diff options
Diffstat (limited to 'Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb')
-rw-r--r-- | Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb | 1129 |
1 files changed, 1129 insertions, 0 deletions
diff --git a/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb b/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb new file mode 100644 index 0000000..e7d7b69 --- /dev/null +++ b/Applied_Physics_i_by_I_A_Shaikh/3-Dielectric_And_Magnetic_Materials.ipynb @@ -0,0 +1,1129 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Dielectric And Magnetic Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_10: calculate_Horizontal_component_of_magnetic_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_10,pg 3-38\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"B=10.9*10^-5 //flux density\n", +"\n", +"H=B/u0 //magnetic field\n", +"\n", +"printf('Horizontal component of magnetic field =')\n", +"\n", +"disp(H)\n", +"\n", +"printf('A-m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_11: calculate_current_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_11,pg 3-39\n", +"\n", +"phi=5.9*10^-3 //magnetic flux\n", +"\n", +"ur=900 //relative permeability of material\n", +"\n", +"n=700 //number of turns\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"A=60*10^-4 //cross section area of ring\n", +"\n", +"l=2 //mean circumference of ring\n", +"\n", +"B=phi/A //flux density\n", +"\n", +"H=B/(u0*ur) //magnetic field\n", +"\n", +"At=H*l //Amp-turns required\n", +"\n", +"I=At/n //current required\n", +"\n", +"printf('Current required to produce a flux=')\n", +"\n", +"disp(I)\n", +"\n", +"printf('Amp')\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_12: calculate_Current_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_12,pg 3-39\n", +"\n", +"phi=2.7*10^-3 //magnetic flux\n", +"\n", +"A=25*10^-4 //cross section area of ring\n", +"\n", +"r=25*10^-2 //mean circumference of ring\n", +"\n", +"la=10^-3 //air gap\n", +"\n", +"ur=900 //relative permeability of material\n", +"\n", +"n=400 //number of turns\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"d=40*10^-2 //mean diameter of ring\n", +"\n", +"li=2*%pi*r //mean circumference of ring\n", +"\n", +"B=phi/A //flux density\n", +"\n", +"//for air gap\n", +"\n", +"Ha=B/(u0) //magnetic field for air gap\n", +"\n", +"//for iron ring\n", +"\n", +"Hi=B/(u0*ur) //magnetic field for iron ring\n", +"\n", +"//therefore, Amp turn in air gap\n", +"\n", +"Ata=Ha*la //Amp-turns required\n", +"\n", +"//therefore, Amp-turn in ring\n", +"\n", +"Ati=Hi*li //Amp-turns required\n", +"\n", +"//therrfore total mmf required\n", +"\n", +"mmf=Ata+Ati\n", +"\n", +"//Current required\n", +"\n", +"I=mmf/n //current required\n", +"\n", +"printf('Current required =')\n", +"\n", +"disp(I)\n", +"\n", +"printf('Amp')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_13: calculate_1_magnetic_intensity_2_magnetization_3_Relative_Permeability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_13,pg 3-40\n", +"\n", +"n1=10 //no of turns per cm\n", +"\n", +"i=2 //current\n", +"\n", +"B=1 //flux density\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"n=n1*100 //no turns per m\n", +"\n", +"H=n*i\n", +"\n", +"printf(' 1) magnetic intensity =')\n", +"\n", +"disp(H)\n", +"\n", +"printf('Amp-turn/meter')\n", +"\n", +"//calculation for magnetization\n", +"\n", +"I=B/u0-H\n", +"\n", +"printf(' 2) magnetization =')\n", +"\n", +"disp(I)\n", +"\n", +"printf('Amp-turn/meter')\n", +"\n", +"//relative permeability\n", +"\n", +"ur=B/(u0*H)\n", +"\n", +"printf(' 3) Relative Permeability of the ring =')\n", +"\n", +"disp(int(ur))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_14: calculate_Loss_of_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_14,pg 3-40\n", +"\n", +"m=40 //wt of the core\n", +"\n", +"d=7.5*10^3 //density of iron\n", +"\n", +"n=100 //frequency\n", +"\n", +"V=m/d //volume of the iron core\n", +"\n", +"E1=3800*10^-1 //loss of energy in core per cycles/cc\n", +"\n", +"E2=E1*V //loss of energy in core per cycles\n", +"\n", +"N=60*n //no of cycles per minute\n", +"\n", +"E=E2*N //loss of energy per minute\n", +"\n", +"printf('Loss of energy per minute =')\n", +"\n", +"disp(E)\n", +"\n", +"printf('Joule')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_15: calculate_various_parameter_of_magnetic_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_15,pg 3-40\n", +"\n", +"l=30*10^-2 //length of ring\n", +"\n", +"A=1*10^-4 //cross section area of ring\n", +"\n", +"i=0.032 //current\n", +"\n", +"phi=2*10^-6 //magnetic flux\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"N=300 //no of turns in the coil\n", +"\n", +"//1) flux density\n", +"\n", +"B=phi/A //flux density\n", +"\n", +"printf('1) Flux density in the ring =')\n", +"\n", +"disp(B)\n", +"\n", +"printf('Wb/m^2')\n", +"\n", +"//2) magnetic intensity of ring\n", +"\n", +"n=N/l //no of turns per unit length\n", +"\n", +"H=n*i //magnetic intensity\n", +"\n", +"printf(' 2) magnetic intensity =')\n", +"\n", +"disp(H)\n", +"\n", +"printf('Amp-turn/meter')\n", +"\n", +"//3) permeability and relative permeability of the ring\n", +"\n", +"u=B/H\n", +"\n", +"printf(' 3) Permeability of the ring =')\n", +"\n", +"disp(u)\n", +"\n", +"printf('Wb/A-m')\n", +"\n", +"ur=u/u0\n", +"\n", +"printf(' 4) Relative Permeability of the ring =')\n", +"\n", +"disp(ur)\n", +"\n", +"//4)Susceptibility\n", +"\n", +"Xm=ur-1\n", +"\n", +"printf('5) magnetic Susceptibility of the ring =')\n", +"\n", +"disp(Xm)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_16: calculate_loss_of_energy_per_hour.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_16,pg 3-41\n", +"\n", +"E=3000 //loss of energy per cycle per cm^3\n", +"\n", +"m=12*10^3 //wt of the core\n", +"\n", +"d=7.5 //density of iron\n", +"\n", +"n=50 //frequency\n", +"\n", +"V=m/d //volume of the core\n", +"\n", +"El=E*V*n*60*60 //loss of energy per hour\n", +"\n", +"printf('Loss of energy per hour =')\n", +"\n", +"disp(El)\n", +"\n", +"printf('Erg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_17: calculate_Hysteresis_power_loss.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_17,pg 3-41\n", +"\n", +"n=50 //frequency\n", +"\n", +"V=10^-3 //volume of the specimen\n", +"\n", +"//Area of B-H loop\n", +"\n", +"A=0.5*10^3*1\n", +"\n", +"P=n*V*A\n", +"\n", +"printf('Hysteresis power loss =')\n", +"\n", +"disp(P)\n", +"\n", +"printf('Watt')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_18: calculate_current_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_18,pg 3-42\n", +"\n", +"phi=1.5*10^-4 //magnetic flux\n", +"\n", +"ur=900 //relative permeability of material\n", +"\n", +"n=600 //number of turns\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"A=5.8*10^-4 //cross section area of ring\n", +"\n", +"d=40*10^-2 //mean diameter of ring\n", +"\n", +"li=%pi*d //mean circumference of ring\n", +"\n", +"la=5*10^-3 //air gap\n", +"\n", +"B=phi/A //flux density\n", +"\n", +"//for air gap\n", +"\n", +"Ha=B/(u0) //magnetic field for air gap\n", +"\n", +"//for iron ring\n", +"\n", +"Hi=B/(u0*ur) //magnetic field for iron ring\n", +"\n", +"//therefore, Amp turn in air gap\n", +"\n", +"Ata=Ha*la //Amp-turns required\n", +"\n", +"//therefore, Amp-turn in ring\n", +"\n", +"Ati=Hi*li //Amp-turns required\n", +"\n", +"//therrfore total mmf required\n", +"\n", +"mmf=Ata+Ati\n", +"\n", +"//Current required\n", +"\n", +"I=mmf/n //current required\n", +"\n", +"printf('Current required =')\n", +"\n", +"disp(I)\n", +"\n", +"printf('Amp')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_19: calculate_reluctance_and_mmf.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_19,pg 3-42\n", +"\n", +"la=1*10^-2 //air gap\n", +"\n", +"r=0.5 //radius of ring\n", +"\n", +"A=5*10^-4 //cross section area of ring\n", +"\n", +"i=5 //current\n", +"\n", +"u=6*10^-3 //permeability of iron\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"N=900 //no of turns in the coil\n", +"\n", +"//let reluctance of iron ring with air gap be S\n", +"\n", +"S=la/(u0*A)+(2*%pi*r-la)/(u*A)\n", +"\n", +"printf(' 1) Reluctance =')\n", +"\n", +"disp(S)\n", +"\n", +"printf('A-T/Wb')\n", +"\n", +"mmf=N*i\n", +"\n", +"printf(' 2) m.m.f =')\n", +"\n", +"disp(mmf)\n", +"\n", +"printf('Amp-turn')\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_1: calculate_resultant_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_1,pg 3-35\n", +"\n", +"A=650*10^-6 //area\n", +"\n", +"d=4*10^-3 //seperation of plate\n", +"\n", +"Q=2*10^-10 //charge\n", +"\n", +"er=3.5 //relative permitivity\n", +"\n", +"e0=8.85*10^-12 //absolute permitivity\n", +"\n", +"V=(Q*d)/(e0*er*A)\n", +"\n", +"printf('voltage across capacitor =')\n", +"\n", +"disp(V)\n", +"\n", +"printf('Volt')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_20: calculate_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_20,pg 3-43\n", +"\n", +"//the magnetization force is given by,\n", +"\n", +"//H=NI/l\n", +"\n", +"H=5*10^3 //coercivity of bar magnet\n", +"\n", +"l=10*10^-2 //length of solenoid\n", +"\n", +"N=50 //number of turns\n", +"\n", +"I=l*H/N\n", +"\n", +"printf('current =')\n", +"\n", +"disp(I)\n", +"\n", +"printf('Ampere')\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_21: calculate_Reluctance_and_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_21,pg 3-43\n", +"\n", +"ur=380 //relative permeability of air\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"A=5*10^-4 //cross section area of ring\n", +"\n", +"n=200 //number of turns\n", +"\n", +"d=20*10^-2 //mean diameter of ring\n", +"\n", +"l=%pi*d //mean circumference of ring\n", +"\n", +"phi=2*10^-3 //magnetic flux\n", +"\n", +"S=l/(u0*ur*A) //reluctance\n", +"\n", +"//using ohm's law for magnetic circuit\n", +"\n", +"//phi=N*I/S\n", +"\n", +"I=S*phi/n\n", +"\n", +"printf(' 1) Reluctance =')\n", +"\n", +"disp(S)\n", +"\n", +"printf('A-T/Wb')\n", +"\n", +"\n", +"printf(' 2) current =')\n", +"\n", +"disp(I)\n", +"\n", +"printf('Ampere')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_22: calculate_various_parameter_of_magnetic_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_22,pg 3-43\n", +"\n", +"ur=1 //relative permeability of air\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"A=6*10^-4 //cross section area of torroid\n", +"\n", +"n=500 //number of turns\n", +"\n", +"r=15*10^-2 //radius of torroid\n", +"\n", +"I=4 //current in coil\n", +"\n", +"l=2*%pi*r //mean circumference of torroid\n", +"\n", +"MMF=n*I\n", +"\n", +"printf('1) MMF (NI) =')\n", +"\n", +"disp(MMF)\n", +"\n", +"printf('AT')\n", +"\n", +"R=l/(u0*ur*A) //Reluctance\n", +"\n", +"printf(' 2) Reluctance (R) =')\n", +"\n", +"disp(R)\n", +"\n", +"printf('AT/Wb')\n", +"\n", +"phi=MMF/R //flux\n", +"\n", +"printf(' 3) Magnetic flux =')\n", +"\n", +"disp(phi)\n", +"\n", +"printf('Wb')\n", +"\n", +"B=phi/A //flux density\n", +"\n", +"printf(' 4) Flux density =')\n", +"\n", +"disp(B)\n", +"\n", +"printf('Wb/m^2')\n", +"\n", +"H=B/(u0*ur) //magnetic field intensity\n", +"\n", +"printf(' 5) Magnetic field intensity =')\n", +"\n", +"disp(H)\n", +"\n", +"printf('A/m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_23: calculate_Number_of_AmpereTurns.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_23,pg 3-44\n", +"\n", +"phi=10^-3 //magnetic flux\n", +"\n", +"ur=1000 //relative permeability of iron\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"A=5*10^-4 //cross section area of ring\n", +"\n", +"la=2*10^-3 //air gap\n", +"\n", +"d=20*10^-3 //mean diameter of ring\n", +"\n", +"li=%pi*d-la //mean circumference of ring\n", +"\n", +"//using KVL for magnetic circuit\n", +"\n", +"//AT(total)=AT(iron)+AT(air gap)\n", +"\n", +"ATt=(phi/(u0*A))*((li/ur)+la)\n", +"\n", +"printf('Number of Ampere-Turns required =')\n", +"\n", +"disp(round(ATt))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_24: calculate_intensity_magnetization_and_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_24,pg 3-44\n", +"\n", +"X=0.5*10^-5 //susceptibility of material\n", +"\n", +"H=10^6 //magnetic field strength\n", +"\n", +"I=X*H //intensity of magnetization\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"B=u0*(H+I) //flux density\n", +"\n", +"printf(' 1) intensity magnetization =')\n", +"\n", +"disp(I)\n", +"\n", +"printf('Amp/m')\n", +"\n", +"printf(' 2) flux density in the material =')\n", +"\n", +"disp(B)\n", +"\n", +"printf('wb/m^2')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_2: find_capacitance_of_capacitor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_2,pg 3-36\n", +"\n", +"A=2000*10^-6 //area\n", +"\n", +"d=0.5*10^-6 //seperation of plate\n", +"\n", +"er=8 //relative permitivity\n", +"\n", +"e0=8.85*10^-12 //absolute permitivity\n", +"\n", +"C=(e0*er*A)/d\n", +"\n", +"printf('capacitance for capacitor =')\n", +"\n", +"disp(C)\n", +"\n", +"printf('Faraday')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_3: calculate_relative_permittivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_3,pg 3-36\n", +"\n", +"E=1000 //electric field\n", +"\n", +"P=4.3*10^-8 //polarization\n", +"\n", +"e0=8.854*10^-12 //absolute permitivity\n", +"\n", +"er=(P/(e0*E))+1 //as P/E=e0(er-1)\n", +"\n", +"printf('relative permittivity =')\n", +"\n", +"disp(er)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_4: ratio_of_two_capacitor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_4,pg 3-36\n", +"\n", +"//As C=e0*er*A/d\n", +"\n", +"e0=%e //absolute permitivity\n", +"\n", +"Ag=%s\n", +"\n", +"Ap=Ag //Assuming Area of glass plate and plastic film is same\n", +"\n", +"//for glass\n", +"\n", +"erg=6 //relative permitivity\n", +"\n", +"dg=0.25 //thickness\n", +"\n", +"Cg=e0*erg*Ag/dg\n", +"\n", +"//for plastic film\n", +"\n", +"erp=3 //relative permitivity\n", +"\n", +"dp=0.1 //thickness\n", +"\n", +"Cp=e0*erp*Ap/dp\n", +"\n", +"m=Cg/Cp\n", +"\n", +"printf('since Cg/Cp=')\n", +"\n", +"disp(m)\n", +"\n", +"printf('plastic film holds more charge')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_5: calculate_electronic_polarizability_and_radius_of_He_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_5,pg 3-37\n", +"\n", +"N=2.7*10^25 //no of atoms per m^3\n", +"\n", +"er=1.0000684 //dielectric constant of He atom at NTP\n", +"\n", +"e0=8.854*10^-12 //absolute permitivity\n", +"\n", +"a=e0*(er-1)/N //electronic polarizability\n", +"\n", +"printf('1) electronic polarizability=')\n", +"\n", +"disp(a)\n", +"\n", +"R=(a/(4*%pi*e0))^(1/3) //radius of helium atom\n", +"\n", +"printf('2) radius of He atoms =')\n", +"\n", +"disp(R)\n", +"\n", +"printf('meter')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_6: calculate_electric_susceptibility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_6,pg 3-37\n", +"\n", +"er=1.000014 //dielectric constant of He atom at NTP\n", +"\n", +"Xe=er-1 //electric susceptibility\n", +"\n", +"printf('electric susceptibility =')\n", +"\n", +"disp(Xe)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_7: calculate_relative_permeability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_7,pg 3-37\n", +"\n", +"T=300 //temperature of paramagnetic material\n", +"\n", +"X=3.7*10^-3 //susceptibility of material\n", +"\n", +"C=X*T //using Curie's law\n", +"\n", +"T1=250 //temperature\n", +"\n", +"T2=600 //temperature\n", +"\n", +"u1=C/T1 //relative permeability of material at 250k\n", +"\n", +"u2=C/T2 //relative permeability of material at 350k\n", +"\n", +"printf('relative permeability at temp 250K=')\n", +"\n", +"disp(u1)\n", +"\n", +"printf('relative permeability at temp 600K =')\n", +"\n", +"disp(u2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_8: calculate_Temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_8,pg 3-38\n", +"\n", +"u=0.8*10^-23 //magnetic dipole moment of an atom \n", +"\n", +"B=0.8 //magnetic field\n", +"\n", +"K=1.38*10^-23 //boltzmann constant\n", +"\n", +"T=(2*u*B)/(3*K) //temperature\n", +"\n", +"printf('Temperature at which average thermal energy of an atom is equal to magntic energy=')\n", +"\n", +"disp(T)\n", +"\n", +"printf('K')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17_9: calculate_magnetization_of_paramagnetic_material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_17_9,pg 3-38\n", +"\n", +"B=0.5 //magnetic field\n", +"\n", +"t=27 //temperature in degree celcius\n", +"\n", +"T=273+t //temperature in kelvin\n", +"\n", +"u0=4*%pi*10^-7 //permeability of free space\n", +"\n", +"C=2*10^-3 //Curie's constant\n", +"\n", +"M=(C*B)/(u0*T) //magnetization of material\n", +"\n", +"printf('magnetization of paramagnetic material =')\n", +"\n", +"disp(M)\n", +"\n", +"printf('A/m')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |