diff options
Diffstat (limited to 'Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb')
-rw-r--r-- | Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb | 560 |
1 files changed, 560 insertions, 0 deletions
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb new file mode 100644 index 0000000..8f8e17e --- /dev/null +++ b/Theory_Of_Machines_by_B_K_Sarkar/7-GOVERNORS.ipynb @@ -0,0 +1,560 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: GOVERNORS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.10: EQUILIBRIUM_SPEED_OF_GOVERNOR.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 10 PAGE NO 206\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.10\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"AE=.25// LENGTH OF UPPER ARM IN m\n", +"CE=.25// LENGTH OF LOWER ARM IN m\n", +"EH=.1// LENGTH OF EXTENDED ARM IN m\n", +"EF=.15// RADIUS OF BALL PATH IN m\n", +"m=5// MASS OF EACH BALL IN Kg\n", +"M=40// MASS OF EACH BALL IN Kg\n", +"//===================================================================\n", +"h=(AE^2-EF^2)^.5// HEIGHT OF THE GOVERNOR IN m\n", +"EM=h\n", +"HM=EH+EM// FROM FIGURE 7.10\n", +"N=((895/h)*(EM/HM)*((m+M)/m))^.5\n", +"printf('EQUILIBRIUM SPEED OF GOVERNOR = %.3f rpm',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.11: TENSION_IN_UPPER_ARM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 11 PAGE NO 207\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.11\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N/mm^2\n", +"AE=.25// LENGTH OF UPPER ARM IN m\n", +"CE=.25// LENGTH OF LOWER ARM IN m\n", +"ER=.175// FROM FIGURE 7.11\n", +"AP=.025// FROM FIGURE 7.11\n", +"FR=AP// FROM FIGURE 7.11\n", +"CQ=FR// FROM FIGURE 7.11\n", +"m=3.2// MASS OF BALL IN Kg\n", +"M=25// MASS OF SLEEVE IN Kg\n", +"h=.2// VERTICAL HEIGHT OF GOVERNOR IN m\n", +"EM=h// FROM FIGURE 7.11\n", +"AF=h// FROM FIGURE 7.11\n", +"N=160// SPEED OF THE GOVERNOR IN rpm\n", +"HM=(895*EM*(m+M)/(h*N^2*m))\n", +"x=HM-EM// LENGTH OF EXTENDED LINK IN m\n", +"T1=g*(m+M/2)*AE/AF// TENSION IN UPPER ARM IN N\n", +"printf('LENGTH OF EXTENDED LINK = %.3f m\n TENSION IN UPPER ARM =%.3f N',x,T1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.12: MAXIMUM_SPEED_OF_ROTATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 12 PAGE NO 208\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.12,7.13\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"EF=.20// MINIMUM RADIUS OF ROTATION IN m\n", +"AE=.30// LENGTH OF EACH ARM IN m\n", +"A1E1=AE// COMPARING FIRUES 7.12&7.13\n", +"EC=.30// LENGTH OF EACH ARM IN m\n", +"E1C1=EC// LENGTH OF EACH ARM IN m\n", +"ED=.165// FROM FIGURE 7.12 IN m\n", +"MC=ED// FROM FIGURE 7.12\n", +"EH=.10// FROM FIGURE 7.12 IN m\n", +"m=8// MASS OF BALL IN Kg \n", +"M=60// MASS OF SLEEVE IN Kg\n", +"DF=.035// SLEEVE DISTANCE FROM AXIS IN m\n", +"E1F1=.25// MAX RADIUS OF ROTATION IN m\n", +"g=9.81\n", +"//=========================================================\n", +"alpha=asind(EF/AE)// ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL IN DEGREES\n", +"beeta=asind(ED/EC)// ANGLE OF INCLINATION OF THE ARM TO THE HORIZONTAL IN DEGREES\n", +"k=tand(beeta)/tand(alpha)\n", +"h=(AE^2-EF^2)^.5// HEIGHT OF GOVERNOR IN m\n", +"EM=(EC^2-MC^2)^.5// FROM FIGURE 7.12 IN m\n", +"HM=EM+EH\n", +"N2=(895*EM*(m+(M/2*(1+k)))/(h*HM*m))^.5// EQUILIBRIUM SPEED AT MAX RADIUS\n", +"HC=(HM^2+MC^2)^.5// FROM FIGURE 7.13 IN m\n", +"H1C1=HC\n", +"gama=atand(MC/HM)\n", +"alpha1=asind(E1F1/A1E1)\n", +"E1D1=E1F1-DF// FROM FIGURE 7.13 IN m\n", +"beeta1=asind(E1D1/E1C1)\n", +"gama1=gama-beeta+beeta1\n", +"r=H1C1*sind(gama1)+DF// RADIUS OF ROTATION IN m\n", +"H1M1=H1C1*cosd(gama1)\n", +"I1C1=E1C1*cosd(beeta1)*(tand(alpha1)+tand(beeta1))// FROM FIGURE IN m\n", +"M1C1=H1C1*sind(gama1)\n", +"w1=(((m*g*(I1C1-M1C1))+(M*g*I1C1)/2)/(m*r*H1M1))^.5// ANGULAR SPEED IN rad/s\n", +"N1=w1*60/(2*PI)// //SPEED IN m/s\n", +"printf('MINIMUM SPEED OF ROTATION = %.3f rpm\n MAXIMUM SPEED OF ROTATION = %.3f rpm',N2,N1)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: PERCENTAGE_CHANGE_IN_SPEED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 1 PAGE NO 196\n", +"//TITLE:GOVERNORS\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"L=.4// LENGTH OF UPPER ARM IN m\n", +"THETA=30// INCLINATION TO THE VERTICAL IN degrees\n", +"K=.02// RISED LENGTH IN m\n", +"//============================================================================================\n", +"h2=L*cosd(THETA)// GOVERNOR HEIGHT IN m\n", +"N2=(895/h2)^.5// SPEED AT h2 IN rpm\n", +"h1=h2-K// LENGTH WHEN IT IS RAISED BY 2 cm\n", +"N1=(895/h1)^.5// SPEED AT h1 IN rpm\n", +"n=(N1-N2)/N2*100// PERCENTAGE CHANGE IN SPEED\n", +"//==========================================================================================\n", +"printf('PERCENTAGE CHANGE IN SPEED= %.f PERCENTAGE',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: RANGE_OF_SPEED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 2 PAGE NO 197\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.5(A),7.5(B)\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"OA=.3// LENGTH OF UPPER ARM IN m\n", +"m=6// MASS OF EACH BALL IN Kg\n", +"M=18// MASS OF SLEEVE IN Kg\n", +"r2=.2// RADIUS OF ROTATION AT BEGINING IN m\n", +"r1=.25// RADIUS OF ROTATION AT MAX SPEED IN m\n", +"//===========================================================================================\n", +"h1=(OA^2-r1^2)^.5// HIEGHT OF GOVERNOR AT MAX SPEED IN m\n", +"N1=(895*(m+M)/(h1*m))^.5// MAX SPEED IN rpm\n", +"h2=(OA^2-r2^2)^.5// HEIGHT OF GONERNOR AT BEGINING IN m\n", +"N2=(895*(m+M)/(h2*m))^.5// MIN SPEED IN rpm\n", +"//===========================================================================================\n", +"printf('MAX SPEED = %.3f rpm\n MIN SPEED = %.3f rpm\n RANGE OF SPEED = %.3f rpm',N1,N2,N1-N2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: RANGE_OF_SPEED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 3 PAGE NO 197\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.6\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"OA=.25// LENGHT OF UPPER ARM IN m\n", +"CD=.03// DISTANCE BETWEEN LEEVE AND LOWER ARM IN m\n", +"m=6// MASS OF BALL IN Kg\n", +"M=48// MASS OF SLEEVE IN Kg\n", +"AE=.17// FROM FIGURE 7.6\n", +"AE1=.12// FROM FIGURE 7.6\n", +"r1=.2// RADIUS OF ROTATION AT MAX SPEED IN m\n", +"r2=.15// RADIUS OF ROTATION AT MIN SPEED IN m\n", +"//============================================================================================\n", +"h1=(OA^2-r1^2)^.5// HIEGHT OF GOVERNOR AT MIN SPEED IN m\n", +"TANalpha=r1/h1\n", +"TANbeeta=AE/(OA^2-AE^2)^.5\n", +"k=TANbeeta/TANalpha\n", +"N1=(895*(m+(M*(1+k)/2))/(h1*m))^.5// MIN SPEED IN rpm\n", +"h2=(OA^2-r2^2)^.5// HIEGHT OF GOVERNOR AT MAX SPEED IN m\n", +"CE=(OA^2-AE1^2)^.5\n", +"TANalpha1=r2/h2\n", +"TANbeeta1=(r2-CD)/CE\n", +"k=TANbeeta1/TANalpha1\n", +"N2=(895*(m+(M*(1+k)/2))/(h2*m))^.5// MIN SPEED IN rpm\n", +"//========================================================================================================\n", +"printf('MAX SPEED = %.3f rpm\n MIN SPEED = %.3f rpm\n RANGE OF SPEED = %.3f rpm',N1,N2,N1-N2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: GOVERNOR_POWER.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 4 PAGE NO 199\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.7\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"g=9.81// ACCELERATION DUE TO GRAVITY \n", +"OA=.20// LENGHT OF UPPER ARM IN m\n", +"AC=.20// LENGTH OF LOWER ARM IN m\n", +"CD=.025// DISTANCE BETWEEN AXIS AND LOWER ARM IN m\n", +"AB=.1// RADIUS OF ROTATION OF BALLS IN m\n", +"N2=250// SPEED OF THE GOVERNOR IN rpm\n", +"X=.05// SLEEVE LIFT IN m\n", +"m=5// MASS OF BALL IN Kg\n", +"M=20// MASS OF SLEEVE IN Kg\n", +"//===========================================================\n", +"h2=(OA^2-AB^2)^.5// OB DISTANCE IN m IN FIGURE\n", +"h21=(AC^2-(AB-CD)^2)^.5// BD DISTANCE IN m IN FIGURE\n", +"TANbeeta=(AB-CD)/h21// TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL\n", +"TANalpha=AB/h2// TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n", +"k=TANbeeta/TANalpha\n", +"c=X/(2*(h2*(1+k)-X))// PERCENTAGE INCREASE IN SPEED \n", +"n=c*N2// INCREASE IN SPEED IN rpm\n", +"N1=N2+n// SPEED AFTER LIFT OF SLEEVE\n", +"E=c*g*((2*m/(1+k))+M)// GOVERNOR EFFORT IN N\n", +"P=E*X// GOVERNOR POWER IN N-m\n", +"\n", +"printf('SPEED OF THE GOVERNOR WHEN SLEEVE IS LIFT BY 5 cm = %.3f rpm\n GOVERNOR EFFORT = %.3f N\n GOVERNOR POWER = %.3f N-m',N1,E,P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: RANGE_OF_SPEED_OF_GOVERNOR.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 5 PAGE NO 200\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.8\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"g=9.81// ACCELERATION DUE TO GRAVITY \n", +"OA=.30// LENGHT OF UPPER ARM IN m\n", +"AC=.30// LENGTH OF LOWER ARM IN m\n", +"m=10// MASS OF BALL IN Kg\n", +"M=50// MASS OF SLEEVE IN Kg\n", +"r=.2// RADIUS OF ROTATION IN m\n", +"CD=.04// DISTANCE BETWEEN AXIS AND LOWER ARM IN m\n", +"F=15// FRICTIONAL LOAD ACTING IN N\n", +"//============================================================\n", +"h=(OA^2-r^2)^.5// HIEGTH OF THE GOVERNOR IN m\n", +"AE=r-CD// AE VALUE IN m\n", +"CE=(AC^2-AE^2)^.5// BD DISTANCE IN m\n", +"TANalpha=r/h// TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n", +"TANbeeta=AE/CE// TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL\n", +"k=TANbeeta/TANalpha\n", +"N=((895/h)*(m+(M*(1+k)/2))/m)^.5// EQULIBRIUM SPEED IN rpm\n", +"N1=((895/h)*((m*g)+(M*g+F)/2)*(1+k)/(m*g))^.5// MAX SPEED IN rpm\n", +"N2=((895/h)*((m*g)+(M*g-F)/2)*(1+k)/(m*g))^.5// MIN SPEED IN rpm\n", +"R=N1-N2// RANGE OF SPEED\n", +"printf('EQUILIBRIUM SPEED OF GOVERNOR = %.3f rpm\n RANGE OF SPEED OF GOVERNOR= %.3f rpm',N,R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: RANGE_OF_SPEED_OF_GOVERNOR.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 6 PAGE NO 202\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.9\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"g=9.81// ACCELERATION DUE TO GRAVITY \n", +"OA=.30// LENGHT OF UPPER ARM IN m\n", +"AC=.30// LENGTH OF LOWER ARM IN m\n", +"m=5// MASS OF BALL IN Kg\n", +"M=25// MASS OF SLEEVE IN Kg\n", +"X=.05// LIFT OF THE SLEEVE\n", +"alpha=30// ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n", +"//==============================================\n", +"h2=OA*cosd(alpha)// HEIGHT OF THE GOVERNOR AT LOWEST POSITION OF SLEEVE\n", +"h1=h2-X/2// HEIGHT OF THE GOVERNOR AT HEIGHT POSITION OF SLEEVE\n", +"F=((h2/h1)*(m*g+M*g)-(m*g+M*g))/(1+h2/h1)// FRICTION AT SLEEVE IN N\n", +"N1=((m*g+M*g+F)*895/(h1*m*g))^.5// MAX SPEEED OF THE GOVVERNOR IN rpm\n", +"N2=((m*g+M*g-F)*895/(h2*m*g))^.5// MIN SPEEED OF THE GOVVERNOR IN rpm\n", +"R=N1-N2// RANGE OF SPEED IN rpm\n", +"\n", +"printf('THE VALUE OF FRICTIONAL FORCE= %.3f F\n RANGE OF SPEED OF THE GOVERNOR = %.0f rpm',F,R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: EQUILIBRIUM_SPEED_CORRESPONDING_TO_LIFT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 7 PAGE NO 203\n", +"//TITLE:GOVERNORS\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"m=3// MASS OF EACH BALL IN Kg\n", +"a=.12// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n", +"b=.08// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n", +"r2=.12// RADIUS OF ROTATION OF THE BALL FOR LOWEST POSITION IN m\n", +"N2=320// SPEED OF GOVERNOR AT THE BEGINING IN rpm\n", +"S=20000// STIFFNESS OF THE SPRING IN N/m\n", +"h=.015// SLEEVE LIFT IN m\n", +"//==================================================\n", +"Fc2=m*(2*PI*N2/60)^2*r2// CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N\n", +"L=2*a*Fc2/b// INITIAL LOAD ON SPRING IN N\n", +"r1=a/b*h+r2// MAX RADIUS OF ROTATION IN m\n", +"Fc1=(S*(r1-r2)*(b/a)^2/2)+Fc2// CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N\n", +"N1=(Fc1/(m*r1)*(60/2/PI)^2)^.5\n", +"printf('INITIAL LOAD ON SPRING =%.3f N\n EQUILIBRIUM SPEED CORRESPONDING TO LIFT OF 15 cm =%.0f rpm',L,N1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: STIFFNESS_OF_THE_SPRING.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 8 PAGE NO 204\n", +"//TITLE:GOVERNORS\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"m=3// MASS OF BALL IN Kg\n", +"r2=.2// INITIAL RADIUS OF ROTATION IN m\n", +"a=.11// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n", +"b=.15// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n", +"h=.004// SLEEVE LIFT IN m\n", +"N2=240// INITIAL SPEED IN rpm\n", +"n=7.5// FLUCTUATION OF SPEED IN %\n", +"//===================================\n", +"w2=2*PI*N2/60// INITIAL ANGULAR SPEED IN rad/s\n", +"w1=(100+n)*w2/100// FINAL ANGULAR SPEED IN rad/s\n", +"F=2*a/b*m*w2^2*r2// INITIAL COMPRESSIVE FORCE IN N\n", +"r1=r2+a/b*h// MAX RDIUS OF ROTATION IN m\n", +"S=2*((m*w1^2*r1)-(m*w2^2*r2))/(r1-r2)*(a/b)^2\n", +"printf('INITIAL COMPRESSIVE FPRCE = %.3f N\n STIFFNESS OF THE SPRING = %.3f N/m',F,S/1000)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.9: ALTERATION_IN_SPEED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 7 ILLUSRTATION 9 PAGE NO 204\n", +"//TITLE:GOVERNORS\n", +"//FIGURE 7.3(C)\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"g=9.81// ACCELERATION DUE TO GRAVITY \n", +"PI=3.147\n", +"r=.14// DISTANCE BETWEEN THE CENTRE OF PIVOT OF BELL CRANK LEVER AND AXIS OF GOVERNOR SPINDLE IN m\n", +"r2=.11// INITIAL RADIUS OF ROTATION IN m\n", +"a=.12// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n", +"b=.10// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n", +"h=.05// SLEEVE LIFT IN m\n", +"N2=240// INITIAL SPEED IN rpm\n", +"F=30// FRICTIONAL FORCE ACTING IN N\n", +"m=5// MASS OF EACH BALL IN Kg\n", +"//==========================================\n", +"r1=r2+a/b*h// MAX RADIUS OF ROTATION IN m\n", +"N1=41*N2/39// MAX SPEED OF ROTATION IN rpm\n", +"N=(N1+N2)/2// MEAN SPEED IN rpm\n", +"Fc1=m*(2*PI*N1/60)^2*r1// CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N\n", +"Fc2=m*(2*PI*N2/60)^2*r2// CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N\n", +"c1=r1-r// FROM FIGURE 7.3(C) IN m\n", +"a1=(a^2-c1^2)^.5// FROM FIGURE 7.3(C) IN m\n", +"b1=(b^2-(h/2)^2)^.5// FROM FIGURE 7.3(C) IN m\n", +"c2=r-r2// FROM FIGURE 7.3(C) IN m\n", +"a2=a1// FROM FIGURE 7.3(C) IN m\n", +"b2=b1// FROM FIGURE 7.3(C) IN m\n", +"S1=2*((Fc1*a1)-(m*g*c1))/b1// SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS\n", +"S2=2*((Fc2*a2)-(m*g*c2))/b2// SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS\n", +"S=(S1-S2)/h// STIFFNESS OF THE SPRING IN N/m\n", +"Is=S2/S// INITIAL COMPRESSION OF SPRING IN m\n", +"P=S2+(h/2*S)// SPRING FORCE OF MID PORTION IN N\n", +"n1=N*((P+F)/P)^.5// SPEED,WHEN THE SLEEVE BEGINS TO MOVE UPWARDS FROM MID POSITION IN rpm\n", +"n2=N*((P-F)/P)^.5// SPEED,WHEN THE SLEEVE BEGINS TO MOVE DOWNWARDS FROM MID POSITION IN rpm\n", +"A=n1-n2// ALTERATION IN SPEED IN rpm\n", +"printf('INTIAL COMPRESSION OF SPRING= %.3f cm\n ALTERATION IN SPEED = %.3f rpm',Is*100,A)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |