1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11: VIBRATIONS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.10: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 10 PAGE NO 296\n",
"//TITLE:VIBRATIONS\n",
"//FIGURE 11.18\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
"D=.03// DIAMETER OF SHAFT IN m\n",
"L=.8// LENGTH OF SHAFT IN m\n",
"r=40000// DENSITY OF SHAFT MATERIAL IN Kg/m^3\n",
"W=10// WEIGHT ACTING AT CENTRE IN N\n",
"//===========================================================================================\n",
"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n",
"m=PI*D^2/4*r// MASS PER UNIT LENGTH IN Kg/m\n",
"w=m*g\n",
"DELTA=W*L^3/(48*E*I)// STATIC DEFLECTION DUE TO W\n",
"DELTA1=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO WEIGHT OF SHAFT \n",
"Fn=.4985/(DELTA+DELTA1/1.27)^.5\n",
"//==========================================================================================\n",
"printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.11: CRITICAL_SPEED_OF_SHAFT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 11 PAGE NO 297\n",
"//TITLE:VIBRATIONS\n",
"//FIGURE 11.19\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
"E=210*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
"D=.18// DIAMETER OF SHAFT IN m\n",
"L=2.5// LENGTH OF SHAFT IN m\n",
"M1=25// MASS ACTING AT E IN Kg\n",
"M2=50// MASS ACTING AT D IN Kg\n",
"M3=20// MASS ACTING AT C IN Kg\n",
"W1=M1*g\n",
"W2=M2*g\n",
"W3=M3*g\n",
"L1=.6// LENGTH FROM A TO E IN m\n",
"L2=1.5// LENGTH FROM A TO D IN m\n",
"L3=2// LENGTH FROM A TO C IN m\n",
"w=1962// SELF WEIGHT OF SHAFT IN N\n",
"//==========================================================================================\n",
"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n",
"DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1\n",
"DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n",
"DELTA3=W3*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W3\n",
"DELTA4=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO w\n",
"Fn=.4985/(DELTA1+DELTA2+DELTA3+DELTA4/1.27)^.5\n",
"Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm\n",
"//========================================================================================\n",
"printf('CRITICAL SPEED OF SHAFT = %.3f rpm',Nc)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.12: FREQUENCY_OF_FREE_TORSIONAL_VIBRATION.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 12 PAGE NO 298\n",
"//TITLE:VIBRATIONS\n",
"//FIGURE 11.20\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
"Na=1500// SPEED OF SHAFT A IN rpm\n",
"Nb=500// SPEED OF SHAFT B IN rpm\n",
"G=Na/Nb// GERA RATIO\n",
"L1=.18// LENGTH OF SHAFT 1 IN m\n",
"L2=.45// LENGTH OF SHAFT 2 IN m\n",
"D1=.045// DIAMETER OF SHAFT 1 IN m\n",
"D2=.09// DIAMETER OF SHAFT 2 IN m\n",
"C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n",
"Ib=1400// MOMENT OF INERTIA OF PUMP IN Kg-m^2\n",
"Ia=400// MOMENT OF INERTIA OF MOTOR IN Kg-m^2\n",
"\n",
"//======================================================================================\n",
"J=PI*D1^4/32// POLAR MOMENT OF INERTIA IN m^4\n",
"Ib1=Ib/G^2// MASS MOMENT OF INERTIA OF EQUIVALENT ROTOR IN m^2\n",
"L3=G^2*L2*(D1/D2)^4// ADDITIONAL LENGTH OF THE EQUIVALENT SHAFT\n",
"L=L1+L3// TOTAL LENGTH OF EQUIVALENT SHAFT\n",
"La=L*Ib1/(Ia+Ib1)\n",
"Fn=(C*J/(La*Ia))^.5/(2*PI)// FREQUENCY OF FREE TORSIONAL VIBRATION IN Hz\n",
"//===================================================================================\n",
"printf('FREQUENCY OF FREE TORSIONAL VIBRATION = %.2f Hz',Fn)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.13: THE_RANGE_OF_SPEED.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 13 PAGE NO 300\n",
"//TITLE:VIBRATIONS\n",
"//FIGURE 11.21\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
"D=.015// DIAMETER OF SHAFT IN m\n",
"L=1.00// LENGTH OF SHAFT IN m\n",
"M=15// MASS OF SHAFT IN Kg\n",
"W=M*g\n",
"e=.0003// ECCENTRICITY IN m\n",
"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
"f=70*10^6// PERMISSIBLE STRESS IN N/m^2\n",
"//============================================================================================\n",
"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n",
"DELTA=W*L^3/(192*E*I)// STATIC DEFLECTION IN m\n",
"Fn=.4985/(DELTA)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n",
"Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm\n",
"M1=16*f*I/(D*g*L)\n",
"W1=M1*g// ADDITIONAL LOAD ACTING\n",
"y=W1/W*DELTA// ADDITIONAL DEFLECTION DUE TO W1\n",
"N1=Nc/(1+e/y)^.5// MIN SPEED IN rpm\n",
"N2=Nc/(1-e/y)^.5// MAX SPEED IN rpm\n",
"//===========================================================================================\n",
"printf('CRITICAL SPEED OF SHAFT = %.3f rpm\n THE RANGE OF SPEED IS FROM %.3f rpm TO %.3f rpm',Nc,N1,N2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.1: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 1 PAGE NO 290\n",
"//TITLE:VIBRATIONS\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"D=.1// DIAMETER OF SHAFT IN m\n",
"L=1.10// LENGTH OF SHAFT IN m\n",
"W=450// WEIGHT ON THE OTHER END OF SHAFT IN NEWTONS\n",
"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
"// =========================================================================================\n",
"A=PI*D^2/4// AREA OF SHAFT IN mm^2\n",
"I=PI*D^4/64// MOMENT OF INERTIA \n",
"delta=W*L/(A*E)// STATIC DEFLECTION IN LONGITUDINAL VIBRATION OF SHAFT IN m\n",
"Fn=0.4985/(delta)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n",
"delta1=W*L^3/(3*E*I)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n",
"Fn1=0.4985/(delta1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
"//============================================================================================\n",
"//OUTPUT\n",
"printf('FREQUENCY OF LONGITUDINAL VIBRATION =%.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION =%.3f Hz',Fn,Fn1)\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.2: NATURAL_FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 2 PAGE NO 290\n",
"//TITLE:VIBRATIONS\n",
"//FIGURE 11.10\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"L=.9// LENGTH OF THE SHAFT IN m\n",
"m=100// MASS OF THE BODY IN Kg\n",
"L2=.3// LENGTH WHERE THE WEIGHT IS ACTING IN m\n",
"L1=L-L2// DISTANCE FROM THE OTHER END\n",
"D=.06// DIAMETER OF SHAFT IN m\n",
"W=9.81*m// WEGHT IN NEWTON\n",
"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
"//==========================================================================================\n",
"//CALCULATION\n",
"I=PI*D^4/64// MOMENT OF INERTIA IN m^4\n",
"delta=W*L1^2*L2^2/(3*E*I*L)// STATIC DEFLECTION\n",
"Fn=.4985/(delta)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n",
"//=========================================================================================\n",
"//OUTPUT\n",
"printf('NATURAL FREQUENCY OF TRANSVERSE VIBRATION=%.3f Hz',Fn)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.3: FREQUENCY_OF_TORSIONAL_VIBRATION.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 3 PAGE NO 291\n",
"//TITLE:VIBRATIONS\n",
"//FIGURE 11.11\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
"D=.050// DIAMETER OF SHAFT IN m\n",
"m=450// WEIGHT OF FLY WHEEL IN IN Kg\n",
"K=.5// RADIUS OF GYRATION IN m\n",
"L2=.6// FROM FIGURE IN m\n",
"L1=.9// FROM FIGURE IN m\n",
"L=L1+L2\n",
"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
"C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n",
"//=========================================================================================\n",
"A=PI*D^2/4// AREA OF SHAFT IN mm^2\n",
"I=PI*D^4/64// \n",
"m1=m*L2/(L1+L2)// MASS OF THE FLYWHEEL CARRIED BY THE LENGTH L1 IN Kg\n",
"DELTA=m1*g*L1/(A*E)// EXTENSION OF LENGTH L1 IN m\n",
"Fn=0.4985/(DELTA)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n",
"DELTA1=(m*g*L1^3*L2^3)/(3*E*I*L^3)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n",
"Fn1=0.4985/(DELTA1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
"J=PI*D^4/32// POLAR MOMENT OF INERTIA IN m^4\n",
"Q1=C*J/L1// TORSIONAL STIFFNESS OF SHAFT DUE TO L1 IN N-m\n",
"Q2=C*J/L2// TORSIONAL STIFFNESS OF SHAFT DUE TO L2 IN N-m\n",
"Q=Q1+Q2// TORSIONAL STIFFNESS OF SHAFT IN Nm\n",
"Fn2=(Q/(m*K^2))^.5/(2*PI)// FREQUENCY OF TORSIONAL VIBRATION IN Hz\n",
"//=======================================================================================\n",
"printf('FREQUENCY OF LONGITUDINAL VIBRATION = %.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz\n FREQUENCY OF TORSIONAL VIBRATION = %.3f Hz',Fn,Fn1,Fn2)\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.6: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//CHAPTER 11 ILLUSRTATION 6 PAGE NO 294\n",
"//TITLE:VIBRATIONS\n",
"//FIGURE 11.14\n",
"clc\n",
"clear\n",
"//===========================================================================================\n",
"//INPUT DATA\n",
"PI=3.147\n",
"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n",
"D=.06// DIAMETER OF SHAFT IN m\n",
"L=3// LENGTH OF SHAFT IN m\n",
"W1=1500// WEIGHT ACTING AT C IN N\n",
"W2=2000// WEIGHT ACTING AT D IN N\n",
"W3=1000// WEIGHT ACTING AT E IN N\n",
"L1=1// LENGTH FROM A TO C IN m\n",
"L2=2// LENGTH FROM A TO D IN m\n",
"L3=2.5// LENGTH FROM A TO E IN m\n",
"I=PI*D^4/64\n",
"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
"//===========================================================================================\n",
"DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1\n",
"DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n",
"DELTA3=W2*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n",
"Fn=.4985/(DELTA1+DELTA2+DELTA3)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
"//==========================================================================================\n",
"printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|