summaryrefslogtreecommitdiff
path: root/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb')
-rw-r--r--Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb1129
1 files changed, 1129 insertions, 0 deletions
diff --git a/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb b/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb
new file mode 100644
index 0000000..e7d7b69
--- /dev/null
+++ b/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb
@@ -0,0 +1,1129 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Dielectric And Magnetic Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_10: calculate_Horizontal_component_of_magnetic_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_10,pg 3-38\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"B=10.9*10^-5 //flux density\n",
+"\n",
+"H=B/u0 //magnetic field\n",
+"\n",
+"printf('Horizontal component of magnetic field =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('A-m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_11: calculate_current_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_11,pg 3-39\n",
+"\n",
+"phi=5.9*10^-3 //magnetic flux\n",
+"\n",
+"ur=900 //relative permeability of material\n",
+"\n",
+"n=700 //number of turns\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=60*10^-4 //cross section area of ring\n",
+"\n",
+"l=2 //mean circumference of ring\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"H=B/(u0*ur) //magnetic field\n",
+"\n",
+"At=H*l //Amp-turns required\n",
+"\n",
+"I=At/n //current required\n",
+"\n",
+"printf('Current required to produce a flux=')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp')\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_12: calculate_Current_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_12,pg 3-39\n",
+"\n",
+"phi=2.7*10^-3 //magnetic flux\n",
+"\n",
+"A=25*10^-4 //cross section area of ring\n",
+"\n",
+"r=25*10^-2 //mean circumference of ring\n",
+"\n",
+"la=10^-3 //air gap\n",
+"\n",
+"ur=900 //relative permeability of material\n",
+"\n",
+"n=400 //number of turns\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"d=40*10^-2 //mean diameter of ring\n",
+"\n",
+"li=2*%pi*r //mean circumference of ring\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"//for air gap\n",
+"\n",
+"Ha=B/(u0) //magnetic field for air gap\n",
+"\n",
+"//for iron ring\n",
+"\n",
+"Hi=B/(u0*ur) //magnetic field for iron ring\n",
+"\n",
+"//therefore, Amp turn in air gap\n",
+"\n",
+"Ata=Ha*la //Amp-turns required\n",
+"\n",
+"//therefore, Amp-turn in ring\n",
+"\n",
+"Ati=Hi*li //Amp-turns required\n",
+"\n",
+"//therrfore total mmf required\n",
+"\n",
+"mmf=Ata+Ati\n",
+"\n",
+"//Current required\n",
+"\n",
+"I=mmf/n //current required\n",
+"\n",
+"printf('Current required =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_13: calculate_1_magnetic_intensity_2_magnetization_3_Relative_Permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_13,pg 3-40\n",
+"\n",
+"n1=10 //no of turns per cm\n",
+"\n",
+"i=2 //current\n",
+"\n",
+"B=1 //flux density\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"n=n1*100 //no turns per m\n",
+"\n",
+"H=n*i\n",
+"\n",
+"printf(' 1) magnetic intensity =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('Amp-turn/meter')\n",
+"\n",
+"//calculation for magnetization\n",
+"\n",
+"I=B/u0-H\n",
+"\n",
+"printf(' 2) magnetization =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp-turn/meter')\n",
+"\n",
+"//relative permeability\n",
+"\n",
+"ur=B/(u0*H)\n",
+"\n",
+"printf(' 3) Relative Permeability of the ring =')\n",
+"\n",
+"disp(int(ur))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_14: calculate_Loss_of_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_14,pg 3-40\n",
+"\n",
+"m=40 //wt of the core\n",
+"\n",
+"d=7.5*10^3 //density of iron\n",
+"\n",
+"n=100 //frequency\n",
+"\n",
+"V=m/d //volume of the iron core\n",
+"\n",
+"E1=3800*10^-1 //loss of energy in core per cycles/cc\n",
+"\n",
+"E2=E1*V //loss of energy in core per cycles\n",
+"\n",
+"N=60*n //no of cycles per minute\n",
+"\n",
+"E=E2*N //loss of energy per minute\n",
+"\n",
+"printf('Loss of energy per minute =')\n",
+"\n",
+"disp(E)\n",
+"\n",
+"printf('Joule')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_15: calculate_various_parameter_of_magnetic_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_15,pg 3-40\n",
+"\n",
+"l=30*10^-2 //length of ring\n",
+"\n",
+"A=1*10^-4 //cross section area of ring\n",
+"\n",
+"i=0.032 //current\n",
+"\n",
+"phi=2*10^-6 //magnetic flux\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"N=300 //no of turns in the coil\n",
+"\n",
+"//1) flux density\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"printf('1) Flux density in the ring =')\n",
+"\n",
+"disp(B)\n",
+"\n",
+"printf('Wb/m^2')\n",
+"\n",
+"//2) magnetic intensity of ring\n",
+"\n",
+"n=N/l //no of turns per unit length\n",
+"\n",
+"H=n*i //magnetic intensity\n",
+"\n",
+"printf(' 2) magnetic intensity =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('Amp-turn/meter')\n",
+"\n",
+"//3) permeability and relative permeability of the ring\n",
+"\n",
+"u=B/H\n",
+"\n",
+"printf(' 3) Permeability of the ring =')\n",
+"\n",
+"disp(u)\n",
+"\n",
+"printf('Wb/A-m')\n",
+"\n",
+"ur=u/u0\n",
+"\n",
+"printf(' 4) Relative Permeability of the ring =')\n",
+"\n",
+"disp(ur)\n",
+"\n",
+"//4)Susceptibility\n",
+"\n",
+"Xm=ur-1\n",
+"\n",
+"printf('5) magnetic Susceptibility of the ring =')\n",
+"\n",
+"disp(Xm)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_16: calculate_loss_of_energy_per_hour.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_16,pg 3-41\n",
+"\n",
+"E=3000 //loss of energy per cycle per cm^3\n",
+"\n",
+"m=12*10^3 //wt of the core\n",
+"\n",
+"d=7.5 //density of iron\n",
+"\n",
+"n=50 //frequency\n",
+"\n",
+"V=m/d //volume of the core\n",
+"\n",
+"El=E*V*n*60*60 //loss of energy per hour\n",
+"\n",
+"printf('Loss of energy per hour =')\n",
+"\n",
+"disp(El)\n",
+"\n",
+"printf('Erg')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_17: calculate_Hysteresis_power_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_17,pg 3-41\n",
+"\n",
+"n=50 //frequency\n",
+"\n",
+"V=10^-3 //volume of the specimen\n",
+"\n",
+"//Area of B-H loop\n",
+"\n",
+"A=0.5*10^3*1\n",
+"\n",
+"P=n*V*A\n",
+"\n",
+"printf('Hysteresis power loss =')\n",
+"\n",
+"disp(P)\n",
+"\n",
+"printf('Watt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_18: calculate_current_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_18,pg 3-42\n",
+"\n",
+"phi=1.5*10^-4 //magnetic flux\n",
+"\n",
+"ur=900 //relative permeability of material\n",
+"\n",
+"n=600 //number of turns\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=5.8*10^-4 //cross section area of ring\n",
+"\n",
+"d=40*10^-2 //mean diameter of ring\n",
+"\n",
+"li=%pi*d //mean circumference of ring\n",
+"\n",
+"la=5*10^-3 //air gap\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"//for air gap\n",
+"\n",
+"Ha=B/(u0) //magnetic field for air gap\n",
+"\n",
+"//for iron ring\n",
+"\n",
+"Hi=B/(u0*ur) //magnetic field for iron ring\n",
+"\n",
+"//therefore, Amp turn in air gap\n",
+"\n",
+"Ata=Ha*la //Amp-turns required\n",
+"\n",
+"//therefore, Amp-turn in ring\n",
+"\n",
+"Ati=Hi*li //Amp-turns required\n",
+"\n",
+"//therrfore total mmf required\n",
+"\n",
+"mmf=Ata+Ati\n",
+"\n",
+"//Current required\n",
+"\n",
+"I=mmf/n //current required\n",
+"\n",
+"printf('Current required =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_19: calculate_reluctance_and_mmf.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_19,pg 3-42\n",
+"\n",
+"la=1*10^-2 //air gap\n",
+"\n",
+"r=0.5 //radius of ring\n",
+"\n",
+"A=5*10^-4 //cross section area of ring\n",
+"\n",
+"i=5 //current\n",
+"\n",
+"u=6*10^-3 //permeability of iron\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"N=900 //no of turns in the coil\n",
+"\n",
+"//let reluctance of iron ring with air gap be S\n",
+"\n",
+"S=la/(u0*A)+(2*%pi*r-la)/(u*A)\n",
+"\n",
+"printf(' 1) Reluctance =')\n",
+"\n",
+"disp(S)\n",
+"\n",
+"printf('A-T/Wb')\n",
+"\n",
+"mmf=N*i\n",
+"\n",
+"printf(' 2) m.m.f =')\n",
+"\n",
+"disp(mmf)\n",
+"\n",
+"printf('Amp-turn')\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_1: calculate_resultant_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_1,pg 3-35\n",
+"\n",
+"A=650*10^-6 //area\n",
+"\n",
+"d=4*10^-3 //seperation of plate\n",
+"\n",
+"Q=2*10^-10 //charge\n",
+"\n",
+"er=3.5 //relative permitivity\n",
+"\n",
+"e0=8.85*10^-12 //absolute permitivity\n",
+"\n",
+"V=(Q*d)/(e0*er*A)\n",
+"\n",
+"printf('voltage across capacitor =')\n",
+"\n",
+"disp(V)\n",
+"\n",
+"printf('Volt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_20: calculate_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_20,pg 3-43\n",
+"\n",
+"//the magnetization force is given by,\n",
+"\n",
+"//H=NI/l\n",
+"\n",
+"H=5*10^3 //coercivity of bar magnet\n",
+"\n",
+"l=10*10^-2 //length of solenoid\n",
+"\n",
+"N=50 //number of turns\n",
+"\n",
+"I=l*H/N\n",
+"\n",
+"printf('current =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Ampere')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_21: calculate_Reluctance_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_21,pg 3-43\n",
+"\n",
+"ur=380 //relative permeability of air\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=5*10^-4 //cross section area of ring\n",
+"\n",
+"n=200 //number of turns\n",
+"\n",
+"d=20*10^-2 //mean diameter of ring\n",
+"\n",
+"l=%pi*d //mean circumference of ring\n",
+"\n",
+"phi=2*10^-3 //magnetic flux\n",
+"\n",
+"S=l/(u0*ur*A) //reluctance\n",
+"\n",
+"//using ohm's law for magnetic circuit\n",
+"\n",
+"//phi=N*I/S\n",
+"\n",
+"I=S*phi/n\n",
+"\n",
+"printf(' 1) Reluctance =')\n",
+"\n",
+"disp(S)\n",
+"\n",
+"printf('A-T/Wb')\n",
+"\n",
+"\n",
+"printf(' 2) current =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Ampere')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_22: calculate_various_parameter_of_magnetic_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_22,pg 3-43\n",
+"\n",
+"ur=1 //relative permeability of air\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=6*10^-4 //cross section area of torroid\n",
+"\n",
+"n=500 //number of turns\n",
+"\n",
+"r=15*10^-2 //radius of torroid\n",
+"\n",
+"I=4 //current in coil\n",
+"\n",
+"l=2*%pi*r //mean circumference of torroid\n",
+"\n",
+"MMF=n*I\n",
+"\n",
+"printf('1) MMF (NI) =')\n",
+"\n",
+"disp(MMF)\n",
+"\n",
+"printf('AT')\n",
+"\n",
+"R=l/(u0*ur*A) //Reluctance\n",
+"\n",
+"printf(' 2) Reluctance (R) =')\n",
+"\n",
+"disp(R)\n",
+"\n",
+"printf('AT/Wb')\n",
+"\n",
+"phi=MMF/R //flux\n",
+"\n",
+"printf(' 3) Magnetic flux =')\n",
+"\n",
+"disp(phi)\n",
+"\n",
+"printf('Wb')\n",
+"\n",
+"B=phi/A //flux density\n",
+"\n",
+"printf(' 4) Flux density =')\n",
+"\n",
+"disp(B)\n",
+"\n",
+"printf('Wb/m^2')\n",
+"\n",
+"H=B/(u0*ur) //magnetic field intensity\n",
+"\n",
+"printf(' 5) Magnetic field intensity =')\n",
+"\n",
+"disp(H)\n",
+"\n",
+"printf('A/m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_23: calculate_Number_of_AmpereTurns.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_23,pg 3-44\n",
+"\n",
+"phi=10^-3 //magnetic flux\n",
+"\n",
+"ur=1000 //relative permeability of iron\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"A=5*10^-4 //cross section area of ring\n",
+"\n",
+"la=2*10^-3 //air gap\n",
+"\n",
+"d=20*10^-3 //mean diameter of ring\n",
+"\n",
+"li=%pi*d-la //mean circumference of ring\n",
+"\n",
+"//using KVL for magnetic circuit\n",
+"\n",
+"//AT(total)=AT(iron)+AT(air gap)\n",
+"\n",
+"ATt=(phi/(u0*A))*((li/ur)+la)\n",
+"\n",
+"printf('Number of Ampere-Turns required =')\n",
+"\n",
+"disp(round(ATt))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_24: calculate_intensity_magnetization_and_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_24,pg 3-44\n",
+"\n",
+"X=0.5*10^-5 //susceptibility of material\n",
+"\n",
+"H=10^6 //magnetic field strength\n",
+"\n",
+"I=X*H //intensity of magnetization\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"B=u0*(H+I) //flux density\n",
+"\n",
+"printf(' 1) intensity magnetization =')\n",
+"\n",
+"disp(I)\n",
+"\n",
+"printf('Amp/m')\n",
+"\n",
+"printf(' 2) flux density in the material =')\n",
+"\n",
+"disp(B)\n",
+"\n",
+"printf('wb/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_2: find_capacitance_of_capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_2,pg 3-36\n",
+"\n",
+"A=2000*10^-6 //area\n",
+"\n",
+"d=0.5*10^-6 //seperation of plate\n",
+"\n",
+"er=8 //relative permitivity\n",
+"\n",
+"e0=8.85*10^-12 //absolute permitivity\n",
+"\n",
+"C=(e0*er*A)/d\n",
+"\n",
+"printf('capacitance for capacitor =')\n",
+"\n",
+"disp(C)\n",
+"\n",
+"printf('Faraday')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_3: calculate_relative_permittivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_3,pg 3-36\n",
+"\n",
+"E=1000 //electric field\n",
+"\n",
+"P=4.3*10^-8 //polarization\n",
+"\n",
+"e0=8.854*10^-12 //absolute permitivity\n",
+"\n",
+"er=(P/(e0*E))+1 //as P/E=e0(er-1)\n",
+"\n",
+"printf('relative permittivity =')\n",
+"\n",
+"disp(er)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_4: ratio_of_two_capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_4,pg 3-36\n",
+"\n",
+"//As C=e0*er*A/d\n",
+"\n",
+"e0=%e //absolute permitivity\n",
+"\n",
+"Ag=%s\n",
+"\n",
+"Ap=Ag //Assuming Area of glass plate and plastic film is same\n",
+"\n",
+"//for glass\n",
+"\n",
+"erg=6 //relative permitivity\n",
+"\n",
+"dg=0.25 //thickness\n",
+"\n",
+"Cg=e0*erg*Ag/dg\n",
+"\n",
+"//for plastic film\n",
+"\n",
+"erp=3 //relative permitivity\n",
+"\n",
+"dp=0.1 //thickness\n",
+"\n",
+"Cp=e0*erp*Ap/dp\n",
+"\n",
+"m=Cg/Cp\n",
+"\n",
+"printf('since Cg/Cp=')\n",
+"\n",
+"disp(m)\n",
+"\n",
+"printf('plastic film holds more charge')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_5: calculate_electronic_polarizability_and_radius_of_He_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_5,pg 3-37\n",
+"\n",
+"N=2.7*10^25 //no of atoms per m^3\n",
+"\n",
+"er=1.0000684 //dielectric constant of He atom at NTP\n",
+"\n",
+"e0=8.854*10^-12 //absolute permitivity\n",
+"\n",
+"a=e0*(er-1)/N //electronic polarizability\n",
+"\n",
+"printf('1) electronic polarizability=')\n",
+"\n",
+"disp(a)\n",
+"\n",
+"R=(a/(4*%pi*e0))^(1/3) //radius of helium atom\n",
+"\n",
+"printf('2) radius of He atoms =')\n",
+"\n",
+"disp(R)\n",
+"\n",
+"printf('meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_6: calculate_electric_susceptibility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_6,pg 3-37\n",
+"\n",
+"er=1.000014 //dielectric constant of He atom at NTP\n",
+"\n",
+"Xe=er-1 //electric susceptibility\n",
+"\n",
+"printf('electric susceptibility =')\n",
+"\n",
+"disp(Xe)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_7: calculate_relative_permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_7,pg 3-37\n",
+"\n",
+"T=300 //temperature of paramagnetic material\n",
+"\n",
+"X=3.7*10^-3 //susceptibility of material\n",
+"\n",
+"C=X*T //using Curie's law\n",
+"\n",
+"T1=250 //temperature\n",
+"\n",
+"T2=600 //temperature\n",
+"\n",
+"u1=C/T1 //relative permeability of material at 250k\n",
+"\n",
+"u2=C/T2 //relative permeability of material at 350k\n",
+"\n",
+"printf('relative permeability at temp 250K=')\n",
+"\n",
+"disp(u1)\n",
+"\n",
+"printf('relative permeability at temp 600K =')\n",
+"\n",
+"disp(u2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_8: calculate_Temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_8,pg 3-38\n",
+"\n",
+"u=0.8*10^-23 //magnetic dipole moment of an atom \n",
+"\n",
+"B=0.8 //magnetic field\n",
+"\n",
+"K=1.38*10^-23 //boltzmann constant\n",
+"\n",
+"T=(2*u*B)/(3*K) //temperature\n",
+"\n",
+"printf('Temperature at which average thermal energy of an atom is equal to magntic energy=')\n",
+"\n",
+"disp(T)\n",
+"\n",
+"printf('K')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17_9: calculate_magnetization_of_paramagnetic_material.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-3,Example3_17_9,pg 3-38\n",
+"\n",
+"B=0.5 //magnetic field\n",
+"\n",
+"t=27 //temperature in degree celcius\n",
+"\n",
+"T=273+t //temperature in kelvin\n",
+"\n",
+"u0=4*%pi*10^-7 //permeability of free space\n",
+"\n",
+"C=2*10^-3 //Curie's constant\n",
+"\n",
+"M=(C*B)/(u0*T) //magnetization of material\n",
+"\n",
+"printf('magnetization of paramagnetic material =')\n",
+"\n",
+"disp(M)\n",
+"\n",
+"printf('A/m')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}