15 //bredth of room\n",
+"\n",
+"h=5 //height of room\n",
+"\n",
+"V=l*b*h //volume of room\n",
+"\n",
+"S=2*(l*b+b*h+h*l) //surface area of hall\n",
+"\n",
+"T=3.5 //Reverberation time\n",
+"\n",
+"a=(0.161*V)/(T*S) //using Sabine's formula\n",
+"\n",
+"printf('1) average absorption coefficient =')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"avg=a*S //average total absorption\n",
+"\n",
+"printf('2) average total absorption =')\n",
+"\n",
+"disp(avg)\n",
+"\n",
+"printf('m^2.S')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_8: calculate_change_in_reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_8,pg 4-30\n",
+"\n",
+"l=20 //length of room\n",
+"\n",
+"b=15 //bredth of room\n",
+"\n",
+"h=10 //height of room\n",
+"\n",
+"V=l*b*h //volume of room\n",
+"\n",
+"a=0.1 //absorption coefficient\n",
+"\n",
+"S=2*(l*b+b*h+h*l) //surface area of hall\n",
+"\n",
+"T1=(0.161*V)/(a*S) //Reverberation time,using Sabine's formula\n",
+"\n",
+"printf('1) Reverberation time =')\n",
+"\n",
+"disp(T1)\n",
+"\n",
+"printf('sec')\n",
+"\n",
+"a2=0.66 //absorption coefficient of curtain cloth\n",
+"\n",
+"S2=100 //surface area of a curtain cloth\n",
+"\n",
+"T2=(0.161*V)/(a*S+a2*S2*2) //Reverberation time,using Sabine's formula\n",
+"\n",
+"T=T1-T2 //change in Reverberation time\n",
+"\n",
+"printf('2) change in Reverberation time =')\n",
+"\n",
+"disp(T)\n",
+"\n",
+"printf('sec')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15_9: calculate_average_absorption_coefficient_and_reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4,Example4_15_9,pg 4-30\n",
+"\n",
+"S1=220 //wall area\n",
+"\n",
+"a1=0.03 //absorption coefficient for the wall\n",
+"\n",
+"S2=120 //floor area\n",
+"\n",
+"a2=0.8 //absorption coefficient for the floor\n",
+"\n",
+"S3=120 //ceiling area\n",
+"\n",
+"a3=0.06 //absorption coefficient for the ceiling\n",
+"\n",
+"V=600 //volume of room\n",
+"\n",
+"S=S1+S2+S3 //total surface area\n",
+"\n",
+"a=(a1*S1+a2*S2+a3*S3)/S //average sound absorption coefficient\n",
+"\n",
+"printf('1) average sound absorption coefficient =')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"T=(0.161*V)/(a*S) //Reverberation time,using Sabine's formula\n",
+"\n",
+"printf('2) Reverberation time =')\n",
+"\n",
+"disp(T)\n",
+"\n",
+"printf('sec')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}