diff options
Diffstat (limited to 'Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb')
-rw-r--r-- | Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb | 395 |
1 files changed, 395 insertions, 0 deletions
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb new file mode 100644 index 0000000..96b2550 --- /dev/null +++ b/Theory_Of_Machines_by_B_K_Sarkar/11-VIBRATIONS.ipynb @@ -0,0 +1,395 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: VIBRATIONS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.10: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 10 PAGE NO 296\n", +"//TITLE:VIBRATIONS\n", +"//FIGURE 11.18\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n", +"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n", +"D=.03// DIAMETER OF SHAFT IN m\n", +"L=.8// LENGTH OF SHAFT IN m\n", +"r=40000// DENSITY OF SHAFT MATERIAL IN Kg/m^3\n", +"W=10// WEIGHT ACTING AT CENTRE IN N\n", +"//===========================================================================================\n", +"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n", +"m=PI*D^2/4*r// MASS PER UNIT LENGTH IN Kg/m\n", +"w=m*g\n", +"DELTA=W*L^3/(48*E*I)// STATIC DEFLECTION DUE TO W\n", +"DELTA1=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO WEIGHT OF SHAFT \n", +"Fn=.4985/(DELTA+DELTA1/1.27)^.5\n", +"//==========================================================================================\n", +"printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.11: CRITICAL_SPEED_OF_SHAFT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 11 PAGE NO 297\n", +"//TITLE:VIBRATIONS\n", +"//FIGURE 11.19\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n", +"E=210*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n", +"D=.18// DIAMETER OF SHAFT IN m\n", +"L=2.5// LENGTH OF SHAFT IN m\n", +"M1=25// MASS ACTING AT E IN Kg\n", +"M2=50// MASS ACTING AT D IN Kg\n", +"M3=20// MASS ACTING AT C IN Kg\n", +"W1=M1*g\n", +"W2=M2*g\n", +"W3=M3*g\n", +"L1=.6// LENGTH FROM A TO E IN m\n", +"L2=1.5// LENGTH FROM A TO D IN m\n", +"L3=2// LENGTH FROM A TO C IN m\n", +"w=1962// SELF WEIGHT OF SHAFT IN N\n", +"//==========================================================================================\n", +"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n", +"DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1\n", +"DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n", +"DELTA3=W3*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W3\n", +"DELTA4=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO w\n", +"Fn=.4985/(DELTA1+DELTA2+DELTA3+DELTA4/1.27)^.5\n", +"Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm\n", +"//========================================================================================\n", +"printf('CRITICAL SPEED OF SHAFT = %.3f rpm',Nc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.12: FREQUENCY_OF_FREE_TORSIONAL_VIBRATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 12 PAGE NO 298\n", +"//TITLE:VIBRATIONS\n", +"//FIGURE 11.20\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n", +"Na=1500// SPEED OF SHAFT A IN rpm\n", +"Nb=500// SPEED OF SHAFT B IN rpm\n", +"G=Na/Nb// GERA RATIO\n", +"L1=.18// LENGTH OF SHAFT 1 IN m\n", +"L2=.45// LENGTH OF SHAFT 2 IN m\n", +"D1=.045// DIAMETER OF SHAFT 1 IN m\n", +"D2=.09// DIAMETER OF SHAFT 2 IN m\n", +"C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n", +"Ib=1400// MOMENT OF INERTIA OF PUMP IN Kg-m^2\n", +"Ia=400// MOMENT OF INERTIA OF MOTOR IN Kg-m^2\n", +"\n", +"//======================================================================================\n", +"J=PI*D1^4/32// POLAR MOMENT OF INERTIA IN m^4\n", +"Ib1=Ib/G^2// MASS MOMENT OF INERTIA OF EQUIVALENT ROTOR IN m^2\n", +"L3=G^2*L2*(D1/D2)^4// ADDITIONAL LENGTH OF THE EQUIVALENT SHAFT\n", +"L=L1+L3// TOTAL LENGTH OF EQUIVALENT SHAFT\n", +"La=L*Ib1/(Ia+Ib1)\n", +"Fn=(C*J/(La*Ia))^.5/(2*PI)// FREQUENCY OF FREE TORSIONAL VIBRATION IN Hz\n", +"//===================================================================================\n", +"printf('FREQUENCY OF FREE TORSIONAL VIBRATION = %.2f Hz',Fn)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.13: THE_RANGE_OF_SPEED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 13 PAGE NO 300\n", +"//TITLE:VIBRATIONS\n", +"//FIGURE 11.21\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n", +"D=.015// DIAMETER OF SHAFT IN m\n", +"L=1.00// LENGTH OF SHAFT IN m\n", +"M=15// MASS OF SHAFT IN Kg\n", +"W=M*g\n", +"e=.0003// ECCENTRICITY IN m\n", +"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n", +"f=70*10^6// PERMISSIBLE STRESS IN N/m^2\n", +"//============================================================================================\n", +"I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4\n", +"DELTA=W*L^3/(192*E*I)// STATIC DEFLECTION IN m\n", +"Fn=.4985/(DELTA)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n", +"Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm\n", +"M1=16*f*I/(D*g*L)\n", +"W1=M1*g// ADDITIONAL LOAD ACTING\n", +"y=W1/W*DELTA// ADDITIONAL DEFLECTION DUE TO W1\n", +"N1=Nc/(1+e/y)^.5// MIN SPEED IN rpm\n", +"N2=Nc/(1-e/y)^.5// MAX SPEED IN rpm\n", +"//===========================================================================================\n", +"printf('CRITICAL SPEED OF SHAFT = %.3f rpm\n THE RANGE OF SPEED IS FROM %.3f rpm TO %.3f rpm',Nc,N1,N2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 1 PAGE NO 290\n", +"//TITLE:VIBRATIONS\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"D=.1// DIAMETER OF SHAFT IN m\n", +"L=1.10// LENGTH OF SHAFT IN m\n", +"W=450// WEIGHT ON THE OTHER END OF SHAFT IN NEWTONS\n", +"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n", +"// =========================================================================================\n", +"A=PI*D^2/4// AREA OF SHAFT IN mm^2\n", +"I=PI*D^4/64// MOMENT OF INERTIA \n", +"delta=W*L/(A*E)// STATIC DEFLECTION IN LONGITUDINAL VIBRATION OF SHAFT IN m\n", +"Fn=0.4985/(delta)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n", +"delta1=W*L^3/(3*E*I)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n", +"Fn1=0.4985/(delta1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n", +"//============================================================================================\n", +"//OUTPUT\n", +"printf('FREQUENCY OF LONGITUDINAL VIBRATION =%.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION =%.3f Hz',Fn,Fn1)\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: NATURAL_FREQUENCY_OF_TRANSVERSE_VIBRATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 2 PAGE NO 290\n", +"//TITLE:VIBRATIONS\n", +"//FIGURE 11.10\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"L=.9// LENGTH OF THE SHAFT IN m\n", +"m=100// MASS OF THE BODY IN Kg\n", +"L2=.3// LENGTH WHERE THE WEIGHT IS ACTING IN m\n", +"L1=L-L2// DISTANCE FROM THE OTHER END\n", +"D=.06// DIAMETER OF SHAFT IN m\n", +"W=9.81*m// WEGHT IN NEWTON\n", +"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n", +"//==========================================================================================\n", +"//CALCULATION\n", +"I=PI*D^4/64// MOMENT OF INERTIA IN m^4\n", +"delta=W*L1^2*L2^2/(3*E*I*L)// STATIC DEFLECTION\n", +"Fn=.4985/(delta)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n", +"//=========================================================================================\n", +"//OUTPUT\n", +"printf('NATURAL FREQUENCY OF TRANSVERSE VIBRATION=%.3f Hz',Fn)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: FREQUENCY_OF_TORSIONAL_VIBRATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 3 PAGE NO 291\n", +"//TITLE:VIBRATIONS\n", +"//FIGURE 11.11\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n", +"D=.050// DIAMETER OF SHAFT IN m\n", +"m=450// WEIGHT OF FLY WHEEL IN IN Kg\n", +"K=.5// RADIUS OF GYRATION IN m\n", +"L2=.6// FROM FIGURE IN m\n", +"L1=.9// FROM FIGURE IN m\n", +"L=L1+L2\n", +"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n", +"C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n", +"//=========================================================================================\n", +"A=PI*D^2/4// AREA OF SHAFT IN mm^2\n", +"I=PI*D^4/64// \n", +"m1=m*L2/(L1+L2)// MASS OF THE FLYWHEEL CARRIED BY THE LENGTH L1 IN Kg\n", +"DELTA=m1*g*L1/(A*E)// EXTENSION OF LENGTH L1 IN m\n", +"Fn=0.4985/(DELTA)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n", +"DELTA1=(m*g*L1^3*L2^3)/(3*E*I*L^3)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n", +"Fn1=0.4985/(DELTA1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n", +"J=PI*D^4/32// POLAR MOMENT OF INERTIA IN m^4\n", +"Q1=C*J/L1// TORSIONAL STIFFNESS OF SHAFT DUE TO L1 IN N-m\n", +"Q2=C*J/L2// TORSIONAL STIFFNESS OF SHAFT DUE TO L2 IN N-m\n", +"Q=Q1+Q2// TORSIONAL STIFFNESS OF SHAFT IN Nm\n", +"Fn2=(Q/(m*K^2))^.5/(2*PI)// FREQUENCY OF TORSIONAL VIBRATION IN Hz\n", +"//=======================================================================================\n", +"printf('FREQUENCY OF LONGITUDINAL VIBRATION = %.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz\n FREQUENCY OF TORSIONAL VIBRATION = %.3f Hz',Fn,Fn1,Fn2)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: FREQUENCY_OF_TRANSVERSE_VIBRATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 11 ILLUSRTATION 6 PAGE NO 294\n", +"//TITLE:VIBRATIONS\n", +"//FIGURE 11.14\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2\n", +"D=.06// DIAMETER OF SHAFT IN m\n", +"L=3// LENGTH OF SHAFT IN m\n", +"W1=1500// WEIGHT ACTING AT C IN N\n", +"W2=2000// WEIGHT ACTING AT D IN N\n", +"W3=1000// WEIGHT ACTING AT E IN N\n", +"L1=1// LENGTH FROM A TO C IN m\n", +"L2=2// LENGTH FROM A TO D IN m\n", +"L3=2.5// LENGTH FROM A TO E IN m\n", +"I=PI*D^4/64\n", +"E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n", +"//===========================================================================================\n", +"DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1\n", +"DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n", +"DELTA3=W2*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2\n", +"Fn=.4985/(DELTA1+DELTA2+DELTA3)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n", +"//==========================================================================================\n", +"printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |