diff options
Diffstat (limited to 'Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb')
-rw-r--r-- | Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb | 813 |
1 files changed, 813 insertions, 0 deletions
diff --git a/Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb b/Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb new file mode 100644 index 0000000..042e19e --- /dev/null +++ b/Applied_Physics_i_by_I_A_Shaikh/2-Semiconductor_Physics.ipynb @@ -0,0 +1,813 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Semiconductor Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_1: calculate_mobility_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_21_1,pg 2-47\n", +"\n", +"ro=1.72*10^-8 //resistivity of Cu\n", +"\n", +"s=1/ro //conductivity of Cu\n", +"\n", +"n=10.41*10^28 //no of electron per unit volume\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"u=s/(n*e)\n", +"\n", +"printf('mobility of electron in Cu =')\n", +"\n", +"disp(u)\n", +"\n", +"printf('m^2/volt-sec')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_2: calculate_Resistivity_of_Cu.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_21_2,pg 2-47\n", +"\n", +"m=63.5 //atomic weight\n", +"\n", +"u=43.3 //mobility of electron\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"N=6.02*10^23 //Avogadro's number\n", +"\n", +"d=8.96 //density\n", +"\n", +"Ad=N*d/m //Atomic density\n", +"\n", +"n=1*Ad\n", +"\n", +"ro=1/(n*e*u)\n", +"\n", +"printf('Resistivity of Cu =')\n", +"\n", +"disp(ro)\n", +"\n", +"printf('ohm-cm')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_3: calculate_Resistivity_of_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_21_3,pg 2-47\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"ne=2.5*10^19 //density of carriers\n", +"\n", +"nh=ne //for intrinsic semiconductor\n", +"\n", +"ue=0.39 //mobility of electron\n", +"\n", +"uh=0.19 //mobility of hole\n", +"\n", +"s=ne*e*ue+nh*e*uh //conductivity of Ge\n", +"\n", +"ro=1/s //resistivity of Ge\n", +"\n", +"printf('Resistivity of Ge =')\n", +"\n", +"disp(ro)\n", +"\n", +"printf('ohm-m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_5: calculate_Ratio_between_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_21_5,pg 2-48\n", +"\n", +"Eg=1.2 //energy gap\n", +"\n", +"T1=600 //temperature\n", +"\n", +"T2=300 //temperature\n", +"\n", +"//since ue>>uh for intrinsic semiconductor\n", +"\n", +"//s=ni*e*ue\n", +"\n", +"K=8.62*10^-5 //Boltzman constant\n", +"\n", +"s=%s\n", +"\n", +"s1=s*exp((-Eg)/(2*K*T1))\n", +"\n", +"s2=s*exp((-Eg)/(2*K*T2))\n", +"\n", +"m=(s1/s2)\n", +"\n", +"printf('Ratio between conductivity =')\n", +"\n", +"disp(m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_6: calculate_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_21_6,pg 2-49\n", +"\n", +"c=5*10^28 //concentration of Si atoms\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"u=0.048 //mobility of hole\n", +"\n", +"s=4.4*10^-4 //conductivity of Si\n", +"\n", +"//since millionth Si atom is replaced by an indium atom\n", +"\n", +"n=c*10^-6\n", +"\n", +"sp=u*e*n //conductivity of resultant\n", +"\n", +"printf('conductivity =')\n", +"\n", +"disp(sp)\n", +"\n", +"printf('mho/m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_7: calculate_hole_concentration_and_mobility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_21_7,pg 2-49\n", +"\n", +"m=28.1 //atomic weight of Si\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"N=6.02*10^26 //Avogadro's number\n", +"\n", +"d=2.4*10^3 //density of Si\n", +"\n", +"p=0.25 //resistivity\n", +"\n", +"//no. of Si atom/m^3\n", +"\n", +"Ad=N*d/m //Atomic density\n", +"\n", +"//impurity level is 0.01 ppm i.e. 1 atom in every 10^8 atoms of Si\n", +"\n", +"n=Ad/10^8 //no of impurity atoms\n", +"\n", +"//since each impurity produce 1 hole\n", +"\n", +"nh=n\n", +"\n", +"printf('1) hole concentration =')\n", +"\n", +"disp(n)\n", +"\n", +"printf('holes/m^3')\n", +"\n", +"up=1/(e*p*nh)\n", +"\n", +"printf(' 2) mobility =')\n", +"\n", +"disp(up)\n", +"\n", +"printf('m^2/volt.sec') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.22_1: calculate_probability_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_22_1,pg 2-50\n", +"\n", +"t=27 //temp in degree \n", +"\n", +"T=t+273 //temp in kelvin\n", +"\n", +"K=8.62*10^-5 //Boltzman constant in eV\n", +"\n", +"Eg=1.12 //Energy band gap\n", +"\n", +"//For intrensic semiconductor (Ec-Ev)=Eg/2\n", +"\n", +"//let (Ec-Ev)=m\n", +"\n", +"m=Eg/2\n", +"\n", +"a=(m/(K*T))\n", +"\n", +"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n", +"\n", +"p=1/(1+exp(a))\n", +"\n", +"\n", +"printf('probability of an electron being thermally excited to conduction band=')\n", +"\n", +"disp(p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.22_2: calculate_probability_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_22_2,pg 2-50\n", +"\n", +"T=300 //temp in kelvin\n", +"\n", +"K=8.62*10^-5 //Boltzman constant in eV\n", +"\n", +"m=0.012 //energy level(Ef-E)\n", +"\n", +"a=(m/(K*T))\n", +"\n", +"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n", +"\n", +"p=1/(1+exp(a))\n", +"\n", +"p1=1-p\n", +"\n", +"printf('probability of an energy level not being occupied by an electron=')\n", +"\n", +"disp(p1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.22_3: calculate_probability_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_22_3,pg 2-51\n", +"\n", +"t=20 //temp in degree \n", +"\n", +"T=t+273 //temp in kelvin\n", +"\n", +"K=8.62*10^-5 //Boltzman constant in eV\n", +"\n", +"Eg=1.12 //Energy band gap\n", +"\n", +"//For intrensic semiconductor (Ec-Ev)=Eg/2\n", +"\n", +"//let (Ec-Ev)=m\n", +"\n", +"m=Eg/2\n", +"\n", +"a=(m/(K*T))\n", +"\n", +"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n", +"\n", +"p=1/(1+exp(a))\n", +"\n", +"\n", +"printf('probability of an electron being thermally excited to conduction band=')\n", +"\n", +"disp(p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.22_4: calculate_energy_for_different_probability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_22_4,pg 2-51\n", +"\n", +"T=300 //temp in kelvin\n", +"\n", +"K=8.62*10^-5 //Boltzman constant in eV\n", +"\n", +"Eg=2.1 //Energy band gap\n", +"\n", +"//probability f(Ec)=1/(1+exp((Ec-Ev)/(K*T))\n", +"\n", +"m=K*T\n", +"\n", +"//for f(E)=0.99\n", +"\n", +"p1=0.99\n", +"\n", +"b=1-1/p1\n", +"\n", +"a=log(b) //a=(E-2.1)/m\n", +"\n", +"E=2.1+m*a\n", +"\n", +"printf('1) Energy for which probability is 0.99=')\n", +"\n", +"disp(real(E))\n", +"\n", +"printf('eV')\n", +"\n", +"//for f(E)=0.01\n", +"\n", +"p2=0.01\n", +"\n", +"b2=1-1/p2\n", +"\n", +"a1=log(b2) //a=(E-2.1)/m\n", +"\n", +"E1=2.1+m*a1\n", +"\n", +"printf('2)Energy for which probability is 0.01=')\n", +"\n", +"disp(real(E1))\n", +"\n", +"printf('eV')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23_1: calculate_Potential_barrier_for_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_23_1,pg 2-52\n", +"\n", +"ni=2.4*10^19 //density of intrensic semiconductor\n", +"\n", +"n=4.4*10^28 //no atom in Ge crystal\n", +"\n", +"Nd=n/10^6 //density\n", +"\n", +"Na=Nd\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"T=300 //temerature at N.T.P.\n", +"\n", +"K=1.38*10^-23 //Boltzman constant\n", +"\n", +"Vo=(K*T/e)*log(Na*Nd/(ni^2))\n", +"\n", +"printf('Potential barrier for Ge =')\n", +"\n", +"disp(Vo)\n", +"\n", +"printf('Volts')\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23_2: calculate_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_23_2,pg 2-52\n", +"\n", +"B=0.6 //magnetic field\n", +"\n", +"d=5*10^-3 //distancebetween surface\n", +"\n", +"J=500 //current density\n", +"\n", +"Nd=10^21 //density\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"Vh=(B*J*d)/(Nd*e) //due to Hall effect\n", +"\n", +"printf('Hall voltage =')\n", +"\n", +"disp(Vh)\n", +"\n", +"printf('Volts')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23_3: calculate_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_23_3,pg 2-53\n", +"\n", +"Rh=6*10^-7 //Hall coefficient\n", +"\n", +"B=1.5 //magnetic field\n", +"\n", +"I=200 //current in strip\n", +"\n", +"W=1*10^-3 //thickness of strip\n", +"\n", +"Vh=Rh*(B*I)/W //due to Hall effect\n", +"\n", +"printf('Hall voltage =')\n", +"\n", +"disp(Vh)\n", +"\n", +"printf('Volt')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23_4: calculate_Resistivity_of_P_type_silico.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_23_4,pg 2-53\n", +"\n", +"Rh=2.25*10^-5 //Hall coefficient\n", +"\n", +"u=0.025 //mobility of hole\n", +"\n", +"r=Rh/u\n", +"\n", +"printf('Resistivity of P type silicon =')\n", +"\n", +"disp(r)\n", +"\n", +"printf('ohm-m')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23_5: calculate_hall_voltage_hall_coefficient_and_hall_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_23_5,pg 2-53\n", +"\n", +"B=0.55 //magnetic field\n", +"\n", +"d=4.5*10^-3 //distancebetween surface\n", +"\n", +"J=500 //current density\n", +"\n", +"n=10^20 //density\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"Rh=1/(n*e) //Hall coefficient\n", +"\n", +"Vh=Rh*B*J*d //Hall voltage\n", +"\n", +"printf(' 1) Hall voltage =')\n", +"\n", +"disp(Vh)\n", +"\n", +"printf('Volts')\n", +"\n", +"printf(' 2) Hall coefficient =')\n", +"\n", +"disp(Rh)\n", +"\n", +"printf('m^3/C')\n", +"\n", +"u=0.17 //mobility of electrom\n", +"\n", +"m=atan(u*B)\n", +"\n", +"a=m*180/%pi //conversion randian into degree\n", +"\n", +"printf(' 3) Hall angle =')\n", +"\n", +"disp(a)\n", +"\n", +"printf('degree')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23_6: calculate_density_and_mobility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_23_6,pg 2-54\n", +"\n", +"Rh=3.66*10^-4 //Hall coefficient\n", +"\n", +"r=8.93*10^-3 //resistivity \n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"//Hall coefficient Rh=1/(n*e)\n", +"\n", +"n=1/(Rh*e) //density\n", +"\n", +"printf(' 1) density(n) =')\n", +"\n", +"disp(n)\n", +"\n", +"printf('/m^3')\n", +"\n", +"u=Rh/r //mobility of electron\n", +"\n", +"printf(' 2) mobility (u) =')\n", +"\n", +"disp(u)\n", +"\n", +"printf('m^2/v-s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23_7: calculate_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_23_7,pg 2-55\n", +"\n", +"B=0.2 //magnetic field\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"ue=0.39 //mobility of electron\n", +"\n", +"l=0.01 //length\n", +"\n", +"A=0.001*0.001 //cross section area of bar\n", +"\n", +"V=1*10^-3 //Applied voltage\n", +"\n", +"d=0.001 //sample of width \n", +"\n", +"r=1/(ue*e) //resistivity\n", +"\n", +"R=r*l/A //resistance of Ge bar\n", +"\n", +"//using ohm's law\n", +"\n", +"I=V/R\n", +"\n", +"Rh=r*ue //hall coefficient\n", +"\n", +"//using formulae for hall effect\n", +"\n", +"J=I/A //current density\n", +"\n", +"Vh=Rh*B*J*d\n", +"\n", +"printf('Hall voltage =')\n", +"\n", +"disp(Vh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.24_1: calculate_fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_24_1,pg 2-55\n", +"\n", +"x1=0.4 //difference between fermi level and conduction band(Ec-Ef)\n", +"\n", +"T=300 //temp in kelvin\n", +"\n", +"K=8.62*10^-5 //Boltzman constant in eV\n", +"\n", +"//ne=N*e^(-(Ec-Ef)/(K*T))\n", +"\n", +"//ne is no of electron in conduction band\n", +"\n", +"//since concentration of donor electron is doubled\n", +"\n", +"a=2 //ratio of no of electron\n", +"\n", +"//let x2 be the difference between new fermi level and conduction band(Ec-Ef')\n", +"\n", +"x2=-log(a)*(K*T)+x1 //arranging equation ne=N*e^(-(Ec-Ef)/(K*T))\n", +"\n", +"printf('Fermi level will be shifted towards conduction band by')\n", +"\n", +"disp(x2)\n", +"\n", +"printf('eV')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |