summaryrefslogtreecommitdiff
path: root/Theory_Of_Machines_by_B_K_Sarkar
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Theory_Of_Machines_by_B_K_Sarkar
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Theory_Of_Machines_by_B_K_Sarkar')
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/1-Basic_kinemtics.ipynb568
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb435
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb395
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/12-balancing_of_reciprocating_masses.ipynb321
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/2-TRANSMISSION_OF_MOTION_AND_POWER_BY_BELTS_AND_PULLEYS.ipynb715
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb684
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/4-Gears_and_Gear_Drivers.ipynb843
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/5-Inertia_Force_Analysis_in_Machines.ipynb361
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/6-Turning_Moment_Diagram_and_Flywheel.ipynb424
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb560
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/8-balancing_of_rotating_masses_.ipynb292
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/9-cams_and_followers.ipynb138
12 files changed, 5736 insertions, 0 deletions
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/1-Basic_kinemtics.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/1-Basic_kinemtics.ipynb
new file mode 100644
index 0000000..fa18783
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/1-Basic_kinemtics.ipynb
@@ -0,0 +1,568 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Basic kinemtics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: angular_acceleration_of_connecting_rod_BA.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 10 PAGE NO 24\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.30(a),1.30(b),1.30(c)\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"Nao=300// speed of crank in rpm\n",
+"AO=.15// length of crank in m\n",
+"BA=.6// length of connecting rod in m\n",
+"//===================\n",
+"wAO=2*pi*Nao/60// angular velocity of link in rad/s\n",
+"Vao=wAO*AO// linear velocity of A with respect to 'o'\n",
+"ab=3.4// length of vector ab by measurement in m/s\n",
+"Vba=ab\n",
+"ob=4// length of vector ob by measurement in m/s\n",
+"oc=4.1// length of vector oc by measurement in m/s\n",
+"fRao=Vao^2/AO// radial component of acceleration of A with respect to O\n",
+"fRba=Vba^2/BA// radial component of acceleration of B with respect to A\n",
+"wBA=Vba/BA// angular velocity of connecting rod BA\n",
+"fTba=103// by measurement in m/s^2\n",
+"alphaBA=fTba/BA// angular acceleration of connecting rod BA\n",
+"printf('linear velocity of A with respect to O= %.3f m/s\n radial component of acceleration of A with respect to O= %.3f m/s^2\n radial component of acceleration of B with respect to A= %.3f m/s^2\n angular velocity of connecting rod B= %.3f rad/s\n angular acceleration of connecting rod BA= %.3f rad/s^2',Vao,fRao,fRba,wBA,alphaBA)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: angular_acceleration_of_AB.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 11 PAGE NO 26\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.31(a),1.31(b),1.31(c)\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"wAP=10// angular velocity of crank in rad/s\n",
+"P1A=30// length of link P1A in cm\n",
+"P2B=36// length of link P2B in cm\n",
+"AB=36// length of link AB in cm\n",
+"P1P2=60// length of link P1P2 in cm\n",
+"AP1P2=60// crank inclination in degrees \n",
+"alphaP1A=30// angulare acceleration of crank P1A in rad/s^2\n",
+"//=====================================\n",
+"Vap1=wAP*P1A/100// linear velocity of A with respect to P1 in m/s\n",
+"Vbp2=2.2// velocity of B with respect to P2 in m/s(measured from figure )\n",
+"Vba=2.06// velocity of B with respect to A in m/s(measured from figure )\n",
+"wBP2=Vbp2/(P2B*100)// angular velocity of P2B in rad/s\n",
+"wAB=Vba/(AB*100)// angular velocity of AB in rad/s\n",
+"fAB1=alphaP1A*P1A/100// tangential component of the acceleration of A with respect to P1 in m/s^2\n",
+"frAB1=Vap1^2/(P1A/100)// radial component of the acceleration of A with respect to P1 in m/s^2\n",
+"frBA=Vba^2/(AB/100)// radial component of the acceleration of B with respect to B in m/s^2\n",
+"frBP2=Vbp2^2/(P2B/100)// radial component of the acceleration of B with respect to P2 in m/s^2\n",
+"ftBA=13.62// tangential component of B with respect to A in m/s^2(measured from figure)\n",
+"ftBP2=26.62// tangential component of B with respect to P2 in m/s^2(measured from figure)\n",
+"alphaBP2=ftBP2/(P2B/100)// angular acceleration of P2B in m/s^2\n",
+"alphaBA=ftBA/(AB/100)// angular acceleration of AB in m/s^2\n",
+"//==========================\n",
+"printf('Angular acceleration of P2B=%.3f rad/s^2\n angular acceleration of AB =%.3f rad/s^2',alphaBP2,alphaBA)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: Accelaration_of_the_slider.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 12 PAGE NO 28\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.32(a),1.32(b),1.32(c)\n",
+"clc\n",
+"clear\n",
+"PI=3.141\n",
+"AB=12// length of link AB in cm\n",
+"BC=48// length of link BC in cm\n",
+"CD=18// length of link CD in cm\n",
+"DE=36// length of link DE in cm\n",
+"EF=12// length of link EF in cm\n",
+"FP=36// length of link FP in cm\n",
+"Nba=200// roating speed of link BA IN rpm\n",
+"wBA=2*PI*200/60// Angular velocity of BA in rad/s\n",
+"Vba=wBA*AB/100// linear velocity of B with respect to A in m/s\n",
+"Vc=2.428// velocity of c in m/s from diagram 1.32(b)\n",
+"Vd=2.36// velocity of D in m/s from diagram 1.32(b)\n",
+"Ve=1// velocity of e in m/s from diagram 1.32(b)\n",
+"Vf=1.42// velocity of f in m/s from diagram 1.32(b)\n",
+"Vcb=1.3// velocity of c with respect to b in m/s from figure\n",
+"fBA=Vba^2*100/AB// radial component of acceleration of B with respect to A in m/s^2\n",
+"fCB=Vcb^2*100/BC// radial component of acceleration of C with respect to B in m/s^2\n",
+"fcb=3.52// radial component of acceleration of C with respect to B in m/s^2 from figure\n",
+"fC=19// acceleration of slider in m/s^2 from figure\n",
+"printf('velocity of c=%.3f m/s\n velocity of d=%.3f m/s\n velocity of e=%.3f m/s\n velocity of f=%.3f m/s\n Acceleration of slider=%f m/s^2',Vc,Vd,Ve,Vf,fC)\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: angular_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 13 PAGE NO 30\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.33(a),1.33(b),1.33(c)\n",
+"clc\n",
+"clear\n",
+"PI=3.141\n",
+"N=120// speed of the crank OC in rpm\n",
+"OC=5// length of link OC in cm\n",
+"cp=20// length of link CP in cm\n",
+"qa=10// length of link QA in cm\n",
+"pa=5// length of link PA in cm\n",
+"CP=46.9// velocity of link CP in cm/s\n",
+"QA=58.3// velocity of link QA in cm/s\n",
+"Pa=18.3// velocity of link PA in cm/s\n",
+"Vc=2*PI*N*OC/60// velocity of C in m/s\n",
+"Cco=Vc^2/OC// centripetal acceleration of C relative to O in cm/s^2\n",
+"Cpc=CP^2/cp// centripetal acceleration of P relative to C in cm/s^2\n",
+"Caq=QA^2/qa// centripetal acceleration of A relative to Q in cm/s^2\n",
+"Cap=Pa^2/pa// centripetal acceleration of A relative to P in cm/s^2\n",
+"pp1=530\n",
+"a1a=323\n",
+"a2a=207.5\n",
+"ACP=pp1/cp// angular acceleration of link CP in rad/s^2\n",
+"APA=a1a/qa// angular acceleration of link PA in rad/s^2\n",
+"AAQ=a2a/pa// angular acceleration of link AQ in rad/s^2\n",
+"printf('angular acceleration of link CP =%.3f rad/s^2\n angular acceleration of link CP=%.3f rad/s^2\n angular acceleration of link CP=%.3f rad/s^2',ACP,APA,AAQ)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Length_of_the_stroke.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 1 PAGE NO 15\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.14\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"AO=200// distance between fixed centres in mm\n",
+"OB1=100// length of driving crank in mm\n",
+"AP=400// length of slotter bar in mm\n",
+"//====================================\n",
+"OAB1=asind(OB1/AO)// inclination of slotted bar with vertical in degrees\n",
+"beeta=(90-OAB1)*2// angle through which crank turns inreturn stroke in degrees\n",
+"A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke \n",
+"L=2*AP*sind(90-(beeta)/2)// length of the stroke in mm\n",
+"printf('Inclination of slotted bar with vertical= %.3f degrees\n Length of the stroke= %.3f mm',OAB1,L)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Ratio_of_time_taken_on_the_cutting_to_the_return_stroke.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 2 PAGE NO 16\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.15\n",
+"clc\n",
+"clear\n",
+"OA=300// distance between the fixed centres in mm\n",
+"OB=150// length of driving crank in mm\n",
+"//================================\n",
+"OAB=asind(OB/OA)// inclination of slotted bar with vertical in degrees\n",
+"beeta=(90-OAB)*2// angle through which crank turns inreturn stroke in degrees\n",
+"A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke \n",
+"printf('Ratio of time taken on the cutting to the return stroke= %.0f',A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Ratio_of_time_taken_on_the_cutting_to_the_return_stroke.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 3 PAGE NO 16\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.16\n",
+"clc\n",
+"clear\n",
+"OB=54.6// distance between the fixed centres in mm\n",
+"OA=85// length of driving crank in mm\n",
+"OA2=OA\n",
+"CA=160// length of slotted lever in mm\n",
+"CD=144// length of connectin rod in mm\n",
+"//================================\n",
+"beeta=2*(acosd(OB/OA2))// angle through which crank turns inreturn stroke in degrees\n",
+"A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke \n",
+"printf('Ratio of time taken on the cutting to the return stroke= %.0f',A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Angular_velocity_of_connecting_rod.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 4 PAGE NO 17\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.18,1.19\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"Nao=180// speed of the crank in rpm\n",
+"wAO=2*pi*Nao/60// angular speed of the crank in rad/s\n",
+"AO=.5// crank length in m\n",
+"AE=.5\n",
+"Vao=wAO*AO// velocity of A in m/s\n",
+"//================================\n",
+"Vb1=8.15// velocity of piston B in m/s by measurment from figure 1.19\n",
+"Vba=6.8// velocity of B with respect to A in m/s\n",
+"AB=2// length of connecting rod in m\n",
+"wBA=Vba/AB// angular velocity of the connecting rod BA in rad/s\n",
+"ae=AE*Vba/AB// velocity of point e on the connecting rod\n",
+"oe=8.5// by measurement velocity of point E\n",
+"Do=.05// diameter of crank shaft in m\n",
+"Da=.06// diameter of crank pin in m\n",
+"Db=.03// diameter of cross head pin B m\n",
+"V1=wAO*Do/2// velocity of rubbing at the pin of the crankshaft in m/s\n",
+"V2=wBA*Da/2// velocity of rubbing at the pin of the crank in m/s\n",
+"Vb=(wAO+wBA)*Db/2// velocity of rubbing at the pin of cross head in m/s\n",
+"ag=5.1// by measurement\n",
+"AG=AB*ag/Vba// position and linear velocity of point G on the connecting rod in m\n",
+"//===============================\n",
+"printf('Velocity of piston B= %.3f m/s\n Angular velocity of connecting rod= %.3f rad/s\n velocity of point E=%.1f m/s\n velocity of rubbing at the pin of the crankshaft=%.3f m/s\n velocity of rubbing at the pin of the crank =%.3f m/s\n velocity of rubbing at the pin of cross head =%.3f m/s\n position and linear velocity of point G on the connecting rod=%.3f m',Vb1,wBA,oe,V1,V2,Vb,AG)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Linear_velocity_of_point_P.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 5 PAGE NO 19\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.20,1.21\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"N=120// speed of crank in rpm\n",
+"OA=10// length of crank in cm\n",
+"BP=48// from figure 1.20 in cm\n",
+"BA=40// from figure 1.20 in cm\n",
+"//==============\n",
+"w=2*pi*N/60// angular velocity of the crank OA in rad/s\n",
+"Vao=w*OA// velocity of ao in cm/s\n",
+"ba=4.5// by measurement from 1.21 in cm\n",
+"Bp=BP*ba/BA\n",
+"op=6.8// by measurement in cm from figure 1.21\n",
+"s=20// scale of velocity diagram 1cm=20cm/s\n",
+"Vp=op*s// linear velocity of P in m/s\n",
+"ob=5.1// by measurement in cm from figure 1.21\n",
+"Vb=ob*s// linear velocity of slider B\n",
+"printf('Linear velocity of slider B= %.2f cm/s\n Linear velocity of point P= %.2f cm/s',Vb,Vp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: velocity_of_point_F.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//CHAPTER 1 ILLUSRTATION 6 PAGE NO 20\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.22,1.23\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"AB=6.25// length of link AB in cm\n",
+"BC=17.5// length of link BC in cm\n",
+"CD=11.25// length of link CD in cm\n",
+"DA=20// length of link DA in cm\n",
+"CE=10\n",
+"N=100// speed of crank in rpm\n",
+"//========================\n",
+"wAB=2*pi*N/60// angular velocity of AB in rad/s\n",
+"Vb=wAB*AB// linear velocity of B with respect to A\n",
+"s=15// scale for velocity diagram 1 cm= 15 cm/s\n",
+"dc=3// by measurement in cm\n",
+"Vcd=dc*s\n",
+"wCD=Vcd/CD// angular velocity of link CD in rad/s\n",
+"bc=2.5// by measurement in cm\n",
+"Vbc=bc*s\n",
+"wBC=Vbc/BC// angular velocity of link BC in rad/s\n",
+"ce=bc*CE/BC\n",
+"ae=3.66// by measurement in cm\n",
+"Ve=ae*s// velocity of point E 10 from c on the link BC\n",
+"af=2.94// by measurement in cm\n",
+"Vf=af*s// velocity of point F\n",
+"printf('The angular velocity of link CD= %.3f rad/s\n The angular velocity of link BC= %.3f rad/s\n velocity of point E 10 from c on the link BC= %.3f cm/s\n velocity of point F= %.3f cm/s',wCD,wBC,Ve,Vf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: angular_velocity_of_link_BD.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 7 PAGE NO 21\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.24,1.25\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"Noa=600// speed of the crank in rpm\n",
+"OA=2.8// length of link OA in cm\n",
+"AB=4.4// length of link AB in cm\n",
+"BC=4.9// length of link BC in cm\n",
+"BD=4.6// length of link BD in cm\n",
+"//=================\n",
+"wOA=2*pi*Noa/60// angular velocity of crank in rad/s\n",
+"Vao=wOA*OA// The linear velocity of point A with respect to oin m/s\n",
+"s=50// scale of velocity diagram in cm\n",
+"od=2.95// by measurement in cm from figure\n",
+"Vd=od*s/100// linear velocity slider in m/s\n",
+"bd=3.2// by measurement in cm from figure\n",
+"Vbd=bd*s\n",
+"wBD=Vbd/BD// angular velocity of link BD\n",
+"printf('linear velocity slider D= %.3f m/s\n angular velocity of link BD= %.1f rad/s',Vd,wBD)\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Angular_velocity_of_link_CD.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 8 PAGE NO 22\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.26,1.27\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"Noa=60// speed of crank in rpm\n",
+"OA=30// length of link OA in cm\n",
+"AB=100// length of link AB in cm\n",
+"CD=80// length of link CD in cm\n",
+"//AC=CB\n",
+"//================\n",
+"wOA=2*pi*Noa/60// angular velocity of crank in rad/s\n",
+"Vao=wOA*OA/100// linear velocity of point A with respect to O\n",
+"s=50// scale for velocity diagram 1 cm= 50 cm/s\n",
+"ob=3.4// by measurement in cm from figure 1.27\n",
+"od=.9// by measurement in cm from figure 1.27\n",
+"Vcd=160// by measurement in cm/s from figure 1.27\n",
+"wCD=Vcd/CD// angular velocity of link in rad/s\n",
+"printf('Angular velocity of link CD= %d rad/s',wCD)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: velocity_of_sliding_of_the_block.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 1 ILLUSRTATION 9 PAGE NO 23\n",
+"//TITLE:Basic kinematics\n",
+"//Figure 1.28,1.29\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"Nao=120// speed of the crank in rpm\n",
+"OQ=10// length of link OQ in cm\n",
+"OA=20// length of link OA in cm\n",
+"QC=15// length of link QC in cm\n",
+"CD=50// length oflink CD in cm\n",
+"//=============\n",
+"wOA=2*pi*Nao/60// angular speed of crank in rad/s\n",
+"Vad=wOA*OA/100// velocity of pin A in m/s\n",
+"BQ=41// from figure 1.29 \n",
+"BC=26// from firure 1.29 \n",
+"bq=4.7// from figure 1.29\n",
+"bc=bq*BC/BQ// from figure 1.29 in cm\n",
+"s=50// scale for velocity diagram in cm/s\n",
+"od=1.525// velocity vector od in cm from figure 1.29\n",
+"Vd=od*s// velocity of ram D in cm/s\n",
+"dc=1.925// velocity vector dc in cm from figure 1.29\n",
+"Vdc=dc*s// velocity of link CD in cm/s\n",
+"wCD=Vdc/CD// angular velocity of link CD in cm/s\n",
+"ba=1.8// velocity vector of sliding of the block in cm\n",
+"Vab=ba*s// velocity of sliding of the block in cm/s\n",
+"printf('Velocity of RAM D= %.3f cm/s\n angular velocity of link CD= %.3f rad/s\n velocity of sliding of the block= %.3f cm/s',Vd,wCD,Vab)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb
new file mode 100644
index 0000000..fc1cdbd
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb
@@ -0,0 +1,435 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Brakes and Dynamometers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.10: Maximum_braking_torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 10 PAGE NO 275\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"n=12;// Number of blocks\n",
+"q=16;//Angle subtended in degrees\n",
+"d=0.9;//Effective diameter in m\n",
+"m=2000;//Mass in kg\n",
+"k=0.5;//Radius of gyration in m\n",
+"b1=0.7;//Distance in m\n",
+"b2=0.03;//Distance in m\n",
+"a=0.1;//Distance in m\n",
+"P=180;//Force in N\n",
+"N=360;//Speed in r.p.m\n",
+"U=0.25;//Coefficient of friction\n",
+"\n",
+"Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tensions ratio\n",
+"T2=(P*b1)/(a-(b2*Tr));//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"TB=(T1-T2)*(d/2);//Torque in N.m\n",
+"aa=(TB/(m*k^2));//Angular acceleration in rad/s^2\n",
+"t=((2*3.14*N)/60)/aa;//Time in seconds\n",
+"\n",
+"printf('(i) Maximum braking torque is %3.4f Nm \n(ii) Angular retardation of the drum is %3.4f rad/s^2 \n(iii) Time taken by the system to come to rest is %3.1f s',TB,aa,t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Torque_transmitted_by_the_block_brake.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 1 PAGE NO 268\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=0.32;//Diameter of the drum in m\n",
+"qq=90;//Angle of contact in degree\n",
+"P=820;//Force applied in N\n",
+"U=0.35;//Coefficient of friction\n",
+"\n",
+"\n",
+"U1=((4*U*sind(qq/2))/((qq*(3.14/180))+sind(qq)));//Equivalent coefficient of friction\n",
+"F=((P*0.66)/((0.3/U1)-0.06));//Force value in N taking moments\n",
+"TB=(F*(d/2));//Torque transmitted in N.m\n",
+"\n",
+"printf('Torque transmitted by the block brake is %3.4f N.m',TB)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: DISTANCE_TRAVELLED_BY_CYCLE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 2 PAGE NO 269\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"m=120;//Mass of rider in kg\n",
+"v=16.2;//Speed of rider in km/hr\n",
+"d=0.9;//Diameter of the wheel in m\n",
+"P=120;//Pressure applied on the brake in N\n",
+"U=0.06;//Coefficient of friction\n",
+"\n",
+"F=(U*P);//Frictional force in N\n",
+"KE=((m*(v*(5/18))^2)/2);//Kinematic Energy in N.m\n",
+"S=(KE/F);//Distance travelled by the bicycle before it comes to rest in m\n",
+"N=(S/(d*3.14));//Required number of revolutions\n",
+"\n",
+"printf('The bicycle travels a distance of %3.2f m and makes %3.2f turns before it comes to rest',S,N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: Maximum_torque_absorbed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 3 PAGE NO 270\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"S=3500;//Force on each arm in N\n",
+"d=0.36;//Diamter of the wheel in m\n",
+"U=0.4;//Coefficient of friction \n",
+"qq=100;//Contact angle in degree\n",
+"\n",
+"qqr=(qq*(3.14/180));//Contact angle in radians\n",
+"UU=((4*U*sind(qq/2))/(qqr+(sind(qq))));//Equivalent coefficient of friction\n",
+"F1=(S*0.45)/((0.2/UU)+((d/2)-0.04));//Force on fulcrum in N\n",
+"F2=(S*0.45)/((0.2/UU)-((d/2)-0.04));//Force on fulcrum in N\n",
+"TB=(F1+F2)*(d/2);//Maximum torque absorbed in N.m\n",
+"\n",
+"printf('Maximum torque absorbed is %3.2f N.m',TB)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: The_maximum_braking_torque_on_the_drum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 4 PAGE NO 271\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"a=0.5;//Length of lever in m\n",
+"d=0.5;//Diameter of brake drum in m\n",
+"q=(5/8)*(2*3.14);//Angle made in radians\n",
+"b=0.1;//Distance between pin and fulcrum in m\n",
+"P=2000;//Effort applied in N\n",
+"U=0.25;//Coefficient of friction\n",
+"\n",
+"T=exp(U*q);//Ratios of tension\n",
+"T2=((P*a)/b);//Tension in N\n",
+"T1=(T*T2);//Tension in N\n",
+"TB=((T1-T2)*(d/2))/1000;//Maximum braking torque in kNm\n",
+"\n",
+"printf('The maximum braking torque on the drum is %3.3f kNm',TB)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Tensions_in_the_side.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 5 PAGE NO 271\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"q=220;//Angle of contact in degree\n",
+"T=340;//Torque in Nm\n",
+"d=0.32;//Diameter of drum in m\n",
+"U=0.3;//Coefficient of friction\n",
+"\n",
+"Td=(T/(d/2));//Difference in tensions in N\n",
+"Tr=exp(U*(q*(3.14/180)));//Ratio of tensions\n",
+"T2=(Td/(Tr-1));//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"P=((T2*(d/2))-(T1*0.04))/0.5;//Force applied in N\n",
+"b=(T1/T2)*4;//Value of b in cm when the brake is self-locking\n",
+"\n",
+"printf('The value of b is %3.2f cm when the brake is self-locking \n Tensions in the sides are %3.3f N and %3.3f N',b,T1,T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Torque_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 6 PAGE NO 272\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=0.5;//Drum diamter in m\n",
+"U=0.3;//Coefficient of friction\n",
+"q=250;//Angle of contact in degree\n",
+"P=750;//Force in N\n",
+"a=0.1;//Band width in m\n",
+"b=0.8;//Distance in m\n",
+"ft=(70*10^6);//Tensile stress in Pa\n",
+"f=(60*10^6);//Stress in Pa\n",
+"b1=0.1;//Distance in m\n",
+"\n",
+"T=exp(U*(q*(3.14/180)));//Tensions ratio\n",
+"T2=(P*b*10)/(T+1);//Tension in N\n",
+"T1=(T*T2);//Tension in N\n",
+"TB=(T1-T2)*(d/2);//Torque in N.m\n",
+"t=(max(T1,T2)/(ft*a))*1000;//Thickness in mm\n",
+"M=(P*b);//bending moment at fulcrum in Nm\n",
+"X=(M/((1/6)*f));//Value of th^2\n",
+"//t varies from 10mm to 15 mm. Taking t=15mm,\n",
+"h=sqrt(X/(0.015))*1000;//Section of the lever in m\n",
+"\n",
+"printf('Torque required is %3.2f N.m \nThickness necessary to limit the tensile stress to 70 MPa is %3.3f mm \n Section of the lever taking stress to 60 MPa is %3.1f mm',TB,t,h)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7: Power_TO_BD_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 7 PAGE NO 273\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"P1=30;//Power in kW\n",
+"N=1250;//Speed in r.p.m\n",
+"P=60;//Applied force in N\n",
+"d=0.8;//Drum diameter in m\n",
+"q=310;//Contact angle in degree\n",
+"a=0.03;//Length of a in m\n",
+"b=0.12;//Length of b in m\n",
+"U=0.2;//Coefficient of friction\n",
+"B=10;//Band width in cm\n",
+"D=80;//Diameter in cm\n",
+"\n",
+"T=(P1*60000)/(2*3.14*N);//Torque in N.m\n",
+"Td=(T/(d/2));//Tension difference in N\n",
+"Tr=exp(U*(q*(3.14/180)));//Tensions ratio\n",
+"T2=(Td/(Tr-1));//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"x=((T2*b)-(T1*a))/P;//Distance in m;\n",
+"X=(P1/(B*D));//Ratio\n",
+"\n",
+"printf('Value of x is %3.4f m \n Value of (Power/bD) ratio is %3.4f',x,X)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.8: Time_required_to_bring_the_shaft_to_the_rest_from_its_running_condition.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 8 PAGE NO 274\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"m=80;//Mass of flywheel in kg\n",
+"k=0.5;//Radius of gyration in m\n",
+"N=250;//Speed in r.p.m\n",
+"d=0.32;//Diamter of the drum in m\n",
+"b=0.05;//Distance of pin in m\n",
+"q=260;//Angle of contact in degree\n",
+"U=0.23;//Coefficient of friction\n",
+"P=20;//Force in N\n",
+"a=0.35;//Distance at which force is applied in m\n",
+"\n",
+"Tr=exp(U*q*(3.14/180));//Tensions ratio\n",
+"T2=(P*a)/b;//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"TB=(T1-T2)*(d/2);//Torque in N.m\n",
+"KE=((1/2)*(m*k^2)*((2*3.14*N)/60)^2);//Kinematic energy of the rotating drum in Nm\n",
+"N1=(KE/(TB*2*3.14));//Speed in rpm\n",
+"aa=((2*3.14*N)/60)^2/(4*3.14*N1);//Angular acceleration in rad/s^2\n",
+"t=((2*3.14*N)/60)/aa;//Time in seconds\n",
+"\n",
+"printf('Time required to bring the shaft to the rest from its running condition is %3.1f seconds',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.9: Minimum_force_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 9 PAGE NO 275\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"n=12;//Number of blocks\n",
+"q=15;//Angle subtended in degree\n",
+"P=185;//Power in kW\n",
+"N=300;//Speed in r.p.m\n",
+"U=0.25;//Coefficient of friction\n",
+"d=1.25;//Diamter in m\n",
+"b1=0.04;//Distance in m\n",
+"b2=0.14;//Distance in m\n",
+"a=1;//Diatance in m\n",
+"m=2400;//Mass of rotor in kg\n",
+"k=0.5;//Radius of gyration in m\n",
+"\n",
+"Td=(P*60000)/(2*3.14*N*(d/2));//Tension difference in N\n",
+"T=Td*(d/2);//Torque in Nm\n",
+"Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tension ratio\n",
+"To=(Td/(Tr-1));//Tension in N\n",
+"Tn=(Tr*To);//Tension in N\n",
+"P=((To*b2)-(Tn*b1))/a;//Force in N\n",
+"aa=(T/(m*k^2));//Angular acceleration in rad/s^2\n",
+"t=((2*3.14*N)/60)/aa;//Time in seconds\n",
+"\n",
+"printf('Minimum force required is %3.0f N \nTime taken to bring to rest is %3.1f seconds',P,t)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb
new file mode 100644
index 0000000..96b2550
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb
@@ -0,0 +1,395 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: VIBRATIONS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.10: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 10 PAGE NO 296\n",
+"//TITLE:VIBRATIONS\n",
+"//FIGURE 11.18\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
+"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+"D=.03// DIAMETER OF SHAFT IN m\n",
+"L=.8// LENGTH OF SHAFT IN m\n",
+"r=40000// DENSITY OF SHAFT MATERIAL IN Kg/m^3\n",
+"W=10// WEIGHT ACTING AT CENTRE IN N\n",
+"//===========================================================================================\n",
+"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n",
+"m=PI*D^2/4*r// MASS PER UNIT LENGTH IN Kg/m\n",
+"w=m*g\n",
+"DELTA=W*L^3/(48*E*I)// STATIC DEFLECTION DUE TO W\n",
+"DELTA1=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO WEIGHT OF SHAFT \n",
+"Fn=.4985/(DELTA+DELTA1/1.27)^.5\n",
+"//==========================================================================================\n",
+"printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.11: CRITICAL_SPEED_OF_SHAFT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 11 PAGE NO 297\n",
+"//TITLE:VIBRATIONS\n",
+"//FIGURE 11.19\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
+"E=210*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+"D=.18// DIAMETER OF SHAFT IN m\n",
+"L=2.5// LENGTH OF SHAFT IN m\n",
+"M1=25// MASS ACTING AT E IN Kg\n",
+"M2=50// MASS ACTING AT D IN Kg\n",
+"M3=20// MASS ACTING AT C IN Kg\n",
+"W1=M1*g\n",
+"W2=M2*g\n",
+"W3=M3*g\n",
+"L1=.6// LENGTH FROM A TO E IN m\n",
+"L2=1.5// LENGTH FROM A TO D IN m\n",
+"L3=2// LENGTH FROM A TO C IN m\n",
+"w=1962// SELF WEIGHT OF SHAFT IN N\n",
+"//==========================================================================================\n",
+"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n",
+"DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1\n",
+"DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n",
+"DELTA3=W3*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W3\n",
+"DELTA4=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO w\n",
+"Fn=.4985/(DELTA1+DELTA2+DELTA3+DELTA4/1.27)^.5\n",
+"Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm\n",
+"//========================================================================================\n",
+"printf('CRITICAL SPEED OF SHAFT = %.3f rpm',Nc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.12: FREQUENCY_OF_FREE_TORSIONAL_VIBRATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 12 PAGE NO 298\n",
+"//TITLE:VIBRATIONS\n",
+"//FIGURE 11.20\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
+"Na=1500// SPEED OF SHAFT A IN rpm\n",
+"Nb=500// SPEED OF SHAFT B IN rpm\n",
+"G=Na/Nb// GERA RATIO\n",
+"L1=.18// LENGTH OF SHAFT 1 IN m\n",
+"L2=.45// LENGTH OF SHAFT 2 IN m\n",
+"D1=.045// DIAMETER OF SHAFT 1 IN m\n",
+"D2=.09// DIAMETER OF SHAFT 2 IN m\n",
+"C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n",
+"Ib=1400// MOMENT OF INERTIA OF PUMP IN Kg-m^2\n",
+"Ia=400// MOMENT OF INERTIA OF MOTOR IN Kg-m^2\n",
+"\n",
+"//======================================================================================\n",
+"J=PI*D1^4/32// POLAR MOMENT OF INERTIA IN m^4\n",
+"Ib1=Ib/G^2// MASS MOMENT OF INERTIA OF EQUIVALENT ROTOR IN m^2\n",
+"L3=G^2*L2*(D1/D2)^4// ADDITIONAL LENGTH OF THE EQUIVALENT SHAFT\n",
+"L=L1+L3// TOTAL LENGTH OF EQUIVALENT SHAFT\n",
+"La=L*Ib1/(Ia+Ib1)\n",
+"Fn=(C*J/(La*Ia))^.5/(2*PI)// FREQUENCY OF FREE TORSIONAL VIBRATION IN Hz\n",
+"//===================================================================================\n",
+"printf('FREQUENCY OF FREE TORSIONAL VIBRATION = %.2f Hz',Fn)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.13: THE_RANGE_OF_SPEED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 13 PAGE NO 300\n",
+"//TITLE:VIBRATIONS\n",
+"//FIGURE 11.21\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
+"D=.015// DIAMETER OF SHAFT IN m\n",
+"L=1.00// LENGTH OF SHAFT IN m\n",
+"M=15// MASS OF SHAFT IN Kg\n",
+"W=M*g\n",
+"e=.0003// ECCENTRICITY IN m\n",
+"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+"f=70*10^6// PERMISSIBLE STRESS IN N/m^2\n",
+"//============================================================================================\n",
+"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n",
+"DELTA=W*L^3/(192*E*I)// STATIC DEFLECTION IN m\n",
+"Fn=.4985/(DELTA)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n",
+"Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm\n",
+"M1=16*f*I/(D*g*L)\n",
+"W1=M1*g// ADDITIONAL LOAD ACTING\n",
+"y=W1/W*DELTA// ADDITIONAL DEFLECTION DUE TO W1\n",
+"N1=Nc/(1+e/y)^.5// MIN SPEED IN rpm\n",
+"N2=Nc/(1-e/y)^.5// MAX SPEED IN rpm\n",
+"//===========================================================================================\n",
+"printf('CRITICAL SPEED OF SHAFT = %.3f rpm\n THE RANGE OF SPEED IS FROM %.3f rpm TO %.3f rpm',Nc,N1,N2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 1 PAGE NO 290\n",
+"//TITLE:VIBRATIONS\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"D=.1// DIAMETER OF SHAFT IN m\n",
+"L=1.10// LENGTH OF SHAFT IN m\n",
+"W=450// WEIGHT ON THE OTHER END OF SHAFT IN NEWTONS\n",
+"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+"// =========================================================================================\n",
+"A=PI*D^2/4// AREA OF SHAFT IN mm^2\n",
+"I=PI*D^4/64// MOMENT OF INERTIA \n",
+"delta=W*L/(A*E)// STATIC DEFLECTION IN LONGITUDINAL VIBRATION OF SHAFT IN m\n",
+"Fn=0.4985/(delta)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n",
+"delta1=W*L^3/(3*E*I)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n",
+"Fn1=0.4985/(delta1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('FREQUENCY OF LONGITUDINAL VIBRATION =%.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION =%.3f Hz',Fn,Fn1)\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: NATURAL_FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 2 PAGE NO 290\n",
+"//TITLE:VIBRATIONS\n",
+"//FIGURE 11.10\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"L=.9// LENGTH OF THE SHAFT IN m\n",
+"m=100// MASS OF THE BODY IN Kg\n",
+"L2=.3// LENGTH WHERE THE WEIGHT IS ACTING IN m\n",
+"L1=L-L2// DISTANCE FROM THE OTHER END\n",
+"D=.06// DIAMETER OF SHAFT IN m\n",
+"W=9.81*m// WEGHT IN NEWTON\n",
+"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+"//==========================================================================================\n",
+"//CALCULATION\n",
+"I=PI*D^4/64// MOMENT OF INERTIA IN m^4\n",
+"delta=W*L1^2*L2^2/(3*E*I*L)// STATIC DEFLECTION\n",
+"Fn=.4985/(delta)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n",
+"//=========================================================================================\n",
+"//OUTPUT\n",
+"printf('NATURAL FREQUENCY OF TRANSVERSE VIBRATION=%.3f Hz',Fn)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: FREQUENCY_OF_TORSIONAL_VIBRATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 3 PAGE NO 291\n",
+"//TITLE:VIBRATIONS\n",
+"//FIGURE 11.11\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
+"D=.050// DIAMETER OF SHAFT IN m\n",
+"m=450// WEIGHT OF FLY WHEEL IN IN Kg\n",
+"K=.5// RADIUS OF GYRATION IN m\n",
+"L2=.6// FROM FIGURE IN m\n",
+"L1=.9// FROM FIGURE IN m\n",
+"L=L1+L2\n",
+"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+"C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n",
+"//=========================================================================================\n",
+"A=PI*D^2/4// AREA OF SHAFT IN mm^2\n",
+"I=PI*D^4/64// \n",
+"m1=m*L2/(L1+L2)// MASS OF THE FLYWHEEL CARRIED BY THE LENGTH L1 IN Kg\n",
+"DELTA=m1*g*L1/(A*E)// EXTENSION OF LENGTH L1 IN m\n",
+"Fn=0.4985/(DELTA)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n",
+"DELTA1=(m*g*L1^3*L2^3)/(3*E*I*L^3)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n",
+"Fn1=0.4985/(DELTA1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
+"J=PI*D^4/32// POLAR MOMENT OF INERTIA IN m^4\n",
+"Q1=C*J/L1// TORSIONAL STIFFNESS OF SHAFT DUE TO L1 IN N-m\n",
+"Q2=C*J/L2// TORSIONAL STIFFNESS OF SHAFT DUE TO L2 IN N-m\n",
+"Q=Q1+Q2// TORSIONAL STIFFNESS OF SHAFT IN Nm\n",
+"Fn2=(Q/(m*K^2))^.5/(2*PI)// FREQUENCY OF TORSIONAL VIBRATION IN Hz\n",
+"//=======================================================================================\n",
+"printf('FREQUENCY OF LONGITUDINAL VIBRATION = %.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz\n FREQUENCY OF TORSIONAL VIBRATION = %.3f Hz',Fn,Fn1,Fn2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 11 ILLUSRTATION 6 PAGE NO 294\n",
+"//TITLE:VIBRATIONS\n",
+"//FIGURE 11.14\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
+"D=.06// DIAMETER OF SHAFT IN m\n",
+"L=3// LENGTH OF SHAFT IN m\n",
+"W1=1500// WEIGHT ACTING AT C IN N\n",
+"W2=2000// WEIGHT ACTING AT D IN N\n",
+"W3=1000// WEIGHT ACTING AT E IN N\n",
+"L1=1// LENGTH FROM A TO C IN m\n",
+"L2=2// LENGTH FROM A TO D IN m\n",
+"L3=2.5// LENGTH FROM A TO E IN m\n",
+"I=PI*D^4/64\n",
+"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+"//===========================================================================================\n",
+"DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1\n",
+"DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n",
+"DELTA3=W2*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n",
+"Fn=.4985/(DELTA1+DELTA2+DELTA3)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
+"//==========================================================================================\n",
+"printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/12-balancing_of_reciprocating_masses.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/12-balancing_of_reciprocating_masses.ipynb
new file mode 100644
index 0000000..65d6778
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/12-balancing_of_reciprocating_masses.ipynb
@@ -0,0 +1,321 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: balancing of reciprocating masses"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: Magnitude_of_balance_mass_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 1 PAGE NO 310\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"N=250// speed of the reciprocating engine in rpm\n",
+"s=18// length of stroke in mm\n",
+"mR=120// mass of reciprocating parts in kg\n",
+"m=70// mass of revolving parts in kg\n",
+"r=.09// radius of revolution of revolving parts in m\n",
+"b=.15// distance at which balancing mass located in m\n",
+"c=2/3// portion of reciprocating mass balanced \n",
+"teeta=30// crank angle from inner dead centre in degrees\n",
+"//===============================\n",
+"B=r*(m+c*mR)/b// balance mass required in kg\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"F=mR*w^2*r*(((1-c)^2*(cosd(teeta))^2)+(c^2*(sind(teeta))^2))^.5// residual unbalanced forces in N\n",
+"printf('Magnitude of balance mass required= %.0f kg\n Residual unbalanced forces= %.3f N',B,F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: swaying_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 2 PAGE NO 310\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"g=10// acceleration due to gravity approximately in m/s^2\n",
+"mR=240// mass of reciprocating parts per cylinder in kg\n",
+"m=300// mass of rotating parts per cylinder in kg\n",
+"a=1.8//distance between cylinder centres in m\n",
+"c=.67// portion of reciprocating mass to be balanced\n",
+"b=.60// radius of balance masses in m\n",
+"r=24// crank radius in cm\n",
+"R=.8//radius of thread of wheels in m\n",
+"M=40\n",
+"//=======================================\n",
+"Ma=m+c*mR// total mass to be balanced in kg\n",
+"mD=211.9// mass of wheel D from figure in kg\n",
+"mC=211.9//..... mass of wheel C from figure in kg\n",
+"theta=171// angular position of balancing mass C in degrees\n",
+"Br=c*mR/Ma*mC// balancing mass for reciprocating parts in kg\n",
+"w=(M*g^3/Br/b)^.5// angular speed in rad/s\n",
+"v=w*R*3600/1000// speed in km/h\n",
+"S=a*(1-c)*mR*w^2*r/2^.5/100/1000// swaying couple in kNm\n",
+"printf('speed=%.3f kmph\n swaying couple=%.3f kNm',v,S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: swaying_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 3 PAGE NO 313\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"g=10// acceleration due to gravity approximately in m/s^2\n",
+"a=.70//distance between cylinder centres in m\n",
+"r=60// crank radius in cm\n",
+"m=130//mass of rotating parts per cylinder in kg\n",
+"mR=210// mass of reciprocating parts per cylinder in kg\n",
+"c=.67// portion of reciprocating mass to be balanced\n",
+"N=300//e2engine speed in rpm\n",
+"b=.64// radius of balance masses in m\n",
+"//============================\n",
+"Ma=m+c*mR// total mass to be balanced in kg\n",
+"mA=100.44// mass of wheel A from figure in kg\n",
+"Br=c*mR/Ma*mA// balancing mass for reciprocating parts in kg\n",
+"H=Br*(2*pi*N/60)^2*b// hammer blow in N\n",
+"w=(2*pi*N/60)// angular speed\n",
+"T=2^.5*(1-c)*mR*w^2*r/2/100//tractive effort in N\n",
+"S=a*(1-c)*mR*w^2*r/2/2^.5/100// swaying couple in Nm\n",
+"\n",
+"printf('Hammer blow=%.3f in N\n tractive effort= %.3f in N\n swaying couple= %.3f in Nm',H,T,S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: unbalanced_primary_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 4 PAGE NO 314\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"mR=900// mass of reciprocating parts in kg\n",
+"N=90// speed of the engine in rpm\n",
+"r=.45//crank radius in m\n",
+"cP=.9*mR*(2*pi*N/60)^2*r*2^.5/1000// maximum unbalanced primary couple in kNm\n",
+"printf('maximum unbalanced primary couple=%.3f k Nm',cP)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: maximum_unbalanced_secondary_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 5 PAGE NO 315\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"mRA=160// mass of reciprocating cylinder A in kg\n",
+"mRD=160// mass of reciprocating cylinder D in kg\n",
+"r=.05// stroke lenght in m\n",
+"l=.2// connecting rod length in m\n",
+"N=450// engine speed in rpm\n",
+"//===========================\n",
+"theta2=78.69// crank angle between A & B cylinders in degrees\n",
+"mRB=576.88// mass of cylinder B in kg\n",
+"n=l/r// ratio between connecting rod length and stroke length\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"F=mRB*2*w^2*r*cosd(2*theta2)/n\n",
+"printf('Maximum unbalanced secondary force=%.3f N in anticlockwise direction thats why - sign',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: hammer_blow.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 6 PAGE NO 316\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"rA=.25// stroke length of A piston in m\n",
+"rB=.25// stroke length of B piston in m\n",
+"rC=.25// stroke length C piston in m\n",
+"N=300// engine speed in rpm\n",
+"mRL=280// mass of reciprocating parts in inside cylinder kg\n",
+"mRO=240// mass of reciprocating parts in outside cylinder kg\n",
+"c=.5// portion ofreciprocating masses to be balanced \n",
+"b1=.5// radius at which masses to be balanced in m\n",
+"//======================\n",
+"mA=c*mRO// mass of the reciprocating parts to be balanced foreach outside cylinder in kg\n",
+"mB=c*mRL// mass of the reciprocating parts to be balanced foreach inside cylinder in kg\n",
+"B1=79.4// balancing mass for reciprocating parts in kg\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"H=B1*w^2*b1// hammer blow per wheel in N\n",
+"printf('Hammer blow per wheel= %.3f N',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: swaying_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 7 PAGE NO 318\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"mR=300// reciprocating mass per cylinder in kg\n",
+"r=.3// crank radius in m\n",
+"D=1.7// driving wheel diameter in m\n",
+"a=.7// distance between cylinder centre lines in m\n",
+"H=40// hammer blow in kN\n",
+"v=90// speed in kmph\n",
+"//=======================================\n",
+"R=D/2// radius of driving wheel in m\n",
+"w=90*1000/3600/R// angular velocity in rad/s\n",
+"//Br*b=69.625*c by mearument from diagram\n",
+"c=H*1000/(w^2)/69.625// portion of reciprocating mass to be balanced\n",
+"T=2^.5*(1-c)*mR*w^2*r// variation in tractive effort in N\n",
+"M=a*(1-c)*mR*w^2*r/2^.5// maximum swaying couple in N-m\n",
+"printf('portion of reciprocating mass to be balanced=%.3f\n variation in tractive effort=%.3f N\n maximum swaying couple=%.3f N-m',c,T,M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.8: unbalanced_secondary_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 12 ILLUSRTATION 8 PAGE NO 320\n",
+"//TITLE:Balancing of reciprocating of masses\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"N=1800// speed of the engine in rpm\n",
+"r=6// length of crank in cm\n",
+"l=24// length of connecting rod in cm\n",
+"m=1.5// mass of reciprocating cylinder in kg\n",
+"//====================\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"UPC=.019*w^2// unbalanced primary couple in N-m\n",
+"n=l/r// ratio of length of crank to the connecting rod \n",
+"USC=.054*w^2/n// unbalanced secondary couple in N-m\n",
+"printf('unbalanced primary couple= %.3f N-m\n unbalanced secondary couple=%.3f N-m',UPC,USC)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/2-TRANSMISSION_OF_MOTION_AND_POWER_BY_BELTS_AND_PULLEYS.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/2-TRANSMISSION_OF_MOTION_AND_POWER_BY_BELTS_AND_PULLEYS.ipynb
new file mode 100644
index 0000000..10abacc
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/2-TRANSMISSION_OF_MOTION_AND_POWER_BY_BELTS_AND_PULLEYS.ipynb
@@ -0,0 +1,715 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: stress_developed_on_tight_side_of_belt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 10 PAGE 64\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//INPUT\n",
+"t=5//THICKNESS OF BELT IN m\n",
+"PI=3.141\n",
+"U=.3\n",
+"e=2.71\n",
+"THETA=155*PI/180//ANGLE OF CONTACT IN radians\n",
+"V=30//VELOCITY IN m/s\n",
+"density=1//in m/cm^3\n",
+"L=1//LENGTH\n",
+"\n",
+"//calculation\n",
+"Xb=80// (T1-T2)=80b;so let (T1-T2)/b=Xb\n",
+"Y=e^(U*THETA)// LET Y=T1/T2\n",
+"Zb=80*Y/(Y-1)// LET T1/b=Zb;BY SOLVING THE ABOVE 2 EQUATIONS WE WILL GET THIS EXPRESSION\n",
+"Mb=t*L*density*10^-2// m/b in N\n",
+"Tcb=Mb*V^2// centrifugal tension/b\n",
+"Tmaxb=Zb+Tcb// MAX TENSION/b\n",
+"Fb=Tmaxb/t//STRESS INDUCED IN TIGHT BELT\n",
+"\n",
+"//OUTPUT\n",
+"printf('THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT=%f N/cm^2',Fb)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: speed_of_the_pulley.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 11 PAGE 65\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//INPUT\n",
+"C=4.5// CENTRE DISTANCE IN metres\n",
+"D1=1.35// DIAMETER OF LARGER PULLEY IN metres\n",
+"D2=.9// DIAMETER OF SMALLER PULLEY IN metres\n",
+"To=2100// INITIAL TENSION IN newtons\n",
+"b=12// WIDTH OF BELT IN cm\n",
+"t=12// THICKNESS OF BELT IN mm\n",
+"d=1// DENSITY IN gm/cm^3\n",
+"U=.3// COEFFICIENT OF FRICTION\n",
+"L=1// length in metres\n",
+"PI=3.141\n",
+"e=2.71\n",
+"\n",
+"//CALCULATION\n",
+"M=b*t*d*L*10^-2// mass of belt per metre length in KG\n",
+"V=(To/3/M)^.5// VELOCITY OF FOR MAX POWER TO BE TRANSMITTED IN m/s\n",
+"Tc=M*V^2// CENTRIFUGAL TENSION IN newtons\n",
+"// LET (T1+T2)=X\n",
+"X=2*To-2*Tc // THE VALUE OF (T1+T2)\n",
+"F=(D1-D2)/(2*C)\n",
+"ALPHA=asind(F)\n",
+"THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians\n",
+"// LET T1/T2=Y\n",
+"Y=e^(U*THETA)// THE VALUE OF T1/T2\n",
+"T1=X*Y/(Y+1)// BY SOLVING X AND Y WE WILL GET THIS EQN\n",
+"T2=X-T1\n",
+"P=(T1-T2)*V/1000// MAX POWER TRANSMITTED IN kilowatts\n",
+"N1=V*60/(PI*D1)// SPEED OF LARGER PULLEY IN rpm\n",
+"N2=V*60/(PI*D2)// SPEED OF SMALLER PULLEY IN rpm\n",
+"//OUTPUT\n",
+"printf('\n MAX POWER TO BE TRANSMITTED =%f KW',P)\n",
+"printf('\n SPEED OF THE LARGER PULLEY =%f rpm',N1)\n",
+"printf('\n SPEED OF THE SMALLER PULLEY =%f rpm',N2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: efficiency_of_drive.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 12 PAGE 66\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//============================================================================================================================\n",
+"//INPUT\n",
+"PI=3.141\n",
+"e=2.71\n",
+"D1=1.20// DIAMETER OF DRIVING SHAFT IN m\n",
+"D2=.50// DIAMETER OF DRIVEN SHAFT IN m\n",
+"C=4// CENTRE DISTANCE BETWEEN THE SHAFTS IN m\n",
+"M=.9// MASS OF BELT PER METRE LENGTH IN kg\n",
+"Tmax=2000// MAX TENSION IN N\n",
+"U=.3// COEFFICIENT OF FRICTION\n",
+"N1=200// SPEED OF DRIVING SHAFT IN rpm\n",
+"N2=450// SPEED OF DRIVEN SHAFT IN rpm\n",
+"//==============================================================================================================================\n",
+"//CALCULATION\n",
+"V=PI*D1*N1/60// VELOCITY OF BELT IN m/s\n",
+"Tc=M*V^2// CENTRIFUGAL TENSION IN N\n",
+"T1=Tmax-Tc// TENSION ON TIGHTSIDE IN N\n",
+"F=(D1-D2)/(2*C)\n",
+"ALPHA=asind(F)\n",
+"THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians\n",
+"T2=T1/(e^(U*THETA))// TENSION ON SLACK SIDE IN N\n",
+"TL=(T1-T2)*D1/2// TORQUE ON THE SHAFT OF LARGER PULLEY IN N-m\n",
+"TS=(T1-T2)*D2/2// TORQUE ON THE SHAFT OF SMALLER PULLEY IN N-m\n",
+"P=(T1-T2)*V/1000// POWER TRANSMITTED IN kW\n",
+"Pi=2*PI*N1*TL/60000// INPUT POWER\n",
+"Po=2*PI*N2*TS/60000// OUTPUT POWER\n",
+"Pl=Pi-Po// POWER LOST DUE TO FRICTION IN kW\n",
+"n=Po/Pi*100// EFFICIENCY OF DRIVE IN %\n",
+"//==================================================================================================================================\n",
+"//OUTPUT\n",
+"printf('\nTORQUE ON LARGER SHAFT =%f N-m',TL)\n",
+"printf('\nTORQUE ON SMALLER SHAFT =%f N-m',TS)\n",
+"printf('\nPOWER TRANSMITTED =%f kW',P)\n",
+"printf('\nPOWER LOST DUE TO FRICTION =%f kW',Pl)\n",
+"printf('\nEFFICIENCY OF DRINE =%f percentage',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: no_of_belts_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 13 PAGE 67\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//============================================================================================================================\n",
+"//INPUT\n",
+"PI=3.141\n",
+"e=2.71\n",
+"P=90// POWER OF A COMPRESSOR IN kW\n",
+"N2=250// SPEED OF DRIVEN SHAFT IN rpm\n",
+"N1=750// SPEED OF DRIVER SHAFT IN rpm\n",
+"D2=1// DIAMETER OF DRIVEN SHAFT IN m\n",
+"C=1.75// CENTRE DISTANCE IN m\n",
+"V=1600/60// VELOCITY IN m/s\n",
+"a=375// CROSECTIONAL AREA IN mm^2\n",
+"density=1000// BELT DENSITY IN kg/m^3\n",
+"L=1// length to be considered\n",
+"Fb=2.5// STRESSS INDUCED IN MPa\n",
+"beeta=35/2// THE GROOVE ANGLE OF PULLEY\n",
+"U=.25// COEFFICIENT OF FRICTION\n",
+"//=================================================================================================================================\n",
+"//CALCULATION\n",
+"D1=N2*D2/N1// DIAMETER OF DRIVING SHAFT IN m\n",
+"m=a*density*10^-6*L// MASS OF THE BELT IN kg\n",
+"Tmax=a*Fb// MAX TENSION IN N\n",
+"Tc=m*V^2// CENTRIFUGAL TENSION IN N\n",
+"T1=Tmax-Tc// TENSION ON TIGHTSIDE OF BELT IN N\n",
+"F=(D2-D1)/(2*C)\n",
+"ALPHA=asind(F)\n",
+"THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians\n",
+"T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON SLACKSIDE IN N\n",
+"P2=(T1-T2)*V/1000// POWER TRANSMITTED PER BELT kW\n",
+"N=P/P2// NO OF V-BELTS\n",
+"N3=N+1\n",
+"//======================================================================================================================================\n",
+"//OUTPUT\n",
+"printf('NO OF BELTS REQUIRED TO TRANSMIT POWER=%f APPROXIMATELY=%d\n',N,N3)\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: initial_rope_tension.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 14 PAGE 68\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"\n",
+"clc\n",
+"clear\n",
+"//============================================================================================================================\n",
+"//INPUT\n",
+"PI=3.141\n",
+"e=2.71\n",
+"P=75// POWER IN kW\n",
+"D=1.5// DIAMETER OF PULLEY IN m\n",
+"U=.3// COEFFICIENT OF FRICTION\n",
+"beeta=45/2// GROOVE ANGLE\n",
+"THETA=160*PI/180// ANGLE OF CONTACT IN radians\n",
+"m=.6// MASS OF BELT IN kg/m\n",
+"Tmax=800// MAX TENSION IN N\n",
+"N=200// SPEED OF SHAFT IN rpm\n",
+"//=============================================================================================================================\n",
+"//calculation\n",
+"V=PI*D*N/60// VELOCITY OF ROPE IN m/s\n",
+"Tc=m*V^2// CENTRIFUGAL TENSION IN N\n",
+"T1=Tmax-Tc// TENSION ON TIGHT SIDE IN N\n",
+"T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON SLACKSIDE IN N\n",
+"P2=(T1-T2)*V/1000// POWER TRANSMITTED PER BELT kW\n",
+"No=P/P2// NO OF V-BELTS\n",
+"N3=No+1// ROUNDING OFF\n",
+"To=(T1+T2+Tc*2)/2// INITIAL TENSION\n",
+"//================================================================================================================================\n",
+"//OUTPUT\n",
+"printf('NO OF BELTS REQUIRED TO TRANSMIT POWER=%f APPROXIMATELY=%d\n',No,N3)\n",
+"printf('INITIAL ROPE TENSION=%f N',To)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: finding_the_diameter_of_the_belt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2 ILLUSRTATION 1 PAGE NO 57\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"Na=300;//driving shaft running speed in rpm\n",
+"Nb=400;//driven shaft running speed in rpm\n",
+"Da=60;//diameter of driving shaft in mm\n",
+"t=.8;//belt thickness in mm\n",
+"s=.05;//slip in percentage(5%)\n",
+"//==========================================================================================\n",
+"//calculation\n",
+"Db=(Da*Na)/Nb;//finding out the diameter of driven shaft without considering the thickness of belt\n",
+"Db1=(((Da+t)*Na)/Nb)-t///considering the thickness\n",
+"Db2=(1-s)*(Da+t)*(Na/Nb)-t//considering slip also\n",
+"//=========================================================================================\n",
+"//output\n",
+"printf('the value of Db is %3.0f cm',Db)\n",
+"printf('\nthe value of Db1 is %f cm',Db1)\n",
+"printf('\nthe value of Db2 is %f cm',Db2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: speed_of_shafts.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSRTATION 2 PAGE NO 57\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//====================================================================================\n",
+"//input\n",
+"n1=1200//rpm of motor shaft\n",
+"d1=40//diameter of motor pulley in cm\n",
+"d2=70//diameter of 1st pulley on the shaft in cm\n",
+"s=.03//percentage slip(3%)\n",
+"d3=45//diameter of 2nd pulley\n",
+"d4=65//diameter of the pulley on the counnter shaft\n",
+"//=========================================================================================\n",
+"//calculation\n",
+"n2=n1*d1*(1-s)/d2//rpm of driven shaft\n",
+"n3=n2//both the pulleys are mounted on the same shaft\n",
+"n4=n3*(1-s)*d3/d4//rpm of counter shaft\n",
+"\n",
+"//output\n",
+"printf('the speed of driven shaft is %f rpm\nthe speed of counter shaft is %f rpm',n2,n4)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: length_of_belt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2 ILLUSTRATION 3 PAGE NO:58\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//==============================================================================\n",
+"//input\n",
+"d1=30//diameter of 1st shaft in cm\n",
+"d2=50//diameter 2nd shaft in cm\n",
+"pi=3.141\n",
+"c=500//centre distance between the shafts in cm\n",
+"//==============================================================================\n",
+"//calculation\n",
+"L1=((d1+d2)*pi/2)+(2*c)+((d1+d2)^2)/(4*c)//lenth of cross belt\n",
+"L2=((d1+d2)*pi/2)+(2*c)+((d1-d2)^2)/(4*c)//lenth of open belt\n",
+"r=L1-L2//remedy\n",
+"//==============================================================================\n",
+"//OUTPUT\n",
+"printf('length of cross belt is %3.3fcm \n length of open belt is %3.3f cm \n the length of the belt to be shortened is %3.0f cm',L1,L2,r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: power_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 4 PAGE 59\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//====================================================================================\n",
+"//INPUT\n",
+"D1=.5// DIAMETER OF 1ST SHAFT IN m\n",
+"D2=.25// DIAMETER OF 2nd SHAFT IN m\n",
+"C=2// CENTRE DISTANCE IN m\n",
+"N1=220// SPEED OF 1st SHAFT\n",
+"T1=1250// TENSION ON TIGHT SIDE IN N\n",
+"U=.25// COEFFICIENT OF FRICTION\n",
+"PI=3.141\n",
+"e=2.71\n",
+"//====================================================================================\n",
+"//CALCULATION\n",
+"L=(D1+D2)*PI/2+((D1+D2)^2/(4*C))+2*C\n",
+"F=(D1+D2)/(2*C)\n",
+"ALPHA=asind(F)\n",
+"THETA=(180+(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians\n",
+"T2=T1/(e^(U*THETA))// TENSION ON SLACK SIDE IN N\n",
+"V=PI*D1*N1/60// VELOCITY IN m/s\n",
+"P=(T1-T2)*V/1000// POWER IN kW\n",
+"//====================================================================================\n",
+"//OUTPUT\n",
+"printf('\nLENGTH OF BELT REQUIRED =%f m',L)\n",
+"printf('\nANGLE OF CONTACT =%f radians',THETA)\n",
+"printf('\nPOWER CAN BE TRANSMITTED=%f kW',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: tension_in_belt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 5 PAGE 5\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//=====================================================================================================\n",
+"//input\n",
+"n1=100// of driving shaft\n",
+"n2=240//speed of driven shaft\n",
+"p=11000//power to be transmitted in watts\n",
+"c=250//centre distance in cm\n",
+"d2=60//diameter in cm\n",
+"b=11.5*10^-2//width of belt in metres\n",
+"t=1.2*10^-2//thickness in metres\n",
+"u=.25//co-efficient of friction \n",
+"pi=3.141\n",
+"e=2.71\n",
+"//===================================================================================================\n",
+"//calculation for open bely drive\n",
+"d1=n2*d2/n1\n",
+"f=(d1-d2)/(2*c)//sin(alpha) for open bely drive\n",
+"//angle of arc of contact for open belt drive is,theta=180-2*alpha\n",
+"alpha=asind(f)\n",
+"teta=(180-(2*alpha))*3.147/180//pi/180 is used to convert into radians\n",
+"x=(e^(u*teta))//finding out the value of t1/t2\n",
+"v=pi*d2*10*n2/60//finding out the value of t1-t2\n",
+"y=p*1000/(v)\n",
+"t1=(y*x)/(x-1)\n",
+"Fb=t1/(t*b)/1000\n",
+"//=======================================================================================================\n",
+"//calculation for cross belt drive bely drive\n",
+"F=(d1+d2)/(2*c)//for cross belt drive bely drive\n",
+"ALPHA=asind(F)\n",
+"THETA=(180+(2*ALPHA))*pi/180//pi/180 is used to convert into radians\n",
+"X=(e^(u*THETA))//finding out the value of t1/t2\n",
+"V=pi*d2*10*n2/60//finding out the value of t1-t2\n",
+"Y=p*1000/(V)\n",
+"T1=(Y*X)/(X-1)\n",
+"Fb2=T1/(t*b)/1000\n",
+"//========================================================================================================\n",
+"//output\n",
+"printf('for a open belt drive:\n')\n",
+"printf('the tension in belt is %.3f N\nstress induced is %.3f kN/m^2\n',t1,Fb)\n",
+"printf('for a cross belt drive:\n')\n",
+"printf('the tension in belt is %.3f N\nstress induced is %.3f kN/m^2\n',T1,Fb2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: width_of_belt_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 6 PAGE 61\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//========================================================================================\n",
+"//INPUT\n",
+"D1=80//DIAMETER OF SHAFT IN cm\n",
+"N1=160//SPEED OF 1ST SHAFT IN rpm\n",
+"N2=320//SPEED OF 2ND SHAFT IN rpm\n",
+"C=250//CENTRE DISTANCE IN CM\n",
+"U=.3//COEFFICIENT OF FRICTION\n",
+"P=4//POWER IN KILO WATTS\n",
+"e=2.71\n",
+"PI=3.141\n",
+"f=110//STRESS PER cm WIDTH OF BELT\n",
+"//========================================================================================\n",
+"//CALCULATION\n",
+"V=PI*D1*10^-2*N1/60//VELOCITY IN m/s\n",
+"Y=P*1000/V//Y=T1-T2\n",
+"D2=D1*N1/N2//DIAMETER OF DRIVEN SHAFT\n",
+"F=(D1-D2)/(2*C)\n",
+"ALPHA=asind(F)\n",
+"THETA=(180-(2*ALPHA))*PI/180//ANGLE OF CONTACT IN radians\n",
+"X=e^(U*THETA)//VALUE OF T1/T2\n",
+"T1=X*Y/(X-1)\n",
+"b=T1/f//WIDTH OF THE BELT REQUIRED \n",
+"//=======================================================================================\n",
+"//OUTPUT\n",
+"printf('THE WIDTH OF THE BELT IS %f cm',b)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: power_supplied_by_drum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2 ILLUSRTATION 7 PAGE NO 62\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"m=1000// MASS OF THE CASTING IN kg\n",
+"PI=3.141\n",
+"THETA=2.75*2*PI// ANGLE OF CONTACT IN radians\n",
+"D=.26// DIAMETER OF DRUM IN m\n",
+"N=24// SPEED OF THE DRUM IN rpm\n",
+"U=.25// COEFFICIENT OF FRICTION\n",
+"e=2.71\n",
+"T1=9810// TENSION ON TIGHTSIDE IN N\n",
+"//=============================================================================================\n",
+"//CALCULATION\n",
+"T2=T1/(e^(U*THETA))// tension on slack side of belt in N\n",
+"W=m*9.81// WEIGHT OF CASTING IN N\n",
+"R=D/2// RADIUS OF DRUM IN m\n",
+"P=2*PI*N*W*R/60000// POWER REQUIRED IN kW\n",
+"P2=(T1-T2)*PI*D*N/60000// POWER SUPPLIED BY DRUM IN kW\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('FORCE REQUIRED BY MAN=%f N\n POWER REQUIRED TO RAISE CASTING=%f kW\n POWER SUPPLIED BY DRUM=%f kW\n',T2,P,P2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: power_capacity_of_belt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 8 PAGE 62\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//INPUT\n",
+"t=9//THICKNESS IN mm\n",
+"b=250//WIDTH IN mm\n",
+"D=90//DIAMETER OF PULLEY IN cm\n",
+"N=336//SPEED IN rpm\n",
+"PI=3.141\n",
+"U=.35//COEFFICIENT FRICTION\n",
+"e=2.71\n",
+"THETA=120*PI/180\n",
+"Fb=2//STRESS IN MPa\n",
+"d=1000//DENSITY IN KG/M^3\n",
+"\n",
+"//CALCULATION\n",
+"M=b*10^-3*t*10^-3*d//MASS IN KG\n",
+"V=PI*D*10^-2*N/60//VELOCITY IN m/s\n",
+"Tc=M*V^2//CENTRIFUGAL TENSION\n",
+"Tmax=b*t*Fb//MAX TENSION IN N\n",
+"T1=Tmax-Tc\n",
+"T2=T1/(e^(U*THETA))\n",
+"P=(T1-T2)*V/1000\n",
+"\n",
+"//OUTPUT\n",
+"printf('THE TENSION ON TIGHT SIDE OF THE BELT IS %f N\n',T1)\n",
+"printf('THE TENSION ON SLACK SIDE OF THE BELT IS %f N\n',T2)\n",
+"printf('CENTRIFUGAL TENSION =%f N\n',Tc)\n",
+"printf('THE POWER CAPACITY OF BELT IS %f KW\n',P)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: thickness_of_belt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 2,ILLUSTRATION 9 PAGE 63\n",
+"//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+"clc\n",
+"clear\n",
+"//INPUT\n",
+"P=35000//POWER TO BE TRANSMITTED IN WATTS\n",
+"D=1.5//EFFECTIVE DIAMETER OF PULLEY IN METRES\n",
+"N=300//SPEED IN rpm\n",
+"e=2.71\n",
+"U=.3//COEFFICIENT OF FRICTION\n",
+"PI=3.141\n",
+"THETA=(11/24)*360*PI/180//ANGLE OF CONTACT\n",
+"density=1.1//density of belt material in Mg/m^3\n",
+"L=1//in metre\n",
+"t=9.5//THICKNESS OF BELT IN mm\n",
+"Fb=2.5//PERMISSIBLE WORK STRESS IN N/mm^2\n",
+"\n",
+"//CALCULATION\n",
+"V=PI*D*N/60//VELOCITY IN m/s\n",
+"X=P/V//X=T1-T2\n",
+"Y=e^(U*THETA)//Y=T1/T2\n",
+"T1=X*Y/(Y-1)\n",
+"Mb=t*density*L/10^3//value of m/b\n",
+"Tc=Mb*V^2//centrifugal tension/b\n",
+"Tmaxb=t*Fb//max tension/b\n",
+"b=T1/(Tmaxb-Tc)//thickness in mm\n",
+"//output\n",
+"printf('\nTENSION IN TIGHT SIDE OF THE BELT =%f N',T1)\n",
+"printf('\nTHICKNESS OF THE BELT IS =%f mm',b)\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb
new file mode 100644
index 0000000..edbdd36
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb
@@ -0,0 +1,684 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: FRICTION"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: FORCE_REQUIRED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 10 PAGE NO 108\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"d=2.5// MEAN DIA OF BOLT IN cm\n",
+"p=.6// PITCH IN cm\n",
+"beeta=55/2// VEE ANGLE\n",
+"dc=4// DIA OF COLLAR IN cm\n",
+"U=.1// COEFFICIENT OF FRICTION OF BOLT\n",
+"Uc=.18// COEFFICIENT OF FRICTION OF COLLAR\n",
+"W=6500// LOAD ON BOLT IN NEWTONS\n",
+"L=38// LENGTH OF SPANNER\n",
+"//=============================================================================================\n",
+"//CALCULATION\n",
+"//LET X=tan(py)/tan(beeta)\n",
+"//y=tan(ALPHA)*X\n",
+"PY=atand(U)\n",
+"ALPHA=atand(p/(PI*d))\n",
+"X=tand(PY)/cosd(beeta)\n",
+"Y=tand(ALPHA)\n",
+"T1=W*d/2*10^-2*(X+Y)/(1-(X*Y))// TORQUE IN SCREW IN N-m\n",
+"Tc=Uc*W*dc/2*10^-2// TORQUE ON BEARING SERVICES IN N-m\n",
+"T=T1+Tc// TOTAL TORQUE \n",
+"P1=T/L*100// FORCE REQUIRED BY @ THE END OF SPANNER\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"printf('FORCE REQUIRED @ THE END OF SPANNER=%3.3f N',P1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: POWER_LOST_IN_FRICTION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 11 PAGE NO 109\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d1=15// DIAMETER OF VERTICAL SHAFT IN cm\n",
+"N=100// SPEED OF THE MOTOR rpm\n",
+"W=20000// LOAD AVILABLE IN N\n",
+"U=.05// COEFFICIENT OF FRICTION\n",
+"PI=3.147\n",
+"//==================================================================================\n",
+"T=2/3*U*W*d1/2// FRICTIONAL TORQUE IN N-m\n",
+"PL=2*PI*N*T/100/60// POWER LOST IN FRICTION IN WATTS\n",
+"//==================================================================================\n",
+"//OUTPUT\n",
+"printf('POWER LOST IN FRICTION=%3.3f watts',PL)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: NO_OF_COLLARS_REQUIRED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 12 PAGE NO 109\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"d2=.30// DIAMETER OF SHAFT IN m \n",
+"W=200000// LOAD AVAILABLE IN NEWTONS\n",
+"N=75// SPEED IN rpm\n",
+"U=.05// COEFFICIENT OF FRICTION\n",
+"p=300000// PRESSURE AVAILABLE IN N/m^2\n",
+"P=16200// POWER LOST DUE TO FRICTION IN WATTS\n",
+"//====================================================================================\n",
+"//CaLCULATION\n",
+"T=P*60/2/PI/N// TORQUE INDUCED IN THE SHFT IN N-m\n",
+"//LET X=(r1^3-r2^3)/(r1^2-r2^2)\n",
+"X=(3/2*T/U/W)\n",
+"r2=.15// SINCE d2=.30 m\n",
+"c=r2^2-(X*r2)\n",
+"b= r2-X\n",
+"a= 1\n",
+"r1=( -b+ sqrt (b^2 -4*a*c ))/(2* a);// VALUE OF r1 IN m\n",
+"d1=2*r1*100// d1 IN cm\n",
+"n=W/(PI*p*(r1^2-r2^2))\n",
+"//================================================================================\n",
+"//OUTPUT\n",
+"printf('\nEXTERNAL DIAMETER OF SHAFT =%3.3f cm\nNO OF COLLARS REQUIRED =%.3f or %.0f',d1,n,n+1)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: POWER_ABSORBED_IN_FRICTION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 13 PAGE NO 111\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"W=20000// LOAD IN NEWTONS\n",
+"ALPHA=120/2// CONE ANGLE IN DEGREES\n",
+"p=350000// INTENSITY OF PRESSURE\n",
+"U=.06\n",
+"N=120// SPEED OF THE SHAFT IN rpm\n",
+"//d1=3d2\n",
+"//r1=3r2\n",
+"//===================================================================================\n",
+"//CALCULATION\n",
+"//LET K=d1/d2\n",
+"k=3\n",
+"Z=W/((k^2-1)*PI*p)\n",
+"r2=Z^.5// INTERNAL RADIUS IN m\n",
+"r1=3*r2\n",
+"T=2*U*W*(r1^3-r2^3)/(3*sind(60)*(r1^2-r2^2))// total frictional torque in N\n",
+"P=2*PI*N*T/60000// power absorbed in friction in kW\n",
+"//================================================================================\n",
+"printf('\nTHE INTERNAL DIAMETER OF SHAFT =%3.3f cm\nTHE EXTERNAL DIAMETER OF SHAFT =%3.3f cm\nPOWER ABSORBED IN FRICTION =%.3f kW',r2*100,r1*100,P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: FINDING_Radii.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"P=10000// POWER TRRANSMITTED BY CLUTCH IN WATTS\n",
+"N=3000// SPEED IN rpm\n",
+"p=.09// AXIAL PRESSURE IN N/mm^2\n",
+"//d1=1.4d2 RELATION BETWEEN DIAMETERS \n",
+"K=1.4// D1/D2\n",
+"n=2\n",
+"U=.3// COEFFICIENT OF FRICTION\n",
+"//==========================================================================================\n",
+"T=P*60000/1000/(2*PI*N)// ASSUMING UNIFORM WEAR TORQUE IN N-m\n",
+"r2=(T*2/(n*U*2*PI*p*10^6*(K-1)*(K+1)))^(1/3)// INTERNAL RADIUS\n",
+"\n",
+"//===========================================================================================\n",
+"printf('THE INTERNAL RADIUS =%f cm\n THE EXTERNAL RADIUS =%f cm',r2*100,K*r2*100)\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: MAX_AXIAL_INTENSITY_OF_PRESSURE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"//βμαφɳρΠπ\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"n1=3// NO OF DICS ON DRIVING SHAFTS\n",
+"n2=2// NO OF DICS ON DRIVEN SHAFTS\n",
+"d1=30// DIAMETER OF DRIVING SHAFT IN cm\n",
+"d2=15// DIAMETER OF DRIVEN SHAFT IN cm\n",
+"r1=d1/2\n",
+"r2=d2/2\n",
+"U=.3// COEFFICIENT FRICTION\n",
+"P=30000// TANSMITTING POWER IN WATTS\n",
+"N=1800// SPEED IN rpm\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"n=n1+n2-1// NO OF PAIRS OF CONTACT SURFACES\n",
+"T=P*60000/(2*PI*N)// TORQUE IN N-m\n",
+"W=2*T/(n*U*(r1+r2)*10)// LOAD IN N\n",
+"k=W/(2*PI*(r1-r2))\n",
+"p=k/r2/100// MAX AXIAL INTENSITY OF PRESSURE IN N/mm^2\n",
+"//===========================================================================================\n",
+"// OUTPUT\n",
+"printf('MAX AXIAL INTENSITY OF PRESSURE =%f N/mm^2',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: finding_out_the_coefficient_of_friction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 1 PAGE NO 102\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.16(a),3.16(b)\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"P1=180// PULL APPLIED TO THE BODY IN NEWTONS\n",
+"theta=30// ANGLE AT WHICH P IS ACTING IN DEGREES\n",
+"P2=220// PUSH APPLIED TO THE BODY IN NEWTONS\n",
+"//Rn= NORMAL REACTION\n",
+"//F= FORCE OF FRICTION IN NEWTONS\n",
+"//U= COEFFICIENT OF FRICTION\n",
+"//W= WEIGHT OF THE BODY IN NEWTON\n",
+"//==========================================================================================\n",
+"//CALCULATION\n",
+"F1=P1*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(a)\n",
+"F2=P2*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(b)\n",
+"// RESOLVING FORCES VERTICALLY Rn1=W-P1*sind(theta) from 3.16(a)\n",
+"// RESOLVING FORCES VERTICALLY Rn2=W+P1*sind(theta) from 3.16(b)\n",
+"// USING THE RELATION F1=U*Rn1 & F2=U*Rn2 AND SOLVING FOR W BY DIVIDING THESE TWO EQUATIONS\n",
+"X=F1/F2// THIS IS THE VALUE OF Rn1/Rn2\n",
+"Y1=P1*sind(theta)\n",
+"Y2=P2*sind(theta)\n",
+"W=(Y2*X+Y1)/(1-X)// BY SOLVING ABOVE 3 EQUATIONS\n",
+"U=F1/(W-P1*sind(theta))// COEFFICIENT OF FRICTION\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"printf('WEIGHT OF THE BODY =%.3fN\nTHE COEFFICIENT OF FRICTION =%.3f',W,U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: DISTANCE_ALONG_THE_INCLINED_PLANE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 2 PAGE NO 103\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.17\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"THETA=45// ANGLE OF INCLINATION IN DEGREES\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N/mm^2\n",
+"U=.1// COEFFICIENT FRICTION\n",
+"//Rn=NORMAL REACTION\n",
+"//M=MASS IN NEWTONS\n",
+"//f=ACCELERATION OF THE BODY\n",
+"u=0// INITIAL VELOCITY\n",
+"V=10// FINAL VELOCITY IN m/s^2\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"//CONSIDER THE EQUILIBRIUM OF FORCES PERPENDICULAR TO THE PLANE\n",
+"//Rn=Mgcos(THETA)\n",
+"//CONSIDER THE EQUILIBRIUM OF FORCES ALONG THE PLANE\n",
+"//Mgsin(THETA)-U*Rn=M*f.............BY SOLVING THESE 2 EQUATIONS \n",
+"f=g*sind(THETA)-U*g*cosd(THETA)\n",
+"s=(V^2-u^2)/(2*f)// DISTANCE ALONG THE PLANE IN metres\n",
+"//==============================================================================================\n",
+"//OUTPUT\n",
+"printf('DISTANCE ALONG THE INCLINED PLANE=%3.3f m',s)\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: workdone.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 3 PAGE NO 104\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.18\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"W=500// WEGHT IN NEWTONS\n",
+"THETA=30// ANGLE OF INCLINATION IN DEGRESS\n",
+"U=0.2// COEFFICIENT FRICTION\n",
+"S=15// DISTANCE IN metres\n",
+"//============================================================================================\n",
+"Rn=W*cosd(THETA)// NORMAL REACTION IN NEWTONS\n",
+"P=W*sind(THETA)+U*Rn// PUSHING FORCE ALONG THE DIRECTION OF MOTION\n",
+"w=P*S\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('WORK DONE BY THE FORCE=%3.3f N-m',w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: FINDING_OUT_COEFFICIENT_OF_FRICTION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 4 PAGE NO 104\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.19(a) & 3.19(b)\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"P1=2000// FORCE ACTING UPWARDS WHEN ANGLE=15 degrees IN NEWTONS\n",
+"P2=2300// FORCE ACTING UPWARDS WHEN ANGLE=20 degrees IN NEWTONS\n",
+"THETA1=15// ANGLE OF INCLINATION IN 3.19(a)\n",
+"THETA2=20// ANGLE OF INCLINATION IN 3.19(b)\n",
+"//F1= FORCE OF FRICTION IN 3.19(a)\n",
+"//Rn1= NORMAL REACTION IN 3.19(a)\n",
+"//F2= FORCE OF FRICTION IN 3.19(b)\n",
+"//Rn2= NORMAL REACTION IN 3.19(b)\n",
+"//U= COEFFICIENT OF FRICTION\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"//P1=F1+Rn1 RESOLVING THE FORCES ALONG THE PLANE\n",
+"//Rn1=W*cosd(THETA1)....NORMAL REACTION IN 3.19(a)\n",
+"//F1=U*Rn1\n",
+"//BY SOLVING ABOVE EQUATIONS P1=W(U*cosd(THETA1)+sind(THETA1))---------------------1\n",
+"//P2=F2+Rn2 RESOLVING THE FORCES PERPENDICULAR TO THE PLANE\n",
+"//Rn2=W*cosd(THETA2)....NORMAL REACTION IN 3.19(b)\n",
+"//F2=U*Rn2\n",
+"//BY SOLVING ABOVE EQUATIONS P2=W(U*cosd(THETA2)+sind(THETA2))----------------------2\n",
+"//BY SOLVING EQUATIONS 1 AND 2\n",
+"X=P2/P1\n",
+"U=(sind(THETA2)-(X*sind(THETA1)))/((X*cosd(THETA1)-cosd(THETA2)))// COEFFICIENT OF FRICTION\n",
+"W=P1/(U*cosd(THETA1)+sind(THETA1))\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"//printf('%f',X)\n",
+"printf('COEFFICIENT OF FRICTION=%3.3f\n WEIGHT OF THE BODY=%3.3f N',U,W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: EFFORT_NEED_TO_APPLIED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 5 PAGE NO 105\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=5// DIAMETER OF SCREW JACK IN cm\n",
+"p=1.25// PITCH IN cm\n",
+"l=50// LENGTH IN cm\n",
+"U=.1// COEFFICIENT OF FRICTION\n",
+"W=20000// LOAD IN NEWTONS\n",
+"PI=3.147\n",
+"//=============================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))\n",
+"PY=atand(U)\n",
+"P=W*tand(ALPHA+PY)\n",
+"P1=P*d/(2*l)\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"printf('THE AMOUNT OF EFFORT NEED TO APPLY =%3.3f N',P1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: EFFICIENCY_OF_THE_MACHINE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 6 PAGE NO 106\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=50// DIAMETER OF SCREW IN mm\n",
+"p=12.5// PITCH IN mm\n",
+"U=0.13// COEFFICIENT OF FRICTION\n",
+"W=25000// LOAD IN mm\n",
+"PI=3.147\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))\n",
+"PY=atand(U)\n",
+"P=W*tand(ALPHA+PY)// FORCE REQUIRED TO RAISE THE LOAD IN N\n",
+"T1=P*d/2// TORQUE REQUIRED IN Nm\n",
+"P1=W*tand(PY-ALPHA)// FORCE REQUIRED TO LOWER THE SCREW IN N\n",
+"T2=P1*d/2// TORQUE IN N\n",
+"X=T1/T2// RATIOS REQUIRED\n",
+"n=tand(ALPHA/(ALPHA+PY))// EFFICIENCY\n",
+"//============================================================================================\n",
+"printf('RATIO OF THE TORQUE REQUIRED TO RAISE THE LOAD,TO THE TORQUE REQUIRED TO LOWER THE LOAD =%.3f',X)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: EFFICIENCY_OF_MACHINE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 7 PAGE NO 107\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=39// DIAMETER OF THREAD IN mm\n",
+"p=13// PITCH IN mm\n",
+"U=0.1// COEFFICIENT OF FRICTION\n",
+"W=2500// LOAD IN mm\n",
+"PI=3.147\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))\n",
+"PY=atand(U)\n",
+"P=W*tand(ALPHA+PY)// FORCE IN N\n",
+"T1=P*d/2// TORQUE REQUIRED IN Nm\n",
+"T=2*T1// TORQUE REQUIRED ON THE COUPLING ROD IN Nm\n",
+"K=2*p// DISTANCE TRAVELLED FOR ONE REVOLUTION\n",
+"N=20.8/K// NO OF REVOLUTIONS REQUIRED\n",
+"w=2*PI*N*T/100// WORKDONE BY TORQUE\n",
+"w1=w*(7500-2500)/2500// WORKDONE TO INCREASE THE LOAD FROM 2500N TO 7500N\n",
+"n=tand(ALPHA)/tand(ALPHA+PY)// EFFICIENCY\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('workdone against a steady load of 2500N=%3.3f N\n workdone if the load is increased from 2500N to 7500N=%3.3f N\n efficiency=%.3f',w,w1,n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: NO_OF_TEETH_ON_PINION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 8 PAGE NO 107\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"W=50000// WEIGHT OF THE SLUICE GATE IN NEWTON\n",
+"P=40000// POWER IN WATTS\n",
+"N=580// MAX MOTOR RUNNING SPEEED IN rpm\n",
+"d=12.5// DIAMETER OF THE SCREW IN cm\n",
+"p=2.5// PITCH IN cm\n",
+"PI=3.147\n",
+"U1=.08// COEFFICIENT OF FRICTION for SCREW\n",
+"U2=.1// C.O.F BETWEEN GATES AND SCREW\n",
+"Np=2000000// NORMAL PRESSURE IN NEWTON\n",
+"Fl=.15// FRICTION LOSS\n",
+"n=1-Fl// EFFICIENCY\n",
+"ng=80// NO OF TEETH ON GEAR\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"TV=W+U2*Np// TOTAL VERTICAL HEAD IN NEWTON\n",
+"ALPHA=atand(p/(PI*d))// \n",
+"PY=atand(U1)// \n",
+"P1=TV*tand(ALPHA+PY)// FORCE IN N\n",
+"T=P1*d/2/100// TORQUE IN N-m\n",
+"Ng=60000*n*P*10^-3/(2*PI*T)// SPEED OF GEAR IN rpm\n",
+"np=Ng*ng/N// NO OF TEETH ON PINION\n",
+"//=========================================================================================\n",
+"//OUTPUT\n",
+"printf('NO OF TEETH ON PINION =%.2f say %d',np,np+1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: TO_FIND_THE_DIAMETER_OF_HAND_WHEEL.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 9 PAGE NO 108\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=5// MEAN DIAMETER OF SCREW IN cm\n",
+"p=1.25// PITCH IN cm\n",
+"W=10000// LOAD AVAILABLE IN NEWTONS\n",
+"dc=6// MEAN DIAMETER OF COLLAR IN cm\n",
+"U=.15// COEFFICIENT OF FRICTION OF SCREW\n",
+"Uc=.18// COEFFICIENT OF FRICTION OF COLLAR\n",
+"P1=100// TANGENTIAL FORCE APPLIED IN NEWTON\n",
+"PI=3.147\n",
+"//============================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))// \n",
+"PY=atand(U)// \n",
+"T1=W*d/2*tand(ALPHA+PY)/100// TORQUE ON SCREW IN NEWTON\n",
+"Tc=Uc*W*dc/2/100// TORQUE ON COLLAR IN NEWTON\n",
+"T=T1+Tc// TOTAL TORQUE\n",
+"D=2*T/P1/2*100// DIAMETER OF HAND WHEEL IN cm\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('SUITABLE DIAMETER OF HAND WHEEL =%3.3f cm',D)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/4-Gears_and_Gear_Drivers.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/4-Gears_and_Gear_Drivers.ipynb
new file mode 100644
index 0000000..c7f8e77
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/4-Gears_and_Gear_Drivers.ipynb
@@ -0,0 +1,843 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Gears and Gear Drivers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Speed_of_wheels.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 10, Page 141\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"Ta=96;//Teeth of wheel A\n",
+"Tc=48;//Teeth of wheel C\n",
+"y=-20;//Speed of arm C in rpm in clockwise\n",
+"\n",
+"//Calculations\n",
+"x=(y*Ta)/Tc\n",
+"Tb=(Ta-Tc)/2;//Teeth of wheel B\n",
+"Nb=(-Tc/Tb)*x+y;//Speed of wheel B in rpm\n",
+"Nc=x+y;//Speed of wheel C in rpm\n",
+"\n",
+"//Output\n",
+"mprintf('Speed of wheel B is %3.0f rpm \n Speed of wheel C is %3.0f rpm',Nb,Nc)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: speed_of_the_arm.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 11, Page 142\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Ta=40// no of teeth on gear A\n",
+"Td=90// no of teeth on gear D\n",
+"\n",
+"//Calculations\n",
+"Tb=(Td-Ta)/2// no of teeth on gear B\n",
+"Tc=Tb// no of teeth on gear C\n",
+"//\n",
+"//x+y=-1\n",
+"//-40x+90y=45\n",
+"A=[1 1\n",
+" -Ta Td]//Coefficient matrix\n",
+"B=[-1\n",
+" (Td/2)]//Constant matrix\n",
+"X=inv(A)*B//Variable matrix\n",
+"//\n",
+"//x+y=-1\n",
+"//-40x+90y=0\n",
+"A1=[1 1\n",
+" -Ta Td]//Coefficient matrix\n",
+"B1=[-1\n",
+" 0]//Constant matrix\n",
+"X1=inv(A1)*B1//Variable matrix\n",
+" \n",
+"disp(X(2)) \n",
+"printf('speed of the arm = %.3f revolution clockwise',X1(2))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: Speed_of_wheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 12, Page 144\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"Te=30;//Teeth of wheel E\n",
+"Tb=24;//Teeth of wheel B\n",
+"Tc=22;//Teeth of wheel C\n",
+"Td=70;//Teeth of wheel D\n",
+"Th=15;//Teeth of wheel H\n",
+"Nv=100;//Speed of shaft V in rpm\n",
+"Nx=300;//Speed of spindle X in rpm\n",
+"\n",
+"//Calculations\n",
+"Nh=Nv;//Speed of wheel H in rpm\n",
+"Ne=(-Th/Te)*Nv;//Speed of wheel E in rpm\n",
+"Ta=(Tc+Td-Tb);//Teeth of wheel A\n",
+"//x+y=-50\n",
+"//y=300\n",
+"x=(Ne-Nx)\n",
+"Nz=(187/210)*x+Nx;//;//Speed of wheel Z in rpm\n",
+"\n",
+"//Output\n",
+"mprintf('Speed of wheel Z is %3.3f rpm \n Direction of wheel Z is opposite to that of X',Nz)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: Speed_of_driven_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 13, Page 145\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"Tp=20;//Teeth of wheel P\n",
+"Tq=30;//Teeth of wheel Q\n",
+"Tr=10;//Teeth of wheel R\n",
+"Nx=50;//Speed of shaft X in rpm\n",
+"Na=100;//Speed of arm A in rpm\n",
+"\n",
+"//Calculations\n",
+"//x+y=-50\n",
+"//y=100\n",
+"x=(-Nx-Na)\n",
+"y=(-2*x+Na);//Speed of Y in rpm\n",
+"\n",
+"//Output\n",
+"mprintf('Speed of driven shaft Y is %3.0f rpm \n Direction of driven shaft Y is anti-clockwise',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14: pitch_circle_diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 14, Page 146\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"d=216;//Ring diameter in mm\n",
+"m=4;//Module in mm\n",
+"\n",
+"//Calculations\n",
+"Td=(d/m);//Teeth of wheel D\n",
+"Tb=Td/4;//Teeth of wheel B\n",
+"Tb1=ceil(Tb);//Teeth of wheel B\n",
+"Td1=4*Tb1;//Teeth of wheel D\n",
+"Tc1=(Td1-Tb1)/2;//Teeth of wheel C\n",
+"d1=m*Td1;//Pitch circle diameter in mm\n",
+"\n",
+"//Output\n",
+"mprintf('Teeth of wheel B is %3.0f \n Teeth of wheel C is %3.0f \n Teeth of wheel D is %3.0f \n Exact pitch circle diameter is %3.0f mm',Tb1,Tc1,Td1,d1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15: Revolution_of_gears.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 15, Page 147\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"Ta=100// no of teeth on gear A\n",
+"Tc=101// no of teeth on gear C\n",
+"Td=99// no of teeth on gear D\n",
+"Tp=20// no of teeth on planet gear\n",
+"y=1// from table 4.9(arm B makes one revolution)\n",
+"x=-y// as gear is fixed\n",
+"\n",
+"//Calculations\n",
+"Nc=(Ta*x)/Tc+y// Revolution of gear C \n",
+"Nd=(Ta*x)/Td+y// Revolution of gear D\n",
+"\n",
+"//Output\n",
+"printf('Revolution of gear C = %f\n Revolution of gear D = %f',Nc,Nd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.16: speed_of_road_wheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 16, Page 148\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"Ta=12// no of teeth on gear A\n",
+"Tb=60// no of teeth on gear B\n",
+"N=1000// speed of propeller shaft in rpm\n",
+"Nc=210// speed of gear C in rpm\n",
+"\n",
+"//Calculations\n",
+"Nb=(Ta*N)/Tb// speed of gear B in rpm\n",
+"x=(Nb-Nc)\n",
+"Nd=Nb+x// speed of road wheel driven by D\n",
+"\n",
+"//Output\n",
+"printf('speed of road wheel driven by D= %d rpm',Nd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.17: ratio_of_torques.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 17, Page 148\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Ta=20// no of teeth on pinion A\n",
+"Tb=25// no of teeth on wheel B\n",
+"Tc=50// no of teeth on gear C\n",
+"Td=60// no of teeth on gear D\n",
+"Te=60// no of teeth on gear E\n",
+"Na=200// SPEED of the gear A\n",
+"Nd=100// speed of the gear D\n",
+"\n",
+"//calculations\n",
+"//(i)\n",
+"//(5/6)x+y=0\n",
+"//(5/4)x+y=200\n",
+"A1=[(Tc/Td) 1\n",
+" (Tb/Ta) 1]//Coefficient matrix\n",
+"B1=[0\n",
+" Na]//Constant matrix\n",
+"X1=inv(A1)*B1//Variable matrix\n",
+"Ne1=X1(2)-(Tc/Td)*X1(1)// \n",
+"T1=(-Ne1/Na)// ratio of torques when D is fixed\n",
+"//(ii)\n",
+"//(5/4)x+y=200\n",
+"//(5/6)x+y=100\n",
+"A2=[(Tc/Td) 1\n",
+" (Tb/Ta) 1]//Coefficient matrix\n",
+"B2=[Nd\n",
+" Na]//Constant matrix\n",
+"X2=inv(A2)*B2//Variable matrix\n",
+"Ne2=X2(2)-(Tc/Td)*X2(1)\n",
+"T2=(-Ne2/Na)// ratio of torques when D ratates at 100 rpm\n",
+"\n",
+"//Output\n",
+"printf('speed of E= %.2f rpm in clockwise direction\n speed of E in 2nd case(when D rotates at 100 rpm)= %d rpm in clockwise direction\n ratio of torques when D is fixed= %d \n ratio of torques when D ratates at 100 rpm= %d',Ne1,Ne2,T1,T2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Length_of_arc_of_contact.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 1, Page 133\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT DATA\n",
+"TA=48;//Wheel A teeth\n",
+"TB=30;//Wheel B teeth\n",
+"m=5;//Module pitch in mm\n",
+"phi=20;//Pressure angle in degrees\n",
+"add=m;//Addendum in mm\n",
+"\n",
+"//CALCULATIONS\n",
+"R=(m*TA)/2;//Pitch circle radius of wheel A in mm\n",
+"RA=R+add;//Radius of addendum circle of wheel A in mm\n",
+"r=(m*TB)/2;//Pitch circle radius of wheel B in mm\n",
+"rA=r+add;//Radius of addendum circle of wheel B in mm\n",
+"lp=(sqrt((RA^2)-((R^2)*(cosd(phi)^2))))+(sqrt((rA^2)-((r^2)*(cosd(phi)^2))))-((R+r)*sind(phi));//Length of path of contact in mm\n",
+"la=lp/cosd(phi);//Length of arc of contact in mm\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('Length of arc of contact is %3.1f mm',la)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Addendum_of_wheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 2, Page 133\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT DATA\n",
+"TA=40;//Wheel A teeth\n",
+"TB=TA;//Wheel B teeth\n",
+"m=6;//Module pitch in mm\n",
+"phi=20;//Pressure angle in degrees\n",
+"pi=3.141\n",
+"x=1.75;//Ratio of length of arc of contact to circular pitch\n",
+"\n",
+"//CALCULATIONS\n",
+"Cp=m*pi;//Circular pitch in mm\n",
+"R=(m*TA)/2;//Pitch circle radius of wheel A in mm\n",
+"r=R;//Pitch circle radius of wheel B in mm\n",
+"la=x*Cp;//Length of arc of contact in mm\n",
+"lp=la*cosd(phi);//Length of path of contact in mm\n",
+"RA=sqrt((((lp/2)+(R*sind(phi)))^2)+((R^2)*(cosd(phi))^2));//Radius of addendum circle of each wheel in mm\n",
+"add=RA-R;//Addendum in mm\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('Addendum of wheel is %3.3f mm',add)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Length_of_arc_of_contact.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 3, Page 134\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT DATA\n",
+"TA=48;//Gear teeth\n",
+"TB=24;//Pinion teeth\n",
+"m=6;//Module in mm\n",
+"phi=20;//Pressure angle in degrees\n",
+"\n",
+"//CALCULATIONS\n",
+"r=(m*TB)/2;//Pitch circle radius of pinion in mm\n",
+"R=(m*TA)/2;//Pitch circle radius of gear in mm\n",
+"RA=sqrt(((((r*sind(phi))/2)+(R*sind(phi)))^2)+((R^2)*(cosd(phi))^2));//Radius of addendum circle of gear in mm\n",
+"rA=sqrt(((((R*sind(phi))/2)+(r*sind(phi)))^2)+((r^2)*(cosd(phi))^2));//Radius of addendum circle of pinion in mm\n",
+"addp=rA-r;//Addendum for pinion in mm\n",
+"addg=RA-R;//Addendum for gear in mm\n",
+"lp=((R+r)*sind(phi))/2;//Length of path of contact in mm\n",
+"la=lp/cosd(phi);//Length of arc of contact in mm\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('Addendum for pinion is %3.3f mm \n Addendum for gear is %3.2f mm \n Length of arc of contact is %3.3f mm',addp,addg,la)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Velocity_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 4, Page 135\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT DATA\n",
+"x=3.5;//Ratio of teeth of wheels\n",
+"C=1.2;//Centre distance between axes in m\n",
+"DP=4.4;//Diametrical pitch in cm\n",
+"\n",
+"//CALCULATIONS\n",
+"D=2*C*100;//Sum of diameters of wheels in cm\n",
+"T=D*DP;//Sum of teeth of wheels\n",
+"TB1=T/(x+1);//Teeth of wheel B\n",
+"TB=floor(TB1);//Teeth of whhel B\n",
+"TA=x*TB;//Teeth of wheel A\n",
+"DA=TA/DP;//Diametral pitch of gear A in cm\n",
+"DB=TB/DP;//Diametral pitch of gear B in cm\n",
+"Ce=(DA+DB)/2;//Exact centre distance between shafts in cm\n",
+"TB2=ceil(TB1);//Teeth of wheel B\n",
+"TA2=T-TB2;//Teeth of wheel A\n",
+"VR=TA2/TB2;//Velocity ratio\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('Number of teeth on wheel A is %3.0f \n Number of teeth on wheel B is %3.0f \n Exact centre distance is %3.3f cm \n If centre distance is %3.1f m then \n Velocity ratio is %3.4f',TA,TB,Ce,C,VR)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Power_transmitted.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 5, Page 136\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT DATA\n",
+"C=600;//Distance between shafts in mm\n",
+"Cp=30;//Circular pitch in mm\n",
+"NA=200;//Speed of wheel A in rpm\n",
+"NB=600;//Speed of wheel B in rpm\n",
+"F=18;//Tangential pressure in kN\n",
+"pi=3.141\n",
+"\n",
+"//CALCULATIONS\n",
+"a=Cp/(pi*10);//Ratio of pitch diameter of wheel A to teeth of wheel A in cm\n",
+"b=Cp/(pi*10);//Ratio of pitch diameter of wheel B to teeth of wheel B in cm\n",
+"T=(2*C)/(a*10);//Sum of teeth of wheels\n",
+"r=NB/NA;//Ratio of teeth of wheels\n",
+"TB=T/(r+1);//Teeth of wheel B\n",
+"TB1=ceil(TB);//Teeth of wheel B\n",
+"TA=TB1*r;//Teeth of wheel A\n",
+"DA=a*TA;//Pitch diameter of wheel A in cm\n",
+"DB=b*TB1;//Pitch diameter of wheel B in cm\n",
+"CPA=(pi*DA)/TA;//Circular pitch of gear A in cm\n",
+"CPB=(pi*DB)/TB1;//Circular pitch of gear B in cm\n",
+"C1=(DA+DB)*10/2;//Exact centre distance in mm\n",
+"P=(F*1000*pi*DA*NA)/(60*1000*100);//Power transmitted in kW\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('Number of teeth on wheel A is %3.0f \n Number of teeth on wheel B is %3.0f \n Pitch diameter of wheel A is %3.2f cm \n Pitch diameter of wheel B is %3.3f cm \n Circular pitch of wheel A is %3.4f cm \n Circular pitch of wheel B is %3.4f cm \n Exact centre distance between shafts is %3.2f mm \n Power transmitted is %3.3f kW',TA,TB1,DA,DB,CPA,CPB,C1,P)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Number_of_teeth_on_gear.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 6, Page 137\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT DATA\n",
+"r=16;//Speed ratio\n",
+"mA=4;//Module of gear A in mm\n",
+"mB=mA;//Module of gear B in mm\n",
+"mC=2.5;//Mosule of gear C in mm\n",
+"mD=mC;//Module of gear D in mm\n",
+"C=150;//Distance between shafts in mm\n",
+"\n",
+"//CALCULATIONS\n",
+"t=sqrt(r);//Ratio of teeth\n",
+"T1=(C*2)/mA;//Sum of teeth of wheels A and B\n",
+"T2=(C*2)/mC;//Sum of teeth of wheels C and D\n",
+"TA=T1/(t+1);//Teeth of gear A\n",
+"TB=T1-TA;//Teeth of gear B\n",
+"TC=T2/(t+1);//Teeth of gear C\n",
+"TD=T2-TC;//Teeth of gear D\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('Number of teeth on gear A is %3.0f \n Number of teeth on gear B is %3.0f \n Number of teeth on gear C is %3.0f \n Number of teeth on gear D is %3.0f',TA,TB,TC,TD)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: noof_teeth_on_gears.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 7, Page 138\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT DATA\n",
+"N=4.5;//No. of turns\n",
+"\n",
+"//CALCULATIONS\n",
+"Vh=N/2;//Velocity ratio of main spring spindle to hour hand spindle\n",
+"Vm=12;//Velocity ratio of minute hand spindle to hour hand spindle\n",
+"T1=8// assumed no of teeth on gear 1\n",
+"T2=32// assumed no of teeth on gear 2\n",
+"T3=(T1+T2)/4// no of teeth on gear 3\n",
+"T4=(T1+T2)-T3// no of teeth on gear 4\n",
+"printf('no of teeth on gear 1=%d\n no of teeth on gear 2=%d\n no of teeth on gear 3=%d\n no of teeth on gear 4=%d',T1,T2,T3,T4)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: Speed_of_wheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 8, Page 139\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"Tb=70;//Teeth of wheel B\n",
+"Tc=25;//Teeth of wheel C\n",
+"Td=80;//Teeth of wheel D\n",
+"Na=-100;//Speed of arm A in clockwise in rpm\n",
+"y=-100//Arm A rotates at 100 rpm clockwise\n",
+"\n",
+"//Calculations\n",
+"Te=(Tc+Td-Tb);//Teeth of wheel E\n",
+"x=(y/0.5)\n",
+"Nc=(y-(Td*x)/Tc);//Speed of wheel C in rpm\n",
+"\n",
+"//Output\n",
+"mprintf('Speed of wheel C is %3.0f rpm \n Direction of wheel C is anti-clockwise',Nc)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Speed_of_wheels.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Chapter-4, Illustration 9, Page 140\n",
+"//Title: Gears and Gear Drivers\n",
+"//=============================================================================\n",
+"clc\n",
+"clear\n",
+"\n",
+"//Input data\n",
+"Tb=25;//Teeth of wheel B\n",
+"Tc=40;//Teeth of wheel C\n",
+"Td=10;//Teeth of wheel D\n",
+"Te=25;//Teeth of wheel E\n",
+"Tf=30;//Teeth of wheel F\n",
+"y=-120;//Speed of arm A in clockwise in rpm\n",
+"\n",
+"//Calculations\n",
+"x=(-y/4)\n",
+"Nb=x+y;//Speed of wheel B in rpm\n",
+"Nf=(-10/3)*x+y;//Speed of wheel F in rpm\n",
+"\n",
+"//Output\n",
+"mprintf('Speed of wheel B is %3.0f rpm \n Direction of wheel B is clockwise \n Speed of wheel F is %3.0f rpm \n Direction of wheel F is clockwise',Nb,Nf)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//================================END OF PROGRAM============================================="
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/5-Inertia_Force_Analysis_in_Machines.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/5-Inertia_Force_Analysis_in_Machines.ipynb
new file mode 100644
index 0000000..a96d2fa
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/5-Inertia_Force_Analysis_in_Machines.ipynb
@@ -0,0 +1,361 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Inertia Force Analysis in Machines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Maximum_velocity_of_the_pisto.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 1 PAGE NO 160\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"r=.3// radius of crank in m\n",
+"l=1// length of connecting rod in m\n",
+"N=200// speed of the engine in rpm\n",
+"n=l/r\n",
+"//===================\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"teeta=acosd((-n+((n^2)+4*2*1)^.5)/(2*2))// angle of inclination of crank in degrees\n",
+"Vp=w*r*(sind(teeta)+(sind(2*teeta))/n)// maximum velocity of the piston in m/s\n",
+"printf('Maximum velocity of the piston = %.3f m/s',Vp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: EX5_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 2 PAGE NO 161\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"clc\n",
+"clear\n",
+"PI=3.141\n",
+"r=.3// length of crank in metres\n",
+"l=1.5// length of connecting rod in metres\n",
+"N=180// speed of rotation in rpm\n",
+"teeta=40// angle of inclination of crank in degrees\n",
+"//============================\n",
+"n=l/r\n",
+"w=2*PI*N/60// angular speed in rad/s\n",
+"Vp=w*r*(sind(teeta)+sind(2*teeta)/(2*n))// velocity of piston in m/s\n",
+"fp=w^2*r*(cosd(teeta)+cosd(2*teeta)/(2*n))// acceleration of piston in m/s^2\n",
+"costeeta1=(-n+(n^2+4*2*1)^.5)/(2*2)\n",
+"teeta1=acosd(costeeta1)// position of crank from inner dead centre position for zero acceleration of piston\n",
+"//===========================\n",
+"printf('Velocity of Piston = %.3f m/s\n Acceleration of piston = %.3f m/s^2\n position of crank from inner dead centre position for zero acceleration of piston= %.3f degrees',Vp,fp,teeta1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Turning_moment_on_the_crank_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 3 PAGE NO 161\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"D=.3// Diameter of steam engine in m\n",
+"L=.5// length of stroke in m\n",
+"r=L/2\n",
+"mR=100// equivalent of mass of reciprocating parts in kg\n",
+"N=200// speed of engine in rpm\n",
+"teeta=45// angle of inclination of crank in degrees\n",
+"p1=1*10^6// gas pressure in N/m^2\n",
+"p2=35*10^3// back pressure in N/m^2\n",
+"n=4// ratio of crank radius to the length of stroke\n",
+"//=================================\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"Fl=pi/4*D^2*(p1-p2)// Net load on piston in N\n",
+"Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(2*n))// inertia force due to reciprocating parts\n",
+"Fp=Fl-Fi// Piston effort\n",
+"T=Fp*r*(sind(teeta)+(sind(2*teeta))/(2*(n^2-(sind(teeta))^2)^.5))\n",
+"printf('Piston effort = %.3f N\n Turning moment on the crank shaft = %.3f N-m',Fp,T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: net_force_on_piston.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 4 PAGE NO 162\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"D=.10// Diameter of petrol engine in m\n",
+"L=.12// Stroke length in m\n",
+"l=.25// length of connecting in m\n",
+"r=L/2\n",
+"mR=1.2// mass of piston in kg\n",
+"N=1800// speed in rpm\n",
+"teeta=25// angle of inclination of crank in degrees\n",
+"p=680*10^3// gas pressure in N/m^2\n",
+"n=l/r\n",
+"g=9.81// acceleration due to gravity\n",
+"//=======================================\n",
+"w=2*pi*N/60// angular speed in rpm\n",
+"Fl=pi/4*D^2*p// force due to gas pressure in N\n",
+"Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N\n",
+"Fp=Fl-Fi+mR*g// net force on piston in N\n",
+"Fq=n*Fp/((n^2-(sind(teeta))^2)^.5)// resultant load on gudgeon pin in N\n",
+"Fn=Fp*sind(teeta)/((n^2-(sind(teeta))^2)^.5)// thrust on cylinder walls in N\n",
+"fi=Fl+mR*g// inertia force of the reciprocating parts before the gudgeon pin load is reversed in N\n",
+"w1=(fi/mR/r/(cosd(teeta)+cosd(2*teeta)/(n)))^.5\n",
+"N1=60*w1/(2*pi)\n",
+"printf('Net force on piston = %.3f N\n Resultant load on gudgeon pin = %.3f N\n Thrust on cylinder walls = %.3f N\n speed at which other things remining same,the gudgeon pin load would be reversed in directionm= %.3f rpm',Fp,Fq,Fn,N1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Net_load_on_the_gudgeon_pin.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 5 PAGE NO 163\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"//Figure 5.3\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"N=1800// speed of the petrol engine in rpm\n",
+"r=.06// radius of crank in m\n",
+"l=.240// length of connecting rod in m\n",
+"D=.1// diameter of the piston in m\n",
+"mR=1// mass of piston in kg\n",
+"p=.8*10^6// gas pressure in N/m^2\n",
+"x=.012// distance moved by piston in m\n",
+"//===============================================\n",
+"w=2*pi*N/60// angular velocity of the engine in rad/s\n",
+"n=l/r\n",
+"Fl=pi/4*D^2*p// load on the piston in N\n",
+"teeta=32// by mearument from the figure 5.3\n",
+"Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N\n",
+"Fp=Fl-Fi// net load on the gudgeon pin in N\n",
+"Fq=n*Fp/((n^2-(sind(teeta))^2)^.5)// thrust in the connecting rod in N\n",
+"Fn=Fp*sind(teeta)/((n^2-(sind(teeta))^2)^.5)// reaction between the piston and cylinder in N\n",
+"w1=(Fl/mR/r/(cosd(teeta)+cosd(2*teeta)/(n)))^.5\n",
+"N1=60*w1/(2*pi)// \n",
+"printf('Net load on the gudgeon pin= %.3f N\n Thrust in the connecting rod= %.3f N\n Reaction between the cylinder and piston= %.3f N\n The engine speed at which the above values become zero= %.3f rpm',Fp,Fq,Fn,N1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Torque_exerted_on_the_crank_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 6 PAGE NO 165\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"D=.25// diameter of horizontal steam engine in m\n",
+"N=180// speed of the engine in rpm\n",
+"d=.05// diameter of piston in m\n",
+"P=36000// power of the engine in watts\n",
+"n=3// ration of length of connecting rod to the crank radius\n",
+"p1=5.8*10^5// pressure on cover end side in N/m^2\n",
+"p2=0.5*10^5// pressure on crank end side in N/m^2\n",
+"teeta=40// angle of inclination of crank in degrees\n",
+"m=45// mass of flywheel in kg\n",
+"k=.65// radius of gyration in m\n",
+"//==============================\n",
+"Fl=(pi/4*D^2*p1)-(pi/4*(D^2-d^2)*p2)// load on the piston in N\n",
+"phi=asind(sind(teeta)/n)// angle of inclination of the connecting rod to the line of stroke in degrees\n",
+"r=1.6*D/2\n",
+"T=Fl*sind(teeta+phi)/cosd(phi)*r// torque exerted on crank shaft in N-m\n",
+"Fb=Fl*cosd(teeta+phi)/cosd(phi)// thrust on the crank shaft bearing in N\n",
+"TR=P*60/(2*pi*N)// steady resisting torque in N-m\n",
+"Ts=T-TR// surplus torque available in N-m\n",
+"a=Ts/(m*k^2)// acceleration of the flywheel in rad/s^2\n",
+"printf('Torque exerted on the crank shaft= %.3f N-m\n Thrust on the crank shaft bearing= %.3f N\n Acceleration of the flywheel= %.3f rad/s^2',T,Fb,a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Effective_turning_moment_on_the_crank_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 7 PAGE NO 166\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"D=.25// diameter of vertical cylinder of steam engine in m\n",
+"L=.45// stroke length in m\n",
+"r=L/2\n",
+"n=4\n",
+"N=360// speed of the engine in rpm\n",
+"teeta=45// angle of inclination of crank in degrees\n",
+"p=1050000// net pressure in N/m^2\n",
+"mR=180// mass of reciprocating parts in kg\n",
+"g=9.81// acceleration due to gravity\n",
+"//========================\n",
+"Fl=p*pi*D^2/4// force on piston due to steam pressure in N\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N\n",
+"Fp=Fl-Fi+mR*g// piston effort in N\n",
+"phi=asind(sind(teeta)/n)// angle of inclination of the connecting rod to the line of stroke in degrees\n",
+"T=Fp*sind(teeta+phi)/cosd(phi)*r// torque exerted on crank shaft in N-m\n",
+"printf('Effective turning moment on the crank shaft= %.3f N-m',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: Effective_turning_moment_on_the_crank_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 5 ILLUSRTATION 8 PAGE NO 166\n",
+"//TITLE:Inertia Force Analysis in Machines\n",
+"//figure 5.4\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"D=.25// diameter of vertical cylinder of diesel engine in m\n",
+"L=.40// stroke length in m\n",
+"r=L/2\n",
+"n=4\n",
+"N=300// speed of the engine in rpm\n",
+"teeta=60// angle of inclination of crank in degrees\n",
+"mR=200// mass of reciprocating parts in kg\n",
+"g=9.81// acceleration due to gravity\n",
+"l=.8// length of connecting rod in m\n",
+"c=14// compression ratio=v1/v2\n",
+"p1=.1*10^6// suction pressure in n/m^2\n",
+"i=1.35// index of the law of expansion and compression \n",
+"//==============================================================\n",
+"Vs=pi/4*D^2*L// swept volume in m^3\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"Vc=Vs/(c-1)\n",
+"V3=Vc+Vs/10// volume at the end of injection of fuel in m^3\n",
+"p2=p1*c^i// final pressure in N/m^2\n",
+"p3=p2// from figure\n",
+"x=r*((1-cosd(teeta)+(sind(teeta))^2/(2*n)))// the displacement of the piston when the crank makes an angle 60 degrees with T.D.C\n",
+"Va=Vc+pi*D^2*x/4\n",
+"pa=p3*(V3/Va)^i\n",
+"p=pa-p1// difference of pressues on 2 sides of piston in N/m^2\n",
+"Fl=p*pi*D^2/4// net load on piston in N\n",
+"Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N\n",
+"Fp=Fl-Fi+mR*g// piston effort in N\n",
+"phi=asind(sind(teeta)/n)// angle of inclination of the connecting rod to the line of stroke in degrees\n",
+"T=Fp*sind(teeta+phi)/cosd(phi)*r// torque exerted on crank shaft in N-m\n",
+"printf('Effective turning moment on the crank shaft= %.3f N-m',T)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/6-Turning_Moment_Diagram_and_Flywheel.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/6-Turning_Moment_Diagram_and_Flywheel.ipynb
new file mode 100644
index 0000000..ecf3d87
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/6-Turning_Moment_Diagram_and_Flywheel.ipynb
@@ -0,0 +1,424 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Turning Moment Diagram and Flywheel"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: miminum_mass_moment_of_inertia_of_flywheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//CHAPTER 6 ILLUSRTATION 10 PAGE NO 183\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"Cs=.02// coefficient of fluctuation of speed \n",
+"N=200// speed of the engine in rpm\n",
+"//T2=15000-6000cosθ Torque required by the machine in Nm\n",
+"//T1=15000+8000sin2θ Torque supplied by the engine in Nm\n",
+"//T1-T2=8000sin2θ+6000cosθ Change in torque\n",
+"theta1=acosd(0)\n",
+"theta2=asind(-6000/16000)\n",
+"theta2=180-theta2\n",
+"//===============================================\n",
+"//largest area,representing fluctuation of energy lies between theta1 and theta2\n",
+"E=6000*sind(theta2)-8000/2*cosd(2*theta2)-(6000*sind(theta1)-8000/2*cosd(2*theta1))// total fluctuation of energy in Nm\n",
+"Theta=180// angle with which cycle will be repeated in degrees\n",
+"Theta1=0\n",
+"Tmean=1/pi*((15000*pi+(-8000*cosd(2*Theta))/2)-((15000*Theta1+(-8000*cosd(2*Theta1))/2)))// mean torque of engine in Nm\n",
+"P=2*pi*N*Tmean/60000// power of the engine in kw\n",
+"w=2*pi*N/60// angular speed of the engine in rad/s\n",
+"I=E/(w^2*Cs)// mass moment of inertia of flywheel in kg-m^2\n",
+"printf('Power of the engine= %.3f kw\n minimum mass moment of inertia of flywheel= %.3f kg-m^2\n E value calculated in the textbook is wrong. Its value is -15,124. In textbook it is given as -1370.28',P,-I)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Kinetic_energy_of_flywheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 1 PAGE NO 175\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"k=1// radius of gyration of flywheel in m\n",
+"m=2000// mass of the flywheel in kg\n",
+"T=1000// torque of the engine in Nm\n",
+"w1=0// speedin the begining\n",
+"t=10// time duration\n",
+"//==============================\n",
+"I=m*k^2// mass moment of inertia in kg-m^2\n",
+"a=T/I// angular acceleration of flywheel in rad/s^2\n",
+"w2=w1+a*t// angular speed after time t in rad/s\n",
+"K=I*w2^2/2// kinetic energy of flywheel in Nm\n",
+"//==============================\n",
+"printf('Angular acceleration of the flywheel= %.3f rad/s^2\n Kinetic energy of flywheel= %.3f N-m',a,K)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Mass_of_the_flywheel_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 2 PAGE NO 176\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"N1=225// maximum speed of flywheel in rpm\n",
+"k=.5// radius of gyration of flywheel in m\n",
+"n=720// no of holes punched per hour\n",
+"E1=15000// energy required by flywheel in Nm\n",
+"N2=200// mimimum speedof flywheel in rpm\n",
+"t=2// time taking for punching a hole\n",
+"//==========================\n",
+"P=E1*n/3600// power required by motor per sec in watts\n",
+"E2=P*t// energy supplied by motor to punch a hole in N-m\n",
+"E=E1-E2// maximum fluctuation of energy in N-m\n",
+"N=(N1+N2)/2// mean speed of the flywheel in rpm\n",
+"m=E/(pi^2/900*k^2*N*(N1-N2))\n",
+"printf('Power of the motor= %.3f watts\n Mass of the flywheel required= %.3f kg',P,m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Mass_of_the_flywheel_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 3 PAGE NO 176\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"d=38// diameter of hole in cm\n",
+"t=32// thickness of hole in cm\n",
+"e1=7// energy required to punch one square mm\n",
+"V=25// mean speed of the flywheel in m/s\n",
+"S=100// stroke of the punch in cm\n",
+"T=10// time required to punch a hole in s\n",
+"Cs=.03// coefficient of fluctuation of speed\n",
+"//===================\n",
+"A=pi*d*t// sheared area in mm^2\n",
+"E1=e1*A// energy required to punch entire area in Nm\n",
+"P=E1/T// power of motor required in watts\n",
+"T1=T/(2*S)*t// time required to punch a hole in 32 mm thick plate\n",
+"E2=P*T1// energy supplied by motor in T1 seconds\n",
+"E=E1-E2// maximum fluctuation of energy in Nm\n",
+"m=E/(V^2*Cs)// mass of the flywheel required\n",
+"printf('Mass of the flywheel required= %.0f kg',m)\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Mass_of_the_flywheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 4 PAGE NO 177\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"//figure 6.4\n",
+"clc\n",
+"clear\n",
+"//===================\n",
+"pi=3.141\n",
+"N=480// speed of the engine in rpm\n",
+"k=.6// radius of gyration in m\n",
+"Cs=.03// coefficient of fluctuaion of speed \n",
+"Ts=6000// turning moment scale in Nm per one cm\n",
+"C=30// crank angle scale in degrees per cm\n",
+"a=[0.5,-1.22,.9,-1.38,.83,-.7,1.07]// areas between the output torque and mean resistance line in sq.cm\n",
+"//======================\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"A=Ts*C*pi/180// 1 cm^2 of turning moment diagram in Nm\n",
+"E1=a(1)// max energy at B refer figure\n",
+"E2=a(1)+a(2)+a(3)+a(4)\n",
+"E=(E1-E2)*A// fluctuation of energy in Nm\n",
+"m=E/(k^2*w^2*Cs)// mass of the flywheel in kg\n",
+"printf('Mass of the flywheel= %.3f kg',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Mass_of_the_flywheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 5 PAGE NO 178\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"//==============\n",
+"pi=3.141\n",
+"P=500*10^3// power of the motor in N\n",
+"k=.6// radius of gyration in m\n",
+"Cs=.03// coefficient of fluctuation of spped \n",
+"OA=750// REFER FIGURE\n",
+"OF=6*pi// REFER FIGURE\n",
+"AG=pi// REFER FIGURE\n",
+"BG=3000-750// REFER FIGURE\n",
+"GH=2*pi// REFER FIGURE\n",
+"CH=3000-750// REFER FIGURE\n",
+"HD=pi// REFER FIGURE\n",
+"LM=2*pi// REFER FIGURE\n",
+"T=OA*OF+1/2*AG*BG+BG*GH+1/2*CH*HD// Torque required for one complete cycle in Nm\n",
+"Tmean=T/(6*pi)// mean torque in Nm\n",
+"w=P/Tmean// angular velocity required in rad/s\n",
+"BL=3000-1875// refer figure\n",
+"KL=BL*AG/BG// From similar trangles\n",
+"CM=3000-1875// refer figure\n",
+"MN=CM*HD/CH//from similar triangles\n",
+"E=1/2*KL*BL+BL*LM+1/2*CM*MN// Maximum fluctuaion of energy in Nm\n",
+"m=E*100/(k^2*w^2*Cs)// mass of flywheel in kg\n",
+"printf('Mass of the flywheel= %.3f kg',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Angular_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 6 PAGE NO 179\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"PI=180//in degrees\n",
+"theta1=0\n",
+"theta2=PI\n",
+"m=400// mass of the flywheel in kg\n",
+"N=250// speed in rpm\n",
+"k=.4// radius of gyration in m\n",
+"n=2*250/60000// no of working strokes per minute\n",
+"W=1000*pi-150*cosd(2*theta2)-250*sind(2*theta2)-(1000*theta1-150*cosd(2*theta1)-250*sind(2*theta1))// workdone per stroke in Nm\n",
+"P=W*n// power in KW\n",
+"Tmean=W/pi// mean torque in Nm\n",
+"twotheta=atand(500/300)// angle at which T-Tmean becomes zero\n",
+"THETA1=twotheta/2\n",
+"THETA2=(180+twotheta)/2\n",
+"E=-150*cosd(2*THETA2)-250*sind(2*THETA2)-(-150*cosd(2*THETA1)-250*sind(2*THETA1))// FLUCTUATION OF ENERGY IN Nm\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"Cs1=E*100/(k^2*w^2*m)// fluctuation range\n",
+"Cs=Cs1/2// tatal percentage of fluctuation of speed\n",
+"Theta=60\n",
+"T1=300*sind(2*Theta)-500*cosd(2*Theta)// Accelerating torque in Nm(T-Tmean)\n",
+"alpha=T1/(m*k^2)// angular acceleration in rad/s^2\n",
+"printf('Power delivered=%.3f kw\nTotal percentage of fluctuation speed= %.3f\nAngular acceleration= %.3f rad/s^2',P,Cs,alpha)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: Energy_expended_in_performing_each_operation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 7 PAGE NO 181\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"m=200// mass of the flywheel in kg\n",
+"k=.5// radius of gyration in m\n",
+"N1=360// upper limit of speed in rpm\n",
+"N2=240// lower limit of speed in rpm\n",
+"//==========\n",
+"I=m*k^2// mass moment of inertia in kg m^2\n",
+"w1=2*pi*N1/60\n",
+"w2=2*pi*N2/60\n",
+"E=1/2*I*(w1^2-w2^2)// fluctuation of energy in Nm\n",
+"Pmin=E/(4*1000)// power in kw\n",
+"Eex=Pmin*12*1000// Energy expended in performing each operation in N-m\n",
+"printf('Mimimum power required= %.3f kw\n Energy expended in performing each operation= %.3f N-m',Pmin,Eex)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Amount_of_Torque_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 8 PAGE NO 182\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"b=8// width of the strip in cm\n",
+"t=2// thickness of the strip in cm\n",
+"w=1.2*10^3// work required per square cm cut\n",
+"N1=200// maximum speed of the flywheel in rpm\n",
+"k=.80// radius of gyration in m\n",
+"N2=(1-.15)*N1// minimum speed of the flywheel in rpm\n",
+"T=3// time required to punch a hole\n",
+"//=======================\n",
+"A=b*t// area cut of each stroke in cm^2\n",
+"W=w*A// work required to cut a strip in Nm\n",
+"w1=2*pi*N1/60// speed before cut in rpm\n",
+"w2=2*pi*N2/60// speed after cut in rpm\n",
+"m=2*W/(k^2*(w1^2-w2^2))// mass of the flywheel required in kg\n",
+"a=(w1-w2)/T// angular acceleration in rad/s^2\n",
+"Ta=m*k^2*a// torque required in Nm\n",
+"printf('Mass of the flywheel= %.3f kg\n Amount of Torque required= %.3f Nm',m,Ta)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: Reduction_in_speed_after_the_pressing_is_over.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 6 ILLUSRTATION 9 PAGE NO 182\n",
+"//TITLE:Turning Moment Diagram and Flywheel\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"P=5*10^3// power delivered by motor in watts\n",
+"N1=360// speed of the flywheel in rpm\n",
+"I=60// mass moment of inertia in kg m^2\n",
+"E1=7500// energy required by pressing machine for 1 second in Nm\n",
+"//========================\n",
+"Ehr=P*60*60// energy sipplied per hour in Nm\n",
+"n=Ehr/E1\n",
+"E=E1-P// total fluctuation of energy in Nm\n",
+"w1=2*pi*N1/60// angular speed before pressing in rpm \n",
+"w2=((2*pi*N1/60)^2-(2*E/I))^.5// angular speed after pressing in rpm \n",
+"N2=w2*60/(2*pi)\n",
+"R=N1-N2// reduction in speed in rpm\n",
+"printf('No of pressings that can be made per hour= %.0f\n Reduction in speed after the pressing is over= %.2f rpm ',n,R)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb
new file mode 100644
index 0000000..8f8e17e
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb
@@ -0,0 +1,560 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: GOVERNORS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: EQUILIBRIUM_SPEED_OF_GOVERNOR.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 10 PAGE NO 206\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.10\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"AE=.25// LENGTH OF UPPER ARM IN m\n",
+"CE=.25// LENGTH OF LOWER ARM IN m\n",
+"EH=.1// LENGTH OF EXTENDED ARM IN m\n",
+"EF=.15// RADIUS OF BALL PATH IN m\n",
+"m=5// MASS OF EACH BALL IN Kg\n",
+"M=40// MASS OF EACH BALL IN Kg\n",
+"//===================================================================\n",
+"h=(AE^2-EF^2)^.5// HEIGHT OF THE GOVERNOR IN m\n",
+"EM=h\n",
+"HM=EH+EM// FROM FIGURE 7.10\n",
+"N=((895/h)*(EM/HM)*((m+M)/m))^.5\n",
+"printf('EQUILIBRIUM SPEED OF GOVERNOR = %.3f rpm',N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: TENSION_IN_UPPER_ARM.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 11 PAGE NO 207\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.11\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N/mm^2\n",
+"AE=.25// LENGTH OF UPPER ARM IN m\n",
+"CE=.25// LENGTH OF LOWER ARM IN m\n",
+"ER=.175// FROM FIGURE 7.11\n",
+"AP=.025// FROM FIGURE 7.11\n",
+"FR=AP// FROM FIGURE 7.11\n",
+"CQ=FR// FROM FIGURE 7.11\n",
+"m=3.2// MASS OF BALL IN Kg\n",
+"M=25// MASS OF SLEEVE IN Kg\n",
+"h=.2// VERTICAL HEIGHT OF GOVERNOR IN m\n",
+"EM=h// FROM FIGURE 7.11\n",
+"AF=h// FROM FIGURE 7.11\n",
+"N=160// SPEED OF THE GOVERNOR IN rpm\n",
+"HM=(895*EM*(m+M)/(h*N^2*m))\n",
+"x=HM-EM// LENGTH OF EXTENDED LINK IN m\n",
+"T1=g*(m+M/2)*AE/AF// TENSION IN UPPER ARM IN N\n",
+"printf('LENGTH OF EXTENDED LINK = %.3f m\n TENSION IN UPPER ARM =%.3f N',x,T1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12: MAXIMUM_SPEED_OF_ROTATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 12 PAGE NO 208\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.12,7.13\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"EF=.20// MINIMUM RADIUS OF ROTATION IN m\n",
+"AE=.30// LENGTH OF EACH ARM IN m\n",
+"A1E1=AE// COMPARING FIRUES 7.12&7.13\n",
+"EC=.30// LENGTH OF EACH ARM IN m\n",
+"E1C1=EC// LENGTH OF EACH ARM IN m\n",
+"ED=.165// FROM FIGURE 7.12 IN m\n",
+"MC=ED// FROM FIGURE 7.12\n",
+"EH=.10// FROM FIGURE 7.12 IN m\n",
+"m=8// MASS OF BALL IN Kg \n",
+"M=60// MASS OF SLEEVE IN Kg\n",
+"DF=.035// SLEEVE DISTANCE FROM AXIS IN m\n",
+"E1F1=.25// MAX RADIUS OF ROTATION IN m\n",
+"g=9.81\n",
+"//=========================================================\n",
+"alpha=asind(EF/AE)// ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL IN DEGREES\n",
+"beeta=asind(ED/EC)// ANGLE OF INCLINATION OF THE ARM TO THE HORIZONTAL IN DEGREES\n",
+"k=tand(beeta)/tand(alpha)\n",
+"h=(AE^2-EF^2)^.5// HEIGHT OF GOVERNOR IN m\n",
+"EM=(EC^2-MC^2)^.5// FROM FIGURE 7.12 IN m\n",
+"HM=EM+EH\n",
+"N2=(895*EM*(m+(M/2*(1+k)))/(h*HM*m))^.5// EQUILIBRIUM SPEED AT MAX RADIUS\n",
+"HC=(HM^2+MC^2)^.5// FROM FIGURE 7.13 IN m\n",
+"H1C1=HC\n",
+"gama=atand(MC/HM)\n",
+"alpha1=asind(E1F1/A1E1)\n",
+"E1D1=E1F1-DF// FROM FIGURE 7.13 IN m\n",
+"beeta1=asind(E1D1/E1C1)\n",
+"gama1=gama-beeta+beeta1\n",
+"r=H1C1*sind(gama1)+DF// RADIUS OF ROTATION IN m\n",
+"H1M1=H1C1*cosd(gama1)\n",
+"I1C1=E1C1*cosd(beeta1)*(tand(alpha1)+tand(beeta1))// FROM FIGURE IN m\n",
+"M1C1=H1C1*sind(gama1)\n",
+"w1=(((m*g*(I1C1-M1C1))+(M*g*I1C1)/2)/(m*r*H1M1))^.5// ANGULAR SPEED IN rad/s\n",
+"N1=w1*60/(2*PI)// //SPEED IN m/s\n",
+"printf('MINIMUM SPEED OF ROTATION = %.3f rpm\n MAXIMUM SPEED OF ROTATION = %.3f rpm',N2,N1)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: PERCENTAGE_CHANGE_IN_SPEED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 1 PAGE NO 196\n",
+"//TITLE:GOVERNORS\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"L=.4// LENGTH OF UPPER ARM IN m\n",
+"THETA=30// INCLINATION TO THE VERTICAL IN degrees\n",
+"K=.02// RISED LENGTH IN m\n",
+"//============================================================================================\n",
+"h2=L*cosd(THETA)// GOVERNOR HEIGHT IN m\n",
+"N2=(895/h2)^.5// SPEED AT h2 IN rpm\n",
+"h1=h2-K// LENGTH WHEN IT IS RAISED BY 2 cm\n",
+"N1=(895/h1)^.5// SPEED AT h1 IN rpm\n",
+"n=(N1-N2)/N2*100// PERCENTAGE CHANGE IN SPEED\n",
+"//==========================================================================================\n",
+"printf('PERCENTAGE CHANGE IN SPEED= %.f PERCENTAGE',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: RANGE_OF_SPEED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 2 PAGE NO 197\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.5(A),7.5(B)\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"OA=.3// LENGTH OF UPPER ARM IN m\n",
+"m=6// MASS OF EACH BALL IN Kg\n",
+"M=18// MASS OF SLEEVE IN Kg\n",
+"r2=.2// RADIUS OF ROTATION AT BEGINING IN m\n",
+"r1=.25// RADIUS OF ROTATION AT MAX SPEED IN m\n",
+"//===========================================================================================\n",
+"h1=(OA^2-r1^2)^.5// HIEGHT OF GOVERNOR AT MAX SPEED IN m\n",
+"N1=(895*(m+M)/(h1*m))^.5// MAX SPEED IN rpm\n",
+"h2=(OA^2-r2^2)^.5// HEIGHT OF GONERNOR AT BEGINING IN m\n",
+"N2=(895*(m+M)/(h2*m))^.5// MIN SPEED IN rpm\n",
+"//===========================================================================================\n",
+"printf('MAX SPEED = %.3f rpm\n MIN SPEED = %.3f rpm\n RANGE OF SPEED = %.3f rpm',N1,N2,N1-N2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: RANGE_OF_SPEED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 3 PAGE NO 197\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.6\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"OA=.25// LENGHT OF UPPER ARM IN m\n",
+"CD=.03// DISTANCE BETWEEN LEEVE AND LOWER ARM IN m\n",
+"m=6// MASS OF BALL IN Kg\n",
+"M=48// MASS OF SLEEVE IN Kg\n",
+"AE=.17// FROM FIGURE 7.6\n",
+"AE1=.12// FROM FIGURE 7.6\n",
+"r1=.2// RADIUS OF ROTATION AT MAX SPEED IN m\n",
+"r2=.15// RADIUS OF ROTATION AT MIN SPEED IN m\n",
+"//============================================================================================\n",
+"h1=(OA^2-r1^2)^.5// HIEGHT OF GOVERNOR AT MIN SPEED IN m\n",
+"TANalpha=r1/h1\n",
+"TANbeeta=AE/(OA^2-AE^2)^.5\n",
+"k=TANbeeta/TANalpha\n",
+"N1=(895*(m+(M*(1+k)/2))/(h1*m))^.5// MIN SPEED IN rpm\n",
+"h2=(OA^2-r2^2)^.5// HIEGHT OF GOVERNOR AT MAX SPEED IN m\n",
+"CE=(OA^2-AE1^2)^.5\n",
+"TANalpha1=r2/h2\n",
+"TANbeeta1=(r2-CD)/CE\n",
+"k=TANbeeta1/TANalpha1\n",
+"N2=(895*(m+(M*(1+k)/2))/(h2*m))^.5// MIN SPEED IN rpm\n",
+"//========================================================================================================\n",
+"printf('MAX SPEED = %.3f rpm\n MIN SPEED = %.3f rpm\n RANGE OF SPEED = %.3f rpm',N1,N2,N1-N2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: GOVERNOR_POWER.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 4 PAGE NO 199\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.7\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY \n",
+"OA=.20// LENGHT OF UPPER ARM IN m\n",
+"AC=.20// LENGTH OF LOWER ARM IN m\n",
+"CD=.025// DISTANCE BETWEEN AXIS AND LOWER ARM IN m\n",
+"AB=.1// RADIUS OF ROTATION OF BALLS IN m\n",
+"N2=250// SPEED OF THE GOVERNOR IN rpm\n",
+"X=.05// SLEEVE LIFT IN m\n",
+"m=5// MASS OF BALL IN Kg\n",
+"M=20// MASS OF SLEEVE IN Kg\n",
+"//===========================================================\n",
+"h2=(OA^2-AB^2)^.5// OB DISTANCE IN m IN FIGURE\n",
+"h21=(AC^2-(AB-CD)^2)^.5// BD DISTANCE IN m IN FIGURE\n",
+"TANbeeta=(AB-CD)/h21// TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL\n",
+"TANalpha=AB/h2// TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n",
+"k=TANbeeta/TANalpha\n",
+"c=X/(2*(h2*(1+k)-X))// PERCENTAGE INCREASE IN SPEED \n",
+"n=c*N2// INCREASE IN SPEED IN rpm\n",
+"N1=N2+n// SPEED AFTER LIFT OF SLEEVE\n",
+"E=c*g*((2*m/(1+k))+M)// GOVERNOR EFFORT IN N\n",
+"P=E*X// GOVERNOR POWER IN N-m\n",
+"\n",
+"printf('SPEED OF THE GOVERNOR WHEN SLEEVE IS LIFT BY 5 cm = %.3f rpm\n GOVERNOR EFFORT = %.3f N\n GOVERNOR POWER = %.3f N-m',N1,E,P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: RANGE_OF_SPEED_OF_GOVERNOR.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 5 PAGE NO 200\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.8\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY \n",
+"OA=.30// LENGHT OF UPPER ARM IN m\n",
+"AC=.30// LENGTH OF LOWER ARM IN m\n",
+"m=10// MASS OF BALL IN Kg\n",
+"M=50// MASS OF SLEEVE IN Kg\n",
+"r=.2// RADIUS OF ROTATION IN m\n",
+"CD=.04// DISTANCE BETWEEN AXIS AND LOWER ARM IN m\n",
+"F=15// FRICTIONAL LOAD ACTING IN N\n",
+"//============================================================\n",
+"h=(OA^2-r^2)^.5// HIEGTH OF THE GOVERNOR IN m\n",
+"AE=r-CD// AE VALUE IN m\n",
+"CE=(AC^2-AE^2)^.5// BD DISTANCE IN m\n",
+"TANalpha=r/h// TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n",
+"TANbeeta=AE/CE// TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL\n",
+"k=TANbeeta/TANalpha\n",
+"N=((895/h)*(m+(M*(1+k)/2))/m)^.5// EQULIBRIUM SPEED IN rpm\n",
+"N1=((895/h)*((m*g)+(M*g+F)/2)*(1+k)/(m*g))^.5// MAX SPEED IN rpm\n",
+"N2=((895/h)*((m*g)+(M*g-F)/2)*(1+k)/(m*g))^.5// MIN SPEED IN rpm\n",
+"R=N1-N2// RANGE OF SPEED\n",
+"printf('EQUILIBRIUM SPEED OF GOVERNOR = %.3f rpm\n RANGE OF SPEED OF GOVERNOR= %.3f rpm',N,R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: RANGE_OF_SPEED_OF_GOVERNOR.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 6 PAGE NO 202\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.9\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY \n",
+"OA=.30// LENGHT OF UPPER ARM IN m\n",
+"AC=.30// LENGTH OF LOWER ARM IN m\n",
+"m=5// MASS OF BALL IN Kg\n",
+"M=25// MASS OF SLEEVE IN Kg\n",
+"X=.05// LIFT OF THE SLEEVE\n",
+"alpha=30// ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n",
+"//==============================================\n",
+"h2=OA*cosd(alpha)// HEIGHT OF THE GOVERNOR AT LOWEST POSITION OF SLEEVE\n",
+"h1=h2-X/2// HEIGHT OF THE GOVERNOR AT HEIGHT POSITION OF SLEEVE\n",
+"F=((h2/h1)*(m*g+M*g)-(m*g+M*g))/(1+h2/h1)// FRICTION AT SLEEVE IN N\n",
+"N1=((m*g+M*g+F)*895/(h1*m*g))^.5// MAX SPEEED OF THE GOVVERNOR IN rpm\n",
+"N2=((m*g+M*g-F)*895/(h2*m*g))^.5// MIN SPEEED OF THE GOVVERNOR IN rpm\n",
+"R=N1-N2// RANGE OF SPEED IN rpm\n",
+"\n",
+"printf('THE VALUE OF FRICTIONAL FORCE= %.3f F\n RANGE OF SPEED OF THE GOVERNOR = %.0f rpm',F,R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: EQUILIBRIUM_SPEED_CORRESPONDING_TO_LIFT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 7 PAGE NO 203\n",
+"//TITLE:GOVERNORS\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"m=3// MASS OF EACH BALL IN Kg\n",
+"a=.12// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n",
+"b=.08// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n",
+"r2=.12// RADIUS OF ROTATION OF THE BALL FOR LOWEST POSITION IN m\n",
+"N2=320// SPEED OF GOVERNOR AT THE BEGINING IN rpm\n",
+"S=20000// STIFFNESS OF THE SPRING IN N/m\n",
+"h=.015// SLEEVE LIFT IN m\n",
+"//==================================================\n",
+"Fc2=m*(2*PI*N2/60)^2*r2// CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N\n",
+"L=2*a*Fc2/b// INITIAL LOAD ON SPRING IN N\n",
+"r1=a/b*h+r2// MAX RADIUS OF ROTATION IN m\n",
+"Fc1=(S*(r1-r2)*(b/a)^2/2)+Fc2// CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N\n",
+"N1=(Fc1/(m*r1)*(60/2/PI)^2)^.5\n",
+"printf('INITIAL LOAD ON SPRING =%.3f N\n EQUILIBRIUM SPEED CORRESPONDING TO LIFT OF 15 cm =%.0f rpm',L,N1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: STIFFNESS_OF_THE_SPRING.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 8 PAGE NO 204\n",
+"//TITLE:GOVERNORS\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"m=3// MASS OF BALL IN Kg\n",
+"r2=.2// INITIAL RADIUS OF ROTATION IN m\n",
+"a=.11// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n",
+"b=.15// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n",
+"h=.004// SLEEVE LIFT IN m\n",
+"N2=240// INITIAL SPEED IN rpm\n",
+"n=7.5// FLUCTUATION OF SPEED IN %\n",
+"//===================================\n",
+"w2=2*PI*N2/60// INITIAL ANGULAR SPEED IN rad/s\n",
+"w1=(100+n)*w2/100// FINAL ANGULAR SPEED IN rad/s\n",
+"F=2*a/b*m*w2^2*r2// INITIAL COMPRESSIVE FORCE IN N\n",
+"r1=r2+a/b*h// MAX RDIUS OF ROTATION IN m\n",
+"S=2*((m*w1^2*r1)-(m*w2^2*r2))/(r1-r2)*(a/b)^2\n",
+"printf('INITIAL COMPRESSIVE FPRCE = %.3f N\n STIFFNESS OF THE SPRING = %.3f N/m',F,S/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: ALTERATION_IN_SPEED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 7 ILLUSRTATION 9 PAGE NO 204\n",
+"//TITLE:GOVERNORS\n",
+"//FIGURE 7.3(C)\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY \n",
+"PI=3.147\n",
+"r=.14// DISTANCE BETWEEN THE CENTRE OF PIVOT OF BELL CRANK LEVER AND AXIS OF GOVERNOR SPINDLE IN m\n",
+"r2=.11// INITIAL RADIUS OF ROTATION IN m\n",
+"a=.12// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n",
+"b=.10// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n",
+"h=.05// SLEEVE LIFT IN m\n",
+"N2=240// INITIAL SPEED IN rpm\n",
+"F=30// FRICTIONAL FORCE ACTING IN N\n",
+"m=5// MASS OF EACH BALL IN Kg\n",
+"//==========================================\n",
+"r1=r2+a/b*h// MAX RADIUS OF ROTATION IN m\n",
+"N1=41*N2/39// MAX SPEED OF ROTATION IN rpm\n",
+"N=(N1+N2)/2// MEAN SPEED IN rpm\n",
+"Fc1=m*(2*PI*N1/60)^2*r1// CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N\n",
+"Fc2=m*(2*PI*N2/60)^2*r2// CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N\n",
+"c1=r1-r// FROM FIGURE 7.3(C) IN m\n",
+"a1=(a^2-c1^2)^.5// FROM FIGURE 7.3(C) IN m\n",
+"b1=(b^2-(h/2)^2)^.5// FROM FIGURE 7.3(C) IN m\n",
+"c2=r-r2// FROM FIGURE 7.3(C) IN m\n",
+"a2=a1// FROM FIGURE 7.3(C) IN m\n",
+"b2=b1// FROM FIGURE 7.3(C) IN m\n",
+"S1=2*((Fc1*a1)-(m*g*c1))/b1// SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS\n",
+"S2=2*((Fc2*a2)-(m*g*c2))/b2// SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS\n",
+"S=(S1-S2)/h// STIFFNESS OF THE SPRING IN N/m\n",
+"Is=S2/S// INITIAL COMPRESSION OF SPRING IN m\n",
+"P=S2+(h/2*S)// SPRING FORCE OF MID PORTION IN N\n",
+"n1=N*((P+F)/P)^.5// SPEED,WHEN THE SLEEVE BEGINS TO MOVE UPWARDS FROM MID POSITION IN rpm\n",
+"n2=N*((P-F)/P)^.5// SPEED,WHEN THE SLEEVE BEGINS TO MOVE DOWNWARDS FROM MID POSITION IN rpm\n",
+"A=n1-n2// ALTERATION IN SPEED IN rpm\n",
+"printf('INTIAL COMPRESSION OF SPRING= %.3f cm\n ALTERATION IN SPEED = %.3f rpm',Is*100,A)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/8-balancing_of_rotating_masses_.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/8-balancing_of_rotating_masses_.ipynb
new file mode 100644
index 0000000..260e6d4
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/8-balancing_of_rotating_masses_.ipynb
@@ -0,0 +1,292 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: balancing of rotating masses "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: magnitude_of_balancing_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 8 ILLUSRTATION 1 PAGE NO 221\n",
+"//TITLE:BALANCING OF ROTATING MASSES\n",
+"pi=3.141\n",
+"clc\n",
+"clear\n",
+"mA=12// mass of A in kg\n",
+"mB=10// mass of B in kg\n",
+"mC=18// mass of C in kg\n",
+"mD=15// mass of D in kg\n",
+"rA=40// radius of A in mm\n",
+"rB=50// radius of B in mm\n",
+"rC=60// radius of C in mm\n",
+"rD=30// radius of D in mm\n",
+"theta1=0// angle between A-A in degrees\n",
+"theta2=60// angle between A-B in degrees\n",
+"theta3=130// angle between A-C in degrees\n",
+"theta4=270// angle between A-D in degrees\n",
+"R=100// radius at which mass to be determined in mm\n",
+"//====================================================\n",
+"Fh=(mA*rA*cosd(theta1)+mB*rB*cosd(theta2)+mC*rC*cosd(theta3)+mD*rD*cosd(theta4))/10// vertical component value in kg cm\n",
+"Fv=(mA*rA*sind(theta1)+mB*rB*sind(theta2)+mC*rC*sind(theta3)+mD*rD*sind(theta4))/10// horizontal component value in kg cm\n",
+"mb=(Fh^2+Fv^2)^.5/R*10// unbalanced mass in kg\n",
+"theta=atand(Fv/Fh)// position in degrees \n",
+"THETA=180+theta// angle with mA\n",
+"printf('magnitude of unbalaced mass=%.3f kg\n angle with mA= %.3f degrees',mb,THETA)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: masses_of_D_and_E.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 8 ILLUSRTATION 2 PAGE NO 222\n",
+"//TITLE:BALANCING OF ROTATING MASSES\n",
+"pi=3.141\n",
+"clc\n",
+"clear\n",
+"mA=5// mass of A in kg\n",
+"mB=10// mass of B in kg\n",
+"mC=8// mass of C in kg\n",
+"rA=10// radius of A in cm\n",
+"rB=15// radius of B in cm\n",
+"rC=10// radius of C in cm\n",
+"rD=10// radius of D in cm\n",
+"rE=15// radius of E in cm\n",
+"//============================\n",
+"mD=182/rD// mass of D in kg by mearument\n",
+"mE=80/rE// mass of E in kg by mearument\n",
+"printf('mass of D= %.3f kg\nmass of E= %.3f kg',mD,mE)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: balancing_mass_and_angular_position.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 8 ILLUSRTATION 3 PAGE NO 223\n",
+"//TITLE:BALANCING OF ROTATING MASSES\n",
+"pi=3.141\n",
+"clc\n",
+"clear\n",
+"mA=200// mass of A in kg\n",
+"mB=300// mass of B in kg\n",
+"mC=400// mass of C in kg\n",
+"mD=200// mass of D in kg\n",
+"rA=80// radius of A in mm\n",
+"rB=70// radius of B in mm\n",
+"rC=60// radius of C in mm\n",
+"rD=80// radius of D in mm\n",
+"rX=100// radius of X in mm\n",
+"rY=100// radius of Y in mm\n",
+"//=====================\n",
+"mY=7.3/.04// mass of Y in kg by mearurement\n",
+"mX=35/.1// mass of X in kg by mearurement\n",
+"thetaX=146// in degrees by mesurement\n",
+"printf('mass of X=%.3f kg\n mass of Y=%.3f kg\n angle with mA=%.0f degrees',mX,mY,thetaX)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: balancing_mass_and_angular_position.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 8 ILLUSRTATION 4 PAGE NO 225\n",
+"//TITLE:BALANCING OF ROTATING MASSES\n",
+"pi=3.141\n",
+"clc\n",
+"clear\n",
+"mB=30// mass of B in kg\n",
+"mC=50// mass of C in kg\n",
+"mD=40// mass of D in kg\n",
+"rA=18// radius of A in cm\n",
+"rB=24// radius of B in cm\n",
+"rC=12// radius of C in cm\n",
+"rD=15// radius of D in cm\n",
+"//=============================\n",
+"mA=3.6/.18// mass of A by measurement in kg\n",
+"theta=124// angle with mass B in degrees by measurement in degrees\n",
+"y=3.6/(.18*20)// position of A from B\n",
+"printf('mass of A=%i kg\n angle with mass B=%i degrees\n position of A from B=%i m towards right of plane B',mA,theta,y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: balancing_mass_and_angular_position.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 8 ILLUSRTATION 5 PAGE NO 226\n",
+"//TITLE:BALANCING OF ROTATING MASSES\n",
+"pi=3.141\n",
+"clc\n",
+"clear\n",
+"mB=10// mass of B in kg\n",
+"mC=5// mass of C in kg\n",
+"mD=4// mass of D in kg\n",
+"rA=10// radius of A in cm\n",
+"rB=12.5// radius of B in cm\n",
+"rC=20// radius of C in cm\n",
+"rD=15// radius of D in cm\n",
+"//=====================================\n",
+"mA=7// mass of A in kg by mesurement\n",
+"BC=118// angle between B and C in degrees by mesurement\n",
+"BA=203.5// angle between B and A in degrees by mesurement\n",
+"BD=260// angle between B and D in degrees by mesurement\n",
+"printf('Mass of A=%i kg\n angle between B and C=%i degrees\nangle between B and A= %.1f degrees\n angle between B and D= %i degrees',mA,BC,BA,BD)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: mass_of_D.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 8 ILLUSRTATION 6 PAGE NO 228\n",
+"//TITLE:BALANCING OF ROTATING MASSES\n",
+"pi=3.141\n",
+"clc\n",
+"clear\n",
+"mB=36// mass of B in kg\n",
+"mC=25// mass of C in kg\n",
+"rA=20// radius of A in cm\n",
+"rB=15// radius of B in cm\n",
+"rC=15// radius of C in cm\n",
+"rD=20// radius of D in cm\n",
+"//==================================\n",
+"mA=3.9/.2// mass of A in kg by measurement\n",
+"mD=16.5// mass of D in kg by measurement\n",
+"theta=252// angular position of D from B by measurement in degrees\n",
+"printf('Mass of A= %.1f kg\n Mass od D= %.1f kg\n Angular position of D from B= %i degrees',mA,mD,theta)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: load_on_each_bearing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 8 ILLUSRTATION 7 PAGE NO 229\n",
+"//TITLE:BALANCING OF ROTATING MASSES\n",
+"\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"mA=48// mass of A in kg\n",
+"mB=56// mass of B in kg\n",
+"mC=20// mass of C in kg\n",
+"rA=1.5// radius of A in cm\n",
+"rB=1.5// radius of B in cm\n",
+"rC=1.25// radius of C in cm\n",
+"N=300// speed in rpm\n",
+"d=1.8// distance between bearing in cm\n",
+"//================================\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"BA=164// angle between pulleys B&A in degrees by measurement\n",
+"BC=129// angle between pulleys B&C in degrees by measurement\n",
+"AC=67// angle between pulleys A&C in degrees by measurement\n",
+"C=.88*w^2// out of balance couple in N\n",
+"L=C/d// load on each bearing in N\n",
+"printf('angle between pulleys B&A=%i degrees\n angle between pulleys B&C= %i degrees\n angle between pulleys A&C= %i degrees\n out of balance couple= %.3f N\n load on each bearing= %.3f N',BA,BC,AC,C,L)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/9-cams_and_followers.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/9-cams_and_followers.ipynb
new file mode 100644
index 0000000..8630d7f
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/9-cams_and_followers.ipynb
@@ -0,0 +1,138 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: cams and followers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: maximum_velocity_and_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 9 ILLUSRTATION 2 PAGE NO 247\n",
+"//TITLE:CAMS AND FOLLOWERS\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"s=4// follower movement in cm\n",
+"theta=60// cam rotation in degrees\n",
+"THETA=60*pi/180// cam rotation in rad\n",
+"thetaD=45// after outstroke in degrees\n",
+"thetaR=90//....angle with which it reaches its original position in degrees\n",
+"THETAR=90*pi/180// angle with which it reaches its original position in rad\n",
+"THETAd=360-theta-thetaD-thetaR// angle after return stroke in degrees\n",
+"N=300// speed in rpm\n",
+"w=2*pi*N/60// speed in rad/s\n",
+"Vo=pi*w*s/2/THETA// Maximum velocity of follower during outstroke in cm/s\n",
+"Vr=pi*w*s/2/THETAR// Maximum velocity of follower during return stroke in cm/s\n",
+"Fo=pi^2*w^2*s/2/THETA^2/100//Maximum acceleration of follower during outstroke in m/s^2\n",
+"Fr=pi^2*w^2*s/2/THETAR^2/100//Maximum acceleration of follower during return stroke in m/s^2\n",
+"printf('Maximum acceleration of follower during outstroke =%.3f m/s^2\nMaximum acceleration of follower during return stroke= %.3f m/s^2',Fo,Fr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: maximum_velocity_and_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 9 ILLUSRTATION 3 PAGE NO 249\n",
+"//TITLE:CAMS AND FOLLOWERS\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"s=5// follower movement in cm\n",
+"theta=120// cam rotation in degrees\n",
+"THETA=theta*pi/180// cam rotation in rad\n",
+"thetaD=30// after outstroke in degrees\n",
+"thetaR=60//....angle with which it reaches its original position in degrees\n",
+"THETAR=60*pi/180// angle with which it reaches its original position in rad\n",
+"THETAd=360-theta-thetaD-thetaR// angle after return stroke in degrees\n",
+"N=100// speed in rpm\n",
+"w=2*pi*N/60// speed in rad/s\n",
+"Vo=pi*w*s/2/THETA// Maximum velocity of follower during outstroke in cm/s\n",
+"Vr=pi*w*s/2/THETAR// Maximum velocity of follower during return stroke in cm/s\n",
+"Fo=pi^2*w^2*s/2/THETA^2/100//Maximum acceleration of follower during outstroke in m/s^2\n",
+"Fr=pi^2*w^2*s/2/THETAR^2/100//Maximum acceleration of follower during return stroke in m/s^2\n",
+"printf('Maximum acceleration of follower during outstroke =%.3f m/s^2\nMaximum acceleration of follower during return stroke= %.3f m/s^2',Fo,Fr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: maximum_velocity_and_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 9 ILLUSRTATION 5 PAGE NO 252\n",
+"//TITLE:CAMS AND FOLLOWERS\n",
+"clc\n",
+"clear\n",
+"pi=3.141\n",
+"N=1000// speed of cam in rpm\n",
+"w=2*pi*N/60// angular speed in rad/s\n",
+"s=2.5// stroke of the follower in cm\n",
+"THETA=120*pi/180// ANGULAR DISPLACEMENT OF CAM DURING OUTSTROKE IN RAD\n",
+"THETAR=90*pi/180//ANGULAR DISPLACEMENT OF CAM DURING DWELL IN RAD\n",
+"Vo=2*w*s/THETA// Maximum velocity of follower during outstroke in cm/s\n",
+"Vr=2*w*s/THETAR//Maximum velocity of follower during return stroke in cm/s\n",
+"Fo=4*w^2*s/THETA^2//Maximum acceleration of follower during outstroke in m/s^2\n",
+"Fr=4*w^2*s/THETAR^2//Maximum acceleration of follower during return stroke in m/s^2\n",
+"printf('Maximum acceleration of follower during outstroke =%.3f m/s^2\nMaximum acceleration of follower during return stroke= %.3f m/s^2',Fo,Fr)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}