diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | db464f35f5a10b58d9ed1085e0b462689adee583 (patch) | |
tree | de5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/fortran/blas | |
download | Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2 Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip |
Original Version
Diffstat (limited to 'src/fortran/blas')
82 files changed, 17003 insertions, 0 deletions
diff --git a/src/fortran/blas/Makefile.am b/src/fortran/blas/Makefile.am new file mode 100644 index 0000000..6b8b83d --- /dev/null +++ b/src/fortran/blas/Makefile.am @@ -0,0 +1,86 @@ +########## +### Sylvestre Ledru <sylvestre.ledru@inria.fr> +### INRIA - Scilab 2006 +########## + +BLAS_FORTRAN_SOURCES = zrotg.f \ +zhpr2.f \ +zher2k.f \ +dspr.f \ +xerbla.f \ +dcopy.f \ +dsyr2k.f \ +zsymm.f \ +zhemm.f \ +dtbsv.f \ +dtrmm.f \ +dscal.f \ +ddot.f \ +dgbmv.f \ +dtpsv.f \ +dtrsv.f \ +dgemv.f \ +idamax.f \ +dzasum.f \ +zcopy.f \ +zher.f \ +drot.f \ +ztbsv.f \ +dasum.f \ +ztrmm.f \ +dsbmv.f \ +zscal.f \ +dswap.f \ +zdotc.f \ +zgbmv.f \ +ztpsv.f \ +zgemv.f \ +ztrsv.f \ +izamax.f \ +dspmv.f \ +dcabs1.f \ +dsymv.f \ +zswap.f \ +zdotu.f \ +zgerc.f \ +dznrm2.f \ +dtbmv.f \ +zdscal.f \ +dger.f \ +dnrm2.f \ +zhpr.f \ +daxpy.f \ +zhbmv.f \ +zhemv.f \ +dtrsm.f \ +dgemm.f \ +dspr2.f \ +dtpmv.f \ +zgeru.f \ +dtrmv.f \ +dsyrk.f \ +lsame.f \ +ztbmv.f \ +dsyr2.f \ +zhpmv.f \ +zsyr2k.f \ +zaxpy.f \ +zgemm.f \ +drotg.f \ +ztrsm.f \ +ztpmv.f \ +dsyr.f \ +zsyrk.f \ +ztrmv.f \ +zherk.f \ +dsymm.f \ +zher2.f + +instdir = $(top_builddir)/lib + +pkglib_LTLIBRARIES = libsciblas.la + +HEAD = $(top_builddir)/includes/blas.h + +libsciblas_la_SOURCES = $(HEAD) $(BLAS_FORTRAN_SOURCES) + diff --git a/src/fortran/blas/Makefile.in b/src/fortran/blas/Makefile.in new file mode 100644 index 0000000..b265181 --- /dev/null +++ b/src/fortran/blas/Makefile.in @@ -0,0 +1,601 @@ +# Makefile.in generated by automake 1.11.1 from Makefile.am. +# @configure_input@ + +# Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, +# 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, +# Inc. +# This Makefile.in is free software; the Free Software Foundation +# gives unlimited permission to copy and/or distribute it, +# with or without modifications, as long as this notice is preserved. + +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY, to the extent permitted by law; without +# even the implied warranty of MERCHANTABILITY or FITNESS FOR A +# PARTICULAR PURPOSE. + +@SET_MAKE@ + +########## +### Sylvestre Ledru <sylvestre.ledru@inria.fr> +### INRIA - Scilab 2006 +########## + +VPATH = @srcdir@ +pkgdatadir = $(datadir)/@PACKAGE@ +pkgincludedir = $(includedir)/@PACKAGE@ +pkglibdir = $(libdir)/@PACKAGE@ +pkglibexecdir = $(libexecdir)/@PACKAGE@ +am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd +install_sh_DATA = $(install_sh) -c -m 644 +install_sh_PROGRAM = $(install_sh) -c +install_sh_SCRIPT = $(install_sh) -c +INSTALL_HEADER = $(INSTALL_DATA) +transform = $(program_transform_name) +NORMAL_INSTALL = : +PRE_INSTALL = : +POST_INSTALL = : +NORMAL_UNINSTALL = : +PRE_UNINSTALL = : +POST_UNINSTALL = : +build_triplet = @build@ +host_triplet = @host@ +subdir = src/fortran/blas +DIST_COMMON = README $(srcdir)/Makefile.am $(srcdir)/Makefile.in +ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 +am__aclocal_m4_deps = $(top_srcdir)/configure.ac +am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ + $(ACLOCAL_M4) +mkinstalldirs = $(install_sh) -d +CONFIG_HEADER = $(top_builddir)/includes/machine.h +CONFIG_CLEAN_FILES = +CONFIG_CLEAN_VPATH_FILES = +am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; +am__vpath_adj = case $$p in \ + $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ + *) f=$$p;; \ + esac; +am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; +am__install_max = 40 +am__nobase_strip_setup = \ + srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` +am__nobase_strip = \ + for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" +am__nobase_list = $(am__nobase_strip_setup); \ + for p in $$list; do echo "$$p $$p"; done | \ + sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ + $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ + if (++n[$$2] == $(am__install_max)) \ + { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ + END { for (dir in files) print dir, files[dir] }' +am__base_list = \ + sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ + sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' +am__installdirs = "$(DESTDIR)$(pkglibdir)" +LTLIBRARIES = $(pkglib_LTLIBRARIES) +libsciblas_la_LIBADD = +am__objects_1 = +am__objects_2 = zrotg.lo zhpr2.lo zher2k.lo dspr.lo xerbla.lo dcopy.lo \ + dsyr2k.lo zsymm.lo zhemm.lo dtbsv.lo dtrmm.lo dscal.lo ddot.lo \ + dgbmv.lo dtpsv.lo dtrsv.lo dgemv.lo idamax.lo dzasum.lo \ + zcopy.lo zher.lo drot.lo ztbsv.lo dasum.lo ztrmm.lo dsbmv.lo \ + zscal.lo dswap.lo zdotc.lo zgbmv.lo ztpsv.lo zgemv.lo ztrsv.lo \ + izamax.lo dspmv.lo dcabs1.lo dsymv.lo zswap.lo zdotu.lo \ + zgerc.lo dznrm2.lo dtbmv.lo zdscal.lo dger.lo dnrm2.lo zhpr.lo \ + daxpy.lo zhbmv.lo zhemv.lo dtrsm.lo dgemm.lo dspr2.lo dtpmv.lo \ + zgeru.lo dtrmv.lo dsyrk.lo lsame.lo ztbmv.lo dsyr2.lo zhpmv.lo \ + zsyr2k.lo zaxpy.lo zgemm.lo drotg.lo ztrsm.lo ztpmv.lo dsyr.lo \ + zsyrk.lo ztrmv.lo zherk.lo dsymm.lo zher2.lo +am_libsciblas_la_OBJECTS = $(am__objects_1) $(am__objects_2) +libsciblas_la_OBJECTS = $(am_libsciblas_la_OBJECTS) +DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir)/includes +F77COMPILE = $(F77) $(AM_FFLAGS) $(FFLAGS) +LTF77COMPILE = $(LIBTOOL) --tag=F77 $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \ + --mode=compile $(F77) $(AM_FFLAGS) $(FFLAGS) +F77LD = $(F77) +F77LINK = $(LIBTOOL) --tag=F77 $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \ + --mode=link $(F77LD) $(AM_FFLAGS) $(FFLAGS) $(AM_LDFLAGS) \ + $(LDFLAGS) -o $@ +COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ + $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) +LTCOMPILE = $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \ + --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) \ + $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) +CCLD = $(CC) +LINK = $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \ + --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) $(AM_LDFLAGS) \ + $(LDFLAGS) -o $@ +SOURCES = $(libsciblas_la_SOURCES) +DIST_SOURCES = $(libsciblas_la_SOURCES) +ETAGS = etags +CTAGS = ctags +DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) +ACLOCAL = @ACLOCAL@ +AMTAR = @AMTAR@ +AR = @AR@ +AUTOCONF = @AUTOCONF@ +AUTOHEADER = @AUTOHEADER@ +AUTOMAKE = @AUTOMAKE@ +AWK = @AWK@ +CC = @CC@ +CCDEPMODE = @CCDEPMODE@ +CFLAGS = @CFLAGS@ +CPP = @CPP@ +CPPFLAGS = @CPPFLAGS@ +CXX = @CXX@ +CXXCPP = @CXXCPP@ +CXXDEPMODE = @CXXDEPMODE@ +CXXFLAGS = @CXXFLAGS@ +CYGPATH_W = @CYGPATH_W@ +DEFS = @DEFS@ +DEPDIR = @DEPDIR@ +DSYMUTIL = @DSYMUTIL@ +DUMPBIN = @DUMPBIN@ +ECHO_C = @ECHO_C@ +ECHO_N = @ECHO_N@ +ECHO_T = @ECHO_T@ +EGREP = @EGREP@ +EXEEXT = @EXEEXT@ +F77 = @F77@ +FFLAGS = @FFLAGS@ +FGREP = @FGREP@ +GREP = @GREP@ +INSTALL = @INSTALL@ +INSTALL_DATA = @INSTALL_DATA@ +INSTALL_PROGRAM = @INSTALL_PROGRAM@ +INSTALL_SCRIPT = @INSTALL_SCRIPT@ +INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ +LD = @LD@ +LDFLAGS = @LDFLAGS@ +LIBMATH = @LIBMATH@ +LIBOBJS = @LIBOBJS@ +LIBS = @LIBS@ +LIBTOOL = @LIBTOOL@ +LIPO = @LIPO@ +LN_S = @LN_S@ +LTLIBOBJS = @LTLIBOBJS@ +MAINT = @MAINT@ +MAKEINFO = @MAKEINFO@ +MKDIR_P = @MKDIR_P@ +NM = @NM@ +NMEDIT = @NMEDIT@ +OBJDUMP = @OBJDUMP@ +OBJEXT = @OBJEXT@ +OTOOL = @OTOOL@ +OTOOL64 = @OTOOL64@ +PACKAGE = @PACKAGE@ +PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ +PACKAGE_NAME = @PACKAGE_NAME@ +PACKAGE_STRING = @PACKAGE_STRING@ +PACKAGE_TARNAME = @PACKAGE_TARNAME@ +PACKAGE_URL = @PACKAGE_URL@ +PACKAGE_VERSION = @PACKAGE_VERSION@ +PATH_SEPARATOR = @PATH_SEPARATOR@ +RANLIB = @RANLIB@ +SED = @SED@ +SET_MAKE = @SET_MAKE@ +SHELL = @SHELL@ +STRIP = @STRIP@ +VERSION = @VERSION@ +abs_builddir = @abs_builddir@ +abs_srcdir = @abs_srcdir@ +abs_top_builddir = @abs_top_builddir@ +abs_top_srcdir = @abs_top_srcdir@ +ac_ct_CC = @ac_ct_CC@ +ac_ct_CXX = @ac_ct_CXX@ +ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ +ac_ct_F77 = @ac_ct_F77@ +am__include = @am__include@ +am__leading_dot = @am__leading_dot@ +am__quote = @am__quote@ +am__tar = @am__tar@ +am__untar = @am__untar@ +bindir = @bindir@ +build = @build@ +build_alias = @build_alias@ +build_cpu = @build_cpu@ +build_os = @build_os@ +build_vendor = @build_vendor@ +builddir = @builddir@ +datadir = @datadir@ +datarootdir = @datarootdir@ +docdir = @docdir@ +dvidir = @dvidir@ +exec_prefix = @exec_prefix@ +host = @host@ +host_alias = @host_alias@ +host_cpu = @host_cpu@ +host_os = @host_os@ +host_vendor = @host_vendor@ +htmldir = @htmldir@ +includedir = @includedir@ +infodir = @infodir@ +install_sh = @install_sh@ +libdir = @libdir@ +libexecdir = @libexecdir@ +localedir = @localedir@ +localstatedir = @localstatedir@ +lt_ECHO = @lt_ECHO@ +mandir = @mandir@ +mkdir_p = @mkdir_p@ +oldincludedir = @oldincludedir@ +pdfdir = @pdfdir@ +prefix = @prefix@ +program_transform_name = @program_transform_name@ +psdir = @psdir@ +sbindir = @sbindir@ +sharedstatedir = @sharedstatedir@ +srcdir = @srcdir@ +sysconfdir = @sysconfdir@ +target_alias = @target_alias@ +top_build_prefix = @top_build_prefix@ +top_builddir = @top_builddir@ +top_srcdir = @top_srcdir@ +BLAS_FORTRAN_SOURCES = zrotg.f \ +zhpr2.f \ +zher2k.f \ +dspr.f \ +xerbla.f \ +dcopy.f \ +dsyr2k.f \ +zsymm.f \ +zhemm.f \ +dtbsv.f \ +dtrmm.f \ +dscal.f \ +ddot.f \ +dgbmv.f \ +dtpsv.f \ +dtrsv.f \ +dgemv.f \ +idamax.f \ +dzasum.f \ +zcopy.f \ +zher.f \ +drot.f \ +ztbsv.f \ +dasum.f \ +ztrmm.f \ +dsbmv.f \ +zscal.f \ +dswap.f \ +zdotc.f \ +zgbmv.f \ +ztpsv.f \ +zgemv.f \ +ztrsv.f \ +izamax.f \ +dspmv.f \ +dcabs1.f \ +dsymv.f \ +zswap.f \ +zdotu.f \ +zgerc.f \ +dznrm2.f \ +dtbmv.f \ +zdscal.f \ +dger.f \ +dnrm2.f \ +zhpr.f \ +daxpy.f \ +zhbmv.f \ +zhemv.f \ +dtrsm.f \ +dgemm.f \ +dspr2.f \ +dtpmv.f \ +zgeru.f \ +dtrmv.f \ +dsyrk.f \ +lsame.f \ +ztbmv.f \ +dsyr2.f \ +zhpmv.f \ +zsyr2k.f \ +zaxpy.f \ +zgemm.f \ +drotg.f \ +ztrsm.f \ +ztpmv.f \ +dsyr.f \ +zsyrk.f \ +ztrmv.f \ +zherk.f \ +dsymm.f \ +zher2.f + +instdir = $(top_builddir)/lib +pkglib_LTLIBRARIES = libsciblas.la +HEAD = $(top_builddir)/includes/blas.h +libsciblas_la_SOURCES = $(HEAD) $(BLAS_FORTRAN_SOURCES) +all: all-am + +.SUFFIXES: +.SUFFIXES: .f .lo .o .obj +$(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) + @for dep in $?; do \ + case '$(am__configure_deps)' in \ + *$$dep*) \ + ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ + && { if test -f $@; then exit 0; else break; fi; }; \ + exit 1;; \ + esac; \ + done; \ + echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign src/fortran/blas/Makefile'; \ + $(am__cd) $(top_srcdir) && \ + $(AUTOMAKE) --foreign src/fortran/blas/Makefile +.PRECIOUS: Makefile +Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status + @case '$?' in \ + *config.status*) \ + cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ + *) \ + echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ + cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ + esac; + +$(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) + cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh + +$(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) + cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh +$(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) + cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh +$(am__aclocal_m4_deps): +install-pkglibLTLIBRARIES: $(pkglib_LTLIBRARIES) + @$(NORMAL_INSTALL) + test -z "$(pkglibdir)" || $(MKDIR_P) "$(DESTDIR)$(pkglibdir)" + @list='$(pkglib_LTLIBRARIES)'; test -n "$(pkglibdir)" || list=; \ + list2=; for p in $$list; do \ + if test -f $$p; then \ + list2="$$list2 $$p"; \ + else :; fi; \ + done; \ + test -z "$$list2" || { \ + echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 '$(DESTDIR)$(pkglibdir)'"; \ + $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 "$(DESTDIR)$(pkglibdir)"; \ + } + +uninstall-pkglibLTLIBRARIES: + @$(NORMAL_UNINSTALL) + @list='$(pkglib_LTLIBRARIES)'; test -n "$(pkglibdir)" || list=; \ + for p in $$list; do \ + $(am__strip_dir) \ + echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f '$(DESTDIR)$(pkglibdir)/$$f'"; \ + $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f "$(DESTDIR)$(pkglibdir)/$$f"; \ + done + +clean-pkglibLTLIBRARIES: + -test -z "$(pkglib_LTLIBRARIES)" || rm -f $(pkglib_LTLIBRARIES) + @list='$(pkglib_LTLIBRARIES)'; for p in $$list; do \ + dir="`echo $$p | sed -e 's|/[^/]*$$||'`"; \ + test "$$dir" != "$$p" || dir=.; \ + echo "rm -f \"$${dir}/so_locations\""; \ + rm -f "$${dir}/so_locations"; \ + done +libsciblas.la: $(libsciblas_la_OBJECTS) $(libsciblas_la_DEPENDENCIES) + $(F77LINK) -rpath $(pkglibdir) $(libsciblas_la_OBJECTS) $(libsciblas_la_LIBADD) $(LIBS) + +mostlyclean-compile: + -rm -f *.$(OBJEXT) + +distclean-compile: + -rm -f *.tab.c + +.f.o: + $(F77COMPILE) -c -o $@ $< + +.f.obj: + $(F77COMPILE) -c -o $@ `$(CYGPATH_W) '$<'` + +.f.lo: + $(LTF77COMPILE) -c -o $@ $< + +mostlyclean-libtool: + -rm -f *.lo + +clean-libtool: + -rm -rf .libs _libs + +ID: $(HEADERS) $(SOURCES) $(LISP) $(TAGS_FILES) + list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \ + unique=`for i in $$list; do \ + if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ + done | \ + $(AWK) '{ files[$$0] = 1; nonempty = 1; } \ + END { if (nonempty) { for (i in files) print i; }; }'`; \ + mkid -fID $$unique +tags: TAGS + +TAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) \ + $(TAGS_FILES) $(LISP) + set x; \ + here=`pwd`; \ + list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \ + unique=`for i in $$list; do \ + if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ + done | \ + $(AWK) '{ files[$$0] = 1; nonempty = 1; } \ + END { if (nonempty) { for (i in files) print i; }; }'`; \ + shift; \ + if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ + test -n "$$unique" || unique=$$empty_fix; \ + if test $$# -gt 0; then \ + $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ + "$$@" $$unique; \ + else \ + $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ + $$unique; \ + fi; \ + fi +ctags: CTAGS +CTAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) \ + $(TAGS_FILES) $(LISP) + list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \ + unique=`for i in $$list; do \ + if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ + done | \ + $(AWK) '{ files[$$0] = 1; nonempty = 1; } \ + END { if (nonempty) { for (i in files) print i; }; }'`; \ + test -z "$(CTAGS_ARGS)$$unique" \ + || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ + $$unique + +GTAGS: + here=`$(am__cd) $(top_builddir) && pwd` \ + && $(am__cd) $(top_srcdir) \ + && gtags -i $(GTAGS_ARGS) "$$here" + +distclean-tags: + -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags + +distdir: $(DISTFILES) + @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ + topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ + list='$(DISTFILES)'; \ + dist_files=`for file in $$list; do echo $$file; done | \ + sed -e "s|^$$srcdirstrip/||;t" \ + -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ + case $$dist_files in \ + */*) $(MKDIR_P) `echo "$$dist_files" | \ + sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ + sort -u` ;; \ + esac; \ + for file in $$dist_files; do \ + if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ + if test -d $$d/$$file; then \ + dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ + if test -d "$(distdir)/$$file"; then \ + find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ + fi; \ + if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ + cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ + find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ + fi; \ + cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ + else \ + test -f "$(distdir)/$$file" \ + || cp -p $$d/$$file "$(distdir)/$$file" \ + || exit 1; \ + fi; \ + done +check-am: all-am +check: check-am +all-am: Makefile $(LTLIBRARIES) +installdirs: + for dir in "$(DESTDIR)$(pkglibdir)"; do \ + test -z "$$dir" || $(MKDIR_P) "$$dir"; \ + done +install: install-am +install-exec: install-exec-am +install-data: install-data-am +uninstall: uninstall-am + +install-am: all-am + @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am + +installcheck: installcheck-am +install-strip: + $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ + install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ + `test -z '$(STRIP)' || \ + echo "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'"` install +mostlyclean-generic: + +clean-generic: + +distclean-generic: + -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) + -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) + +maintainer-clean-generic: + @echo "This command is intended for maintainers to use" + @echo "it deletes files that may require special tools to rebuild." +clean: clean-am + +clean-am: clean-generic clean-libtool clean-pkglibLTLIBRARIES \ + mostlyclean-am + +distclean: distclean-am + -rm -f Makefile +distclean-am: clean-am distclean-compile distclean-generic \ + distclean-tags + +dvi: dvi-am + +dvi-am: + +html: html-am + +html-am: + +info: info-am + +info-am: + +install-data-am: + +install-dvi: install-dvi-am + +install-dvi-am: + +install-exec-am: install-pkglibLTLIBRARIES + +install-html: install-html-am + +install-html-am: + +install-info: install-info-am + +install-info-am: + +install-man: + +install-pdf: install-pdf-am + +install-pdf-am: + +install-ps: install-ps-am + +install-ps-am: + +installcheck-am: + +maintainer-clean: maintainer-clean-am + -rm -f Makefile +maintainer-clean-am: distclean-am maintainer-clean-generic + +mostlyclean: mostlyclean-am + +mostlyclean-am: mostlyclean-compile mostlyclean-generic \ + mostlyclean-libtool + +pdf: pdf-am + +pdf-am: + +ps: ps-am + +ps-am: + +uninstall-am: uninstall-pkglibLTLIBRARIES + +.MAKE: install-am install-strip + +.PHONY: CTAGS GTAGS all all-am check check-am clean clean-generic \ + clean-libtool clean-pkglibLTLIBRARIES ctags distclean \ + distclean-compile distclean-generic distclean-libtool \ + distclean-tags distdir dvi dvi-am html html-am info info-am \ + install install-am install-data install-data-am install-dvi \ + install-dvi-am install-exec install-exec-am install-html \ + install-html-am install-info install-info-am install-man \ + install-pdf install-pdf-am install-pkglibLTLIBRARIES \ + install-ps install-ps-am install-strip installcheck \ + installcheck-am installdirs maintainer-clean \ + maintainer-clean-generic mostlyclean mostlyclean-compile \ + mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ + tags uninstall uninstall-am uninstall-pkglibLTLIBRARIES + + +# Tell versions [3.59,3.63) of GNU make to not export all variables. +# Otherwise a system limit (for SysV at least) may be exceeded. +.NOEXPORT: diff --git a/src/fortran/blas/README b/src/fortran/blas/README new file mode 100644 index 0000000..8c28166 --- /dev/null +++ b/src/fortran/blas/README @@ -0,0 +1,6 @@ +This directory contains double precision version of the standard blas routines. + The makefile produces <SCIDIR>/libs/blas.a + +However this code is intended for use only if there is no other implementation +of the BLAS already available on your machine; + diff --git a/src/fortran/blas/blas_f/blasplus.def b/src/fortran/blas/blas_f/blasplus.def new file mode 100644 index 0000000..336d98a --- /dev/null +++ b/src/fortran/blas/blas_f/blasplus.def @@ -0,0 +1,74 @@ +LIBRARY blasplus.dll
+
+EXPORTS
+ dasum
+ daxpy
+ dcopy
+ ddot
+ dgbmv
+ dgemm
+ dgemv
+ dger
+ dnrm2
+ drot
+ drotg
+ dsbmv
+ dscal
+ dspmv
+ dspr
+ dspr2
+ dswap
+ dsymm
+ dsymv
+ dsyr
+ dsyr2
+ dsyr2k
+ dsyrk
+ dtbmv
+ dtbsv
+ dtpmv
+ dtpsv
+ dtrmm
+ dtrmv
+ dtrsm
+ dtrsv
+ dzasum
+ dznrm2
+ idamax
+ izamax
+ xerbla
+ zaxpy
+ zcopy
+ zdotc
+ zdotu
+ zdscal
+ zgbmv
+ zgemm
+ zgemv
+ zgerc
+ zgeru
+ zhbmv
+ zhemm
+ zhemv
+ zher
+ zher2
+ zher2k
+ zherk
+ zhpmv
+ zhpr
+ zhpr2
+ zrotg
+ zscal
+ zswap
+ zsymm
+ zsyr2k
+ zsyrk
+ ztbmv
+ ztbsv
+ ztpmv
+ ztpsv
+ ztrmm
+ ztrmv
+ ztrsm
+ ztrsv
+
\ No newline at end of file diff --git a/src/fortran/blas/blas_f/blasplusAtlas.def b/src/fortran/blas/blas_f/blasplusAtlas.def new file mode 100644 index 0000000..d13dde9 --- /dev/null +++ b/src/fortran/blas/blas_f/blasplusAtlas.def @@ -0,0 +1,144 @@ +LIBRARY blasplus.dll
+
+EXPORTS
+ dasum_ @1
+ dasum = dasum_
+ daxpy_ @2
+ daxpy = daxpy_
+ dcopy_ @3
+ dcopy = dcopy_
+ ddot_ @4
+ ddot = ddot_
+ dgbmv_ @5
+ dgbmv = dgbmv_
+ dgemm_ @6
+ dgemm = dgemm_
+ dgemv_ @7
+ dgemv = dgemv_
+ dger_ @8
+ dger = dger_
+ dnrm2_ @9
+ dnrm2 = dnrm2_
+ drot_ @10
+ drot = drot_
+ drotg_ @11
+ drotg = drotg_
+ dsbmv_ @12
+ dsbmv = dsbmv_
+ dscal_ @13
+ dscal = dscal_
+ dspmv_ @14
+ dspmv = dspmv_
+ dspr_ @15
+ dspr = dspr_
+ dspr2_ @16
+ dspr2 = dspr2_
+ dswap_ @17
+ dswap = dswap_
+ dsymm_ @18
+ dsymm = dsymm_
+ dsymv_ @19
+ dsymv = dsymv_
+ dsyr_ @20
+ dsyr = dsyr_
+ dsyr2_ @21
+ dsyr2 = dsyr2_
+ dsyr2k_ @22
+ dsyr2k = dsyr2k_
+ dsyrk_ @23
+ dsyrk = dsyrk_
+ dtbmv_ @24
+ dtbmv = dtbmv_
+ dtbsv_ @25
+ dtbsv = dtbsv_
+ dtpmv_ @26
+ dtpmv = dtpmv_
+ dtpsv_ @27
+ dtpsv = dtpsv_
+ dtrmm_ @28
+ dtrmm = dtrmm_
+ dtrmv_ @29
+ dtrmv = dtrmv_
+ dtrsm_ @30
+ dtrsm = dtrsm_
+ dtrsv_ @31
+ dtrsv = dtrsv_
+ dzasum_ @32
+ dzasum = dzasum_
+ dznrm2_ @33
+ dznrm2 = dznrm2_
+ idamax_ @34
+ idamax = idamax_
+ izamax_ @35
+ izamax = izamax_
+ xerbla_ @36
+ xerbla = xerbla_
+ zaxpy_ @37
+ zaxpy = zaxpy_
+ zcopy_ @38
+ zcopy = zcopy_
+ zdotc_ @39
+ zdotc = zdotc_
+ zdotu_ @40
+ zdotu = zdotu_
+ zdscal_ @41
+ zdscal = zdscal_
+ zgbmv_ @42
+ zgbmv = zgbmv_
+ zgemm_ @43
+ zgemm = zgemm_
+ zgemv_ @44
+ zgemv = zgemv_
+ zgerc_ @45
+ zgerc = zgerc_
+ zgeru_ @46
+ zgeru = zgeru_
+ zhbmv_ @47
+ zhbmv = zhbmv_
+ zhemm_ @48
+ zhemm = zhemm_
+ zhemv_ @49
+ zhemv = zhemv_
+ zher_ @50
+ zher = zher_
+ zher2_ @51
+ zher2 = zher2_
+ zher2k_ @52
+ zher2k = zher2k_
+ zherk_ @53
+ zherk = zherk_
+ zhpmv_ @54
+ zhpmv = zhpmv_
+ zhpr_ @55
+ zhpr = zhpr_
+ zhpr2_ @56
+ zhpr2 = zhpr2_
+ zrotg_ @57
+ zrotg = zrotg_
+ zscal_ @58
+ zscal = zscal_
+ zswap_ @59
+ zswap = zswap_
+ zsymm_ @60
+ zsymm = zsymm_
+ zsyr2k_ @61
+ zsyr2k = zsyr2k_
+ zsyrk_ @62
+ zsyrk = zsyrk_
+ ztbmv_ @63
+ ztbmv = ztbmv_
+ ztbsv_ @64
+ ztbsv = ztbsv_
+ ztpmv_ @65
+ ztpmv = ztpmv_
+ ztpsv_ @66
+ ztpsv = ztpsv_
+ ztrmm_ @67
+ ztrmm =ztrmm_
+ ztrmv_ @68
+ ztrmv = ztrmv_
+ ztrsm_ @69
+ ztrsm = ztrsm_
+ ztrsv_ @70
+ ztrsv = ztrsv_
+
\ No newline at end of file diff --git a/src/fortran/blas/blas_f/blasplus_DLL.suo b/src/fortran/blas/blas_f/blasplus_DLL.suo Binary files differnew file mode 100644 index 0000000..b83ddab --- /dev/null +++ b/src/fortran/blas/blas_f/blasplus_DLL.suo diff --git a/src/fortran/blas/blas_f/blasplus_DLL.vfproj b/src/fortran/blas/blas_f/blasplus_DLL.vfproj new file mode 100644 index 0000000..c1f337d --- /dev/null +++ b/src/fortran/blas/blas_f/blasplus_DLL.vfproj @@ -0,0 +1,124 @@ +<?xml version="1.0" encoding="UTF-8"?>
+<VisualStudioProject ProjectType="typeDynamicLibrary" ProjectCreator="Intel Fortran" Keyword="Dll" Version="11.0" ProjectIdGuid="{78BD64CE-181D-4D3F-9254-5C4F55C1EDC9}">
+ <Platforms>
+ <Platform Name="Win32"/>
+ <Platform Name="x64"/></Platforms>
+ <Configurations>
+ <Configuration Name="Debug|Win32" OutputDirectory="$(SolutionDir)bin\" IntermediateDirectory="$(ProjectDir)$(Configuration)\" DeleteExtensionsOnClean="*.obj;*.mod;*.pdb;*.asm;*.map;*.dyn;*.dpi;*.tmp;*.log;*.ilk;*.dll;$(TargetPath)" ConfigurationType="typeDynamicLibrary">
+ <Tool Name="VFFortranCompilerTool" AdditionalOptions="/dll " SuppressStartupBanner="true" DebugInformationFormat="debugEnabled" Optimization="optimizeDisabled" F77RuntimeCompatibility="true" CallingConvention="callConventionCRef" ModulePath="$(INTDIR)/" ObjectFile="$(INTDIR)/" Traceback="true" BoundsCheck="true" RuntimeLibrary="rtMultiThreadedDebug"/>
+ <Tool Name="VFLinkerTool" OutputFile="$(SolutionDir)bin/blasplus.dll" LinkIncremental="linkIncrementalNo" SuppressStartupBanner="true" IgnoreDefaultLibraryNames="msvcrtd.lib" ModuleDefinitionFile="blasplus.def" GenerateDebugInformation="true" SubSystem="subSystemWindows" ImportLibrary="$(SolutionDir)bin/blasplus.lib" LinkDLL="true" AdditionalDependencies="libcmtd.lib"/>
+ <Tool Name="VFResourceCompilerTool"/>
+ <Tool Name="VFMidlTool" SuppressStartupBanner="true" HeaderFileName="$(InputName).h" TypeLibraryName="$(IntDir)/$(InputName).tlb"/>
+ <Tool Name="VFCustomBuildTool"/>
+ <Tool Name="VFPreLinkEventTool"/>
+ <Tool Name="VFPreBuildEventTool"/>
+ <Tool Name="VFPostBuildEventTool" CommandLine="lib /def:blasplusAtlas.def /Machine:X86 /OUT:$(SolutionDir)bin/blasplus.lib" Description="Create blasplus.lib for Scilab"/>
+ <Tool Name="VFManifestTool" SuppressStartupBanner="true"/></Configuration>
+ <Configuration Name="Release|Win32" OutputDirectory="$(SolutionDir)bin\" IntermediateDirectory="$(ProjectDir)$(Configuration)\" DeleteExtensionsOnClean="*.obj;*.mod;*.pdb;*.asm;*.map;*.dyn;*.dpi;*.tmp;*.log;*.ilk;*.dll;$(TargetPath)" ConfigurationType="typeDynamicLibrary">
+ <Tool Name="VFFortranCompilerTool" AdditionalOptions="/dll" SuppressStartupBanner="true" AlternateParameterSyntax="false" F77RuntimeCompatibility="true" BackslashAsNormalCharacter="false" FPS4Libs="false" CallingConvention="callConventionCRef" ModulePath="$(INTDIR)/" ObjectFile="$(INTDIR)/" RuntimeLibrary="rtMultiThreaded"/>
+ <Tool Name="VFLinkerTool" OutputFile="$(SolutionDir)bin/blasplus.dll" LinkIncremental="linkIncrementalNo" SuppressStartupBanner="true" IgnoreDefaultLibraryNames="msvcrt.lib" ModuleDefinitionFile="blasplus.def" SubSystem="subSystemWindows" SupportUnloadOfDelayLoadedDLL="true" ImportLibrary="$(SolutionDir)bin/blasplus.lib" LinkDLL="true" AdditionalDependencies="libcmt.lib"/>
+ <Tool Name="VFResourceCompilerTool"/>
+ <Tool Name="VFMidlTool" SuppressStartupBanner="true" HeaderFileName="$(InputName).h" TypeLibraryName="$(IntDir)/$(InputName).tlb"/>
+ <Tool Name="VFCustomBuildTool"/>
+ <Tool Name="VFPreLinkEventTool"/>
+ <Tool Name="VFPreBuildEventTool"/>
+ <Tool Name="VFPostBuildEventTool" CommandLine="lib /def:blasplusAtlas.def /Machine:X86 /OUT:$(SolutionDir)bin/blasplus.lib" Description="Create blasplus.lib (Atlas compatibility)"/>
+ <Tool Name="VFManifestTool" SuppressStartupBanner="true"/></Configuration>
+ <Configuration Name="Debug|x64" OutputDirectory="$(SolutionDir)bin\" IntermediateDirectory="$(ProjectDir)$(Configuration)\" DeleteExtensionsOnClean="*.obj;*.mod;*.pdb;*.asm;*.map;*.dyn;*.dpi;*.tmp;*.log;*.ilk;*.dll;$(TargetPath)" ConfigurationType="typeDynamicLibrary">
+ <Tool Name="VFFortranCompilerTool" AdditionalOptions="/dll " SuppressStartupBanner="true" DebugInformationFormat="debugEnabled" Optimization="optimizeDisabled" F77RuntimeCompatibility="true" CallingConvention="callConventionCRef" ModulePath="$(INTDIR)/" ObjectFile="$(INTDIR)/" Traceback="true" BoundsCheck="true" RuntimeLibrary="rtMultiThreadedDebugDLL"/>
+ <Tool Name="VFLinkerTool" OutputFile="$(SolutionDir)bin/blasplus.dll" LinkIncremental="linkIncrementalNo" SuppressStartupBanner="true" IgnoreDefaultLibraryNames="msvcrtd.lib" ModuleDefinitionFile="blasplus.def" GenerateDebugInformation="true" SubSystem="subSystemWindows" ImportLibrary="$(SolutionDir)bin/blasplus.lib" LinkDLL="true" AdditionalDependencies="libcmtd.lib"/>
+ <Tool Name="VFResourceCompilerTool"/>
+ <Tool Name="VFMidlTool" SuppressStartupBanner="true" HeaderFileName="$(InputName).h" TypeLibraryName="$(IntDir)/$(InputName).tlb"/>
+ <Tool Name="VFCustomBuildTool"/>
+ <Tool Name="VFPreLinkEventTool"/>
+ <Tool Name="VFPreBuildEventTool"/>
+ <Tool Name="VFPostBuildEventTool" CommandLine="lib /def:blasplusAtlas.def /Machine:X64 /OUT:$(SolutionDir)bin/blasplus.lib" Description="Create blasplus.lib for Scilab"/>
+ <Tool Name="VFManifestTool" SuppressStartupBanner="true"/></Configuration>
+ <Configuration Name="Release|x64" OutputDirectory="$(SolutionDir)bin\" IntermediateDirectory="$(ProjectDir)$(Configuration)\" DeleteExtensionsOnClean="*.obj;*.mod;*.pdb;*.asm;*.map;*.dyn;*.dpi;*.tmp;*.log;*.ilk;*.dll;$(TargetPath)" ConfigurationType="typeDynamicLibrary">
+ <Tool Name="VFFortranCompilerTool" AdditionalOptions="/dll" SuppressStartupBanner="true" AlternateParameterSyntax="false" F77RuntimeCompatibility="true" BackslashAsNormalCharacter="false" FPS4Libs="false" CallingConvention="callConventionCRef" ModulePath="$(INTDIR)/" ObjectFile="$(INTDIR)/"/>
+ <Tool Name="VFLinkerTool" OutputFile="$(SolutionDir)bin/blasplus.dll" LinkIncremental="linkIncrementalNo" SuppressStartupBanner="true" IgnoreDefaultLibraryNames="msvcrt.lib" ModuleDefinitionFile="blasplus.def" SubSystem="subSystemWindows" SupportUnloadOfDelayLoadedDLL="true" ImportLibrary="$(SolutionDir)bin/blasplus.lib" LinkDLL="true" AdditionalDependencies="libcmt.lib"/>
+ <Tool Name="VFResourceCompilerTool"/>
+ <Tool Name="VFMidlTool" SuppressStartupBanner="true" HeaderFileName="$(InputName).h" TypeLibraryName="$(IntDir)/$(InputName).tlb"/>
+ <Tool Name="VFCustomBuildTool"/>
+ <Tool Name="VFPreLinkEventTool"/>
+ <Tool Name="VFPreBuildEventTool"/>
+ <Tool Name="VFPostBuildEventTool" CommandLine="lib /def:blasplusAtlas.def /Machine:X64 /OUT:$(SolutionDir)bin/blasplus.lib" Description="Create blasplus.lib (Atlas compatibility)"/>
+ <Tool Name="VFManifestTool" SuppressStartupBanner="true"/></Configuration></Configurations>
+ <Files>
+ <Filter Name="Header Files" Filter="fi;fd"/>
+ <Filter Name="Resource Files" Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"/>
+ <Filter Name="Source Files" Filter="f90;for;f;fpp;ftn;def;odl;idl">
+ <File RelativePath="..\dasum.f"/>
+ <File RelativePath="..\daxpy.f"/>
+ <File RelativePath="..\dcabs1.f"/>
+ <File RelativePath="..\dcopy.f"/>
+ <File RelativePath="..\ddot.f"/>
+ <File RelativePath="..\dgbmv.f"/>
+ <File RelativePath="..\dgemm.f"/>
+ <File RelativePath="..\dgemv.f"/>
+ <File RelativePath="..\dger.f"/>
+ <File RelativePath="..\dnrm2.f"/>
+ <File RelativePath="..\drot.f"/>
+ <File RelativePath="..\drotg.f"/>
+ <File RelativePath="..\dsbmv.f"/>
+ <File RelativePath="..\dscal.f"/>
+ <File RelativePath="..\dspmv.f"/>
+ <File RelativePath="..\dspr.f"/>
+ <File RelativePath="..\dspr2.f"/>
+ <File RelativePath="..\dswap.f"/>
+ <File RelativePath="..\dsymm.f"/>
+ <File RelativePath="..\dsymv.f"/>
+ <File RelativePath="..\dsyr.f"/>
+ <File RelativePath="..\dsyr2.f"/>
+ <File RelativePath="..\dsyr2k.f"/>
+ <File RelativePath="..\dsyrk.f"/>
+ <File RelativePath="..\dtbmv.f"/>
+ <File RelativePath="..\dtbsv.f"/>
+ <File RelativePath="..\dtpmv.f"/>
+ <File RelativePath="..\dtpsv.f"/>
+ <File RelativePath="..\dtrmm.f"/>
+ <File RelativePath="..\dtrmv.f"/>
+ <File RelativePath="..\dtrsm.f"/>
+ <File RelativePath="..\dtrsv.f"/>
+ <File RelativePath="..\dzasum.f"/>
+ <File RelativePath="..\dznrm2.f"/>
+ <File RelativePath="..\idamax.f"/>
+ <File RelativePath="..\izamax.f"/>
+ <File RelativePath="..\lsame.f"/>
+ <File RelativePath="..\xerbla.f"/>
+ <File RelativePath="..\zaxpy.f"/>
+ <File RelativePath="..\zcopy.f"/>
+ <File RelativePath="..\zdotc.f"/>
+ <File RelativePath="..\zdotu.f"/>
+ <File RelativePath="..\zdscal.f"/>
+ <File RelativePath="..\zgbmv.f"/>
+ <File RelativePath="..\zgemm.f"/>
+ <File RelativePath="..\zgemv.f"/>
+ <File RelativePath="..\zgerc.f"/>
+ <File RelativePath="..\zgeru.f"/>
+ <File RelativePath="..\zhbmv.f"/>
+ <File RelativePath="..\zhemm.f"/>
+ <File RelativePath="..\zhemv.f"/>
+ <File RelativePath="..\zher.f"/>
+ <File RelativePath="..\zher2.f"/>
+ <File RelativePath="..\zher2k.f"/>
+ <File RelativePath="..\zherk.f"/>
+ <File RelativePath="..\zhpmv.f"/>
+ <File RelativePath="..\zhpr.f"/>
+ <File RelativePath="..\zhpr2.f"/>
+ <File RelativePath="..\zrotg.f"/>
+ <File RelativePath="..\zscal.f"/>
+ <File RelativePath="..\zswap.f"/>
+ <File RelativePath="..\zsymm.f"/>
+ <File RelativePath="..\zsyr2k.f"/>
+ <File RelativePath="..\zsyrk.f"/>
+ <File RelativePath="..\ztbmv.f"/>
+ <File RelativePath="..\ztbsv.f"/>
+ <File RelativePath="..\ztpmv.f"/>
+ <File RelativePath="..\ztpsv.f"/>
+ <File RelativePath="..\ztrmm.f"/>
+ <File RelativePath="..\ztrmv.f"/>
+ <File RelativePath="..\ztrsm.f"/>
+ <File RelativePath="..\ztrsv.f"/></Filter>
+ <File RelativePath=".\blasplusAtlas.def"/></Files>
+ <Globals/></VisualStudioProject>
diff --git a/src/fortran/blas/blas_f/blasplus_DLL_f2c.vcxproj b/src/fortran/blas/blas_f/blasplus_DLL_f2c.vcxproj new file mode 100644 index 0000000..d557d2b --- /dev/null +++ b/src/fortran/blas/blas_f/blasplus_DLL_f2c.vcxproj @@ -0,0 +1,370 @@ +<?xml version="1.0" encoding="utf-8"?>
+<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
+ <ItemGroup Label="ProjectConfigurations">
+ <ProjectConfiguration Include="Debug|Win32">
+ <Configuration>Debug</Configuration>
+ <Platform>Win32</Platform>
+ </ProjectConfiguration>
+ <ProjectConfiguration Include="Debug|x64">
+ <Configuration>Debug</Configuration>
+ <Platform>x64</Platform>
+ </ProjectConfiguration>
+ <ProjectConfiguration Include="Release|Win32">
+ <Configuration>Release</Configuration>
+ <Platform>Win32</Platform>
+ </ProjectConfiguration>
+ <ProjectConfiguration Include="Release|x64">
+ <Configuration>Release</Configuration>
+ <Platform>x64</Platform>
+ </ProjectConfiguration>
+ </ItemGroup>
+ <PropertyGroup Label="Globals">
+ <ProjectName>blasplus_f2c_DLL</ProjectName>
+ <ProjectGuid>{78BD64CE-181D-4D3F-9254-5C4F55C1EDC9}</ProjectGuid>
+ <RootNamespace>blas_f2c</RootNamespace>
+ <Keyword>Win32Proj</Keyword>
+ </PropertyGroup>
+ <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
+ <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
+ <ConfigurationType>DynamicLibrary</ConfigurationType>
+ <CharacterSet>MultiByte</CharacterSet>
+ </PropertyGroup>
+ <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
+ <ConfigurationType>DynamicLibrary</ConfigurationType>
+ <CharacterSet>MultiByte</CharacterSet>
+ </PropertyGroup>
+ <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
+ <ConfigurationType>DynamicLibrary</ConfigurationType>
+ <CharacterSet>MultiByte</CharacterSet>
+ </PropertyGroup>
+ <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
+ <ConfigurationType>DynamicLibrary</ConfigurationType>
+ <CharacterSet>MultiByte</CharacterSet>
+ </PropertyGroup>
+ <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
+ <ImportGroup Label="ExtensionSettings">
+ <Import Project="..\..\..\..\Visual-Studio-settings\f2c.props" />
+ </ImportGroup>
+ <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="PropertySheets">
+ <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+ </ImportGroup>
+ <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="PropertySheets">
+ <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+ </ImportGroup>
+ <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
+ <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+ </ImportGroup>
+ <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
+ <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+ </ImportGroup>
+ <PropertyGroup Label="UserMacros" />
+ <PropertyGroup>
+ <_ProjectFileVersion>10.0.40219.1</_ProjectFileVersion>
+ <OutDir Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(SolutionDir)bin\</OutDir>
+ <IntDir Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">$(ProjectDir)$(Configuration)\</IntDir>
+ <OutDir Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(ProjectDir)$(Configuration)\</OutDir>
+ <IntDir Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">$(ProjectDir)$(Configuration)\</IntDir>
+ <OutDir Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(SolutionDir)bin\</OutDir>
+ <IntDir Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">$(ProjectDir)$(Configuration)\</IntDir>
+ <OutDir Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(SolutionDir)bin\</OutDir>
+ <IntDir Condition="'$(Configuration)|$(Platform)'=='Release|x64'">$(ProjectDir)$(Configuration)\</IntDir>
+ </PropertyGroup>
+ <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+ <PreBuildEvent>
+ <Command>
+ </Command>
+ </PreBuildEvent>
+ <ClCompile>
+ <Optimization>Disabled</Optimization>
+ <AdditionalIncludeDirectories>../../f2c;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
+ <PreprocessorDefinitions>STRICT;__STDC__;_CRT_SECURE_NO_DEPRECATE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+ <MinimalRebuild>true</MinimalRebuild>
+ <BasicRuntimeChecks>Default</BasicRuntimeChecks>
+ <RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
+ <PrecompiledHeader>
+ </PrecompiledHeader>
+ <ObjectFileName>$(Configuration)/</ObjectFileName>
+ <ProgramDataBaseFileName>$(Configuration)/vc80.pdb</ProgramDataBaseFileName>
+ <WarningLevel>Level3</WarningLevel>
+ <DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
+ </ClCompile>
+ <Link>
+ <AdditionalOptions>/fixed:no %(AdditionalOptions)</AdditionalOptions>
+ <OutputFile>$(SolutionDir)bin\blasplus.dll</OutputFile>
+ <ModuleDefinitionFile>blasplusAtlas.def</ModuleDefinitionFile>
+ <RandomizedBaseAddress>false</RandomizedBaseAddress>
+ <DataExecutionPrevention>
+ </DataExecutionPrevention>
+ <ImportLibrary>$(SolutionDir)bin\blasplus.lib</ImportLibrary>
+ <CLRUnmanagedCodeCheck>true</CLRUnmanagedCodeCheck>
+ </Link>
+ <PostBuildEvent>
+ <Command>
+ </Command>
+ </PostBuildEvent>
+ </ItemDefinitionGroup>
+ <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+ <PreBuildEvent>
+ <Command>
+ </Command>
+ </PreBuildEvent>
+ <Midl>
+ <TargetEnvironment>X64</TargetEnvironment>
+ </Midl>
+ <ClCompile>
+ <Optimization>Disabled</Optimization>
+ <AdditionalIncludeDirectories>../../f2c;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
+ <PreprocessorDefinitions>STRICT;__STDC__;_CRT_SECURE_NO_DEPRECATE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+ <MinimalRebuild>true</MinimalRebuild>
+ <BasicRuntimeChecks>Default</BasicRuntimeChecks>
+ <RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
+ <PrecompiledHeader>
+ </PrecompiledHeader>
+ <ObjectFileName>$(Configuration)/</ObjectFileName>
+ <ProgramDataBaseFileName>$(Configuration)/vc80.pdb</ProgramDataBaseFileName>
+ <WarningLevel>Level3</WarningLevel>
+ <DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
+ </ClCompile>
+ <Link>
+ <AdditionalOptions>/fixed:no %(AdditionalOptions)</AdditionalOptions>
+ <OutputFile>../../../bin/blasplus.dll</OutputFile>
+ <ModuleDefinitionFile>blasplusAtlas.def</ModuleDefinitionFile>
+ <RandomizedBaseAddress>false</RandomizedBaseAddress>
+ <DataExecutionPrevention>
+ </DataExecutionPrevention>
+ <ImportLibrary>../../../bin/blasplus.lib</ImportLibrary>
+ <TargetMachine>MachineX64</TargetMachine>
+ <CLRUnmanagedCodeCheck>true</CLRUnmanagedCodeCheck>
+ </Link>
+ <PostBuildEvent>
+ <Command>
+ </Command>
+ </PostBuildEvent>
+ </ItemDefinitionGroup>
+ <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+ <PreBuildEvent>
+ <Command>
+ </Command>
+ </PreBuildEvent>
+ <ClCompile>
+ <FavorSizeOrSpeed>Speed</FavorSizeOrSpeed>
+ <AdditionalIncludeDirectories>../../f2c;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
+ <PreprocessorDefinitions>STRICT;__STDC__;_CRT_SECURE_NO_DEPRECATE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+ <RuntimeLibrary>MultiThreaded</RuntimeLibrary>
+ <EnableEnhancedInstructionSet>NotSet</EnableEnhancedInstructionSet>
+ <PrecompiledHeader>
+ </PrecompiledHeader>
+ <ObjectFileName>$(Configuration)/</ObjectFileName>
+ <ProgramDataBaseFileName>$(Configuration)/vc80.pdb</ProgramDataBaseFileName>
+ <WarningLevel>Level3</WarningLevel>
+ <DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
+ </ClCompile>
+ <Link>
+ <OutputFile>$(SolutionDir)bin\blasplus.dll</OutputFile>
+ <ModuleDefinitionFile>blasplusAtlas.def</ModuleDefinitionFile>
+ <RandomizedBaseAddress>false</RandomizedBaseAddress>
+ <DataExecutionPrevention>
+ </DataExecutionPrevention>
+ <ImportLibrary>$(SolutionDir)bin\blasplus.lib</ImportLibrary>
+ <CLRUnmanagedCodeCheck>true</CLRUnmanagedCodeCheck>
+ </Link>
+ <PostBuildEvent>
+ <Command>
+ </Command>
+ </PostBuildEvent>
+ </ItemDefinitionGroup>
+ <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+ <PreBuildEvent>
+ <Command>
+ </Command>
+ </PreBuildEvent>
+ <Midl>
+ <TargetEnvironment>X64</TargetEnvironment>
+ </Midl>
+ <ClCompile>
+ <FavorSizeOrSpeed>Speed</FavorSizeOrSpeed>
+ <AdditionalIncludeDirectories>../../f2c;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
+ <PreprocessorDefinitions>STRICT;__STDC__;_CRT_SECURE_NO_DEPRECATE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+ <RuntimeLibrary>MultiThreaded</RuntimeLibrary>
+ <EnableEnhancedInstructionSet>StreamingSIMDExtensions</EnableEnhancedInstructionSet>
+ <PrecompiledHeader>
+ </PrecompiledHeader>
+ <ObjectFileName>$(Configuration)/</ObjectFileName>
+ <ProgramDataBaseFileName>$(Configuration)/vc80.pdb</ProgramDataBaseFileName>
+ <WarningLevel>Level3</WarningLevel>
+ <DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
+ </ClCompile>
+ <Link>
+ <OutputFile>../../../bin/blasplus.dll</OutputFile>
+ <ModuleDefinitionFile>blasplusAtlas.def</ModuleDefinitionFile>
+ <RandomizedBaseAddress>false</RandomizedBaseAddress>
+ <DataExecutionPrevention>
+ </DataExecutionPrevention>
+ <ImportLibrary>../../../bin/blasplus.lib</ImportLibrary>
+ <TargetMachine>MachineX64</TargetMachine>
+ <CLRUnmanagedCodeCheck>true</CLRUnmanagedCodeCheck>
+ </Link>
+ <PostBuildEvent>
+ <Command>
+ </Command>
+ </PostBuildEvent>
+ </ItemDefinitionGroup>
+ <ItemGroup>
+ <ClCompile Include="..\dasum.c" />
+ <ClCompile Include="..\daxpy.c" />
+ <ClCompile Include="..\dcabs1.c" />
+ <ClCompile Include="..\dcopy.c" />
+ <ClCompile Include="..\ddot.c" />
+ <ClCompile Include="..\dgbmv.c" />
+ <ClCompile Include="..\dgemm.c" />
+ <ClCompile Include="..\dgemv.c" />
+ <ClCompile Include="..\dger.c" />
+ <ClCompile Include="..\dnrm2.c" />
+ <ClCompile Include="..\drot.c" />
+ <ClCompile Include="..\drotg.c" />
+ <ClCompile Include="..\dsbmv.c" />
+ <ClCompile Include="..\dscal.c" />
+ <ClCompile Include="..\dspmv.c" />
+ <ClCompile Include="..\dspr.c" />
+ <ClCompile Include="..\dspr2.c" />
+ <ClCompile Include="..\dswap.c" />
+ <ClCompile Include="..\dsymm.c" />
+ <ClCompile Include="..\dsymv.c" />
+ <ClCompile Include="..\dsyr.c" />
+ <ClCompile Include="..\dsyr2.c" />
+ <ClCompile Include="..\dsyr2k.c" />
+ <ClCompile Include="..\dsyrk.c" />
+ <ClCompile Include="..\dtbmv.c" />
+ <ClCompile Include="..\dtbsv.c" />
+ <ClCompile Include="..\dtpmv.c" />
+ <ClCompile Include="..\dtpsv.c" />
+ <ClCompile Include="..\dtrmm.c" />
+ <ClCompile Include="..\dtrmv.c" />
+ <ClCompile Include="..\dtrsm.c" />
+ <ClCompile Include="..\dtrsv.c" />
+ <ClCompile Include="..\dzasum.c" />
+ <ClCompile Include="..\dznrm2.c" />
+ <ClCompile Include="..\idamax.c" />
+ <ClCompile Include="..\izamax.c" />
+ <ClCompile Include="..\lsame.c" />
+ <ClCompile Include="..\xerbla.c" />
+ <ClCompile Include="..\zaxpy.c" />
+ <ClCompile Include="..\zcopy.c" />
+ <ClCompile Include="..\zdotc.c" />
+ <ClCompile Include="..\zdotu.c" />
+ <ClCompile Include="..\zdscal.c" />
+ <ClCompile Include="..\zgbmv.c" />
+ <ClCompile Include="..\zgemm.c" />
+ <ClCompile Include="..\zgemv.c" />
+ <ClCompile Include="..\zgerc.c" />
+ <ClCompile Include="..\zgeru.c" />
+ <ClCompile Include="..\zhbmv.c" />
+ <ClCompile Include="..\zhemm.c" />
+ <ClCompile Include="..\zhemv.c" />
+ <ClCompile Include="..\zher.c" />
+ <ClCompile Include="..\zher2.c" />
+ <ClCompile Include="..\zher2k.c" />
+ <ClCompile Include="..\zherk.c" />
+ <ClCompile Include="..\zhpmv.c" />
+ <ClCompile Include="..\zhpr.c" />
+ <ClCompile Include="..\zhpr2.c" />
+ <ClCompile Include="..\zrotg.c" />
+ <ClCompile Include="..\zscal.c" />
+ <ClCompile Include="..\zswap.c" />
+ <ClCompile Include="..\zsymm.c" />
+ <ClCompile Include="..\zsyr2k.c" />
+ <ClCompile Include="..\zsyrk.c" />
+ <ClCompile Include="..\ztbmv.c" />
+ <ClCompile Include="..\ztbsv.c" />
+ <ClCompile Include="..\ztpmv.c" />
+ <ClCompile Include="..\ztpsv.c" />
+ <ClCompile Include="..\ztrmm.c" />
+ <ClCompile Include="..\ztrmv.c" />
+ <ClCompile Include="..\ztrsm.c" />
+ <ClCompile Include="..\ztrsv.c" />
+ </ItemGroup>
+ <ItemGroup>
+ <f2c_rule Include="..\dasum.f" />
+ <f2c_rule Include="..\daxpy.f" />
+ <f2c_rule Include="..\dcabs1.f" />
+ <f2c_rule Include="..\dcopy.f" />
+ <f2c_rule Include="..\ddot.f" />
+ <f2c_rule Include="..\dgbmv.f" />
+ <f2c_rule Include="..\dgemm.f" />
+ <f2c_rule Include="..\dgemv.f" />
+ <f2c_rule Include="..\dger.f" />
+ <f2c_rule Include="..\dnrm2.f" />
+ <f2c_rule Include="..\drot.f" />
+ <f2c_rule Include="..\drotg.f" />
+ <f2c_rule Include="..\dsbmv.f" />
+ <f2c_rule Include="..\dscal.f" />
+ <f2c_rule Include="..\dspmv.f" />
+ <f2c_rule Include="..\dspr.f" />
+ <f2c_rule Include="..\dspr2.f" />
+ <f2c_rule Include="..\dswap.f" />
+ <f2c_rule Include="..\dsymm.f" />
+ <f2c_rule Include="..\dsymv.f" />
+ <f2c_rule Include="..\dsyr.f" />
+ <f2c_rule Include="..\dsyr2.f" />
+ <f2c_rule Include="..\dsyr2k.f" />
+ <f2c_rule Include="..\dsyrk.f" />
+ <f2c_rule Include="..\dtbmv.f" />
+ <f2c_rule Include="..\dtbsv.f" />
+ <f2c_rule Include="..\dtpmv.f" />
+ <f2c_rule Include="..\dtpsv.f" />
+ <f2c_rule Include="..\dtrmm.f" />
+ <f2c_rule Include="..\dtrmv.f" />
+ <f2c_rule Include="..\dtrsm.f" />
+ <f2c_rule Include="..\dtrsv.f" />
+ <f2c_rule Include="..\dzasum.f" />
+ <f2c_rule Include="..\dznrm2.f" />
+ <f2c_rule Include="..\idamax.f" />
+ <f2c_rule Include="..\izamax.f" />
+ <f2c_rule Include="..\lsame.f" />
+ <f2c_rule Include="..\xerbla.f" />
+ <f2c_rule Include="..\zaxpy.f" />
+ <f2c_rule Include="..\zcopy.f" />
+ <f2c_rule Include="..\zdotc.f" />
+ <f2c_rule Include="..\zdotu.f" />
+ <f2c_rule Include="..\zdscal.f" />
+ <f2c_rule Include="..\zgbmv.f" />
+ <f2c_rule Include="..\zgemm.f" />
+ <f2c_rule Include="..\zgemv.f" />
+ <f2c_rule Include="..\zgerc.f" />
+ <f2c_rule Include="..\zgeru.f" />
+ <f2c_rule Include="..\zhbmv.f" />
+ <f2c_rule Include="..\zhemm.f" />
+ <f2c_rule Include="..\zhemv.f" />
+ <f2c_rule Include="..\zher.f" />
+ <f2c_rule Include="..\zher2.f" />
+ <f2c_rule Include="..\zher2k.f" />
+ <f2c_rule Include="..\zherk.f" />
+ <f2c_rule Include="..\zhpmv.f" />
+ <f2c_rule Include="..\zhpr.f" />
+ <f2c_rule Include="..\zhpr2.f" />
+ <f2c_rule Include="..\zrotg.f" />
+ <f2c_rule Include="..\zscal.f" />
+ <f2c_rule Include="..\zswap.f" />
+ <f2c_rule Include="..\zsymm.f" />
+ <f2c_rule Include="..\zsyr2k.f" />
+ <f2c_rule Include="..\zsyrk.f" />
+ <f2c_rule Include="..\ztbmv.f" />
+ <f2c_rule Include="..\ztbsv.f" />
+ <f2c_rule Include="..\ztpmv.f" />
+ <f2c_rule Include="..\ztpsv.f" />
+ <f2c_rule Include="..\ztrmm.f" />
+ <f2c_rule Include="..\ztrmv.f" />
+ <f2c_rule Include="..\ztrsm.f" />
+ <f2c_rule Include="..\ztrsv.f" />
+ </ItemGroup>
+ <ItemGroup>
+ <Library Include="..\..\..\..\bin\libf2c.lib" />
+ </ItemGroup>
+ <ItemGroup>
+ <None Include="..\Makefile.am" />
+ </ItemGroup>
+ <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
+ <ImportGroup Label="ExtensionTargets">
+ <Import Project="..\..\..\..\Visual-Studio-settings\f2c.targets" />
+ </ImportGroup>
+</Project>
\ No newline at end of file diff --git a/src/fortran/blas/blas_f/blasplus_DLL_f2c.vcxproj.filters b/src/fortran/blas/blas_f/blasplus_DLL_f2c.vcxproj.filters new file mode 100644 index 0000000..7930e6c --- /dev/null +++ b/src/fortran/blas/blas_f/blasplus_DLL_f2c.vcxproj.filters @@ -0,0 +1,463 @@ +<?xml version="1.0" encoding="utf-8"?>
+<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
+ <ItemGroup>
+ <Filter Include="Source Files">
+ <UniqueIdentifier>{1601b9fb-7d71-4db3-a10f-2ebf4e42eb41}</UniqueIdentifier>
+ <Extensions>cpp;c;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
+ </Filter>
+ <Filter Include="Header Files">
+ <UniqueIdentifier>{00d1d9d7-fbdc-44d6-8833-2fe6c3202478}</UniqueIdentifier>
+ <Extensions>h;hpp;hxx;hm;inl;inc;xsd</Extensions>
+ </Filter>
+ <Filter Include="Resource Files">
+ <UniqueIdentifier>{e894258f-c565-49f3-a686-3d4b79d703a9}</UniqueIdentifier>
+ <Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx</Extensions>
+ </Filter>
+ <Filter Include="Fortran Files">
+ <UniqueIdentifier>{f47cf0f8-ff06-42b4-86b2-ffa42424f976}</UniqueIdentifier>
+ <Extensions>*.f</Extensions>
+ </Filter>
+ </ItemGroup>
+ <ItemGroup>
+ <ClCompile Include="..\dasum.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\daxpy.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dcabs1.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dcopy.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ddot.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dgbmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dgemm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dgemv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dger.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dnrm2.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\drot.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\drotg.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dsbmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dscal.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dspmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dspr.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dspr2.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dswap.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dsymm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dsymv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dsyr.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dsyr2.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dsyr2k.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dsyrk.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtbmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtbsv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtpmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtpsv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtrmm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtrmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtrsm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dtrsv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dzasum.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\dznrm2.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\idamax.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\izamax.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\lsame.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\xerbla.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zaxpy.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zcopy.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zdotc.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zdotu.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zdscal.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zgbmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zgemm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zgemv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zgerc.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zgeru.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zhbmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zhemm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zhemv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zher.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zher2.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zher2k.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zherk.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zhpmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zhpr.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zhpr2.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zrotg.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zscal.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zswap.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zsymm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zsyr2k.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\zsyrk.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztbmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztbsv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztpmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztpsv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztrmm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztrmv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztrsm.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ <ClCompile Include="..\ztrsv.c">
+ <Filter>Source Files</Filter>
+ </ClCompile>
+ </ItemGroup>
+ <ItemGroup>
+ <f2c_rule Include="..\dasum.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\daxpy.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dcabs1.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dcopy.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ddot.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dgbmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dgemm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dgemv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dger.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dnrm2.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\drot.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\drotg.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dsbmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dscal.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dspmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dspr.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dspr2.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dswap.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dsymm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dsymv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dsyr.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dsyr2.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dsyr2k.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dsyrk.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtbmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtbsv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtpmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtpsv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtrmm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtrmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtrsm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dtrsv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dzasum.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\dznrm2.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\idamax.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\izamax.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\lsame.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\xerbla.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zaxpy.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zcopy.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zdotc.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zdotu.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zdscal.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zgbmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zgemm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zgemv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zgerc.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zgeru.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zhbmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zhemm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zhemv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zher.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zher2.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zher2k.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zherk.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zhpmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zhpr.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zhpr2.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zrotg.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zscal.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zswap.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zsymm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zsyr2k.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\zsyrk.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztbmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztbsv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztpmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztpsv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztrmm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztrmv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztrsm.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ <f2c_rule Include="..\ztrsv.f">
+ <Filter>Fortran Files</Filter>
+ </f2c_rule>
+ </ItemGroup>
+ <ItemGroup>
+ <Library Include="..\..\..\..\bin\libf2c.lib" />
+ </ItemGroup>
+ <ItemGroup>
+ <None Include="..\Makefile.am" />
+ </ItemGroup>
+</Project>
\ No newline at end of file diff --git a/src/fortran/blas/dasum.f b/src/fortran/blas/dasum.f new file mode 100644 index 0000000..28b128a --- /dev/null +++ b/src/fortran/blas/dasum.f @@ -0,0 +1,43 @@ + double precision function dasum(n,dx,incx) +c +c takes the sum of the absolute values. +c jack dongarra, linpack, 3/11/78. +c modified 3/93 to return if incx .le. 0. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision dx(*),dtemp + integer i,incx,m,mp1,n,nincx +c + dasum = 0.0d0 + dtemp = 0.0d0 + if( n.le.0 .or. incx.le.0 )return + if(incx.eq.1)go to 20 +c +c code for increment not equal to 1 +c + nincx = n*incx + do 10 i = 1,nincx,incx + dtemp = dtemp + dabs(dx(i)) + 10 continue + dasum = dtemp + return +c +c code for increment equal to 1 +c +c +c clean-up loop +c + 20 m = mod(n,6) + if( m .eq. 0 ) go to 40 + do 30 i = 1,m + dtemp = dtemp + dabs(dx(i)) + 30 continue + if( n .lt. 6 ) go to 60 + 40 mp1 = m + 1 + do 50 i = mp1,n,6 + dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2)) + * + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5)) + 50 continue + 60 dasum = dtemp + return + end diff --git a/src/fortran/blas/daxpy.f b/src/fortran/blas/daxpy.f new file mode 100644 index 0000000..91daa3c --- /dev/null +++ b/src/fortran/blas/daxpy.f @@ -0,0 +1,48 @@ + subroutine daxpy(n,da,dx,incx,dy,incy) +c +c constant times a vector plus a vector. +c uses unrolled loops for increments equal to one. +c jack dongarra, linpack, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision dx(*),dy(*),da + integer i,incx,incy,ix,iy,m,mp1,n +c + if(n.le.0)return + if (da .eq. 0.0d0) return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments +c not equal to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + dy(iy) = dy(iy) + da*dx(ix) + ix = ix + incx + iy = iy + incy + 10 continue + return +c +c code for both increments equal to 1 +c +c +c clean-up loop +c + 20 m = mod(n,4) + if( m .eq. 0 ) go to 40 + do 30 i = 1,m + dy(i) = dy(i) + da*dx(i) + 30 continue + if( n .lt. 4 ) return + 40 mp1 = m + 1 + do 50 i = mp1,n,4 + dy(i) = dy(i) + da*dx(i) + dy(i + 1) = dy(i + 1) + da*dx(i + 1) + dy(i + 2) = dy(i + 2) + da*dx(i + 2) + dy(i + 3) = dy(i + 3) + da*dx(i + 3) + 50 continue + return + end diff --git a/src/fortran/blas/dcabs1.f b/src/fortran/blas/dcabs1.f new file mode 100644 index 0000000..385ea5e --- /dev/null +++ b/src/fortran/blas/dcabs1.f @@ -0,0 +1,8 @@ + double precision function dcabs1(z) + double complex z,zz + double precision t(2) + equivalence (zz,t(1)) + zz = z + dcabs1 = dabs(t(1)) + dabs(t(2)) + return + end diff --git a/src/fortran/blas/dcopy.f b/src/fortran/blas/dcopy.f new file mode 100644 index 0000000..e168927 --- /dev/null +++ b/src/fortran/blas/dcopy.f @@ -0,0 +1,50 @@ + subroutine dcopy(n,dx,incx,dy,incy) +c +c copies a vector, x, to a vector, y. +c uses unrolled loops for increments equal to one. +c jack dongarra, linpack, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision dx(*),dy(*) + integer i,incx,incy,ix,iy,m,mp1,n +c + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments +c not equal to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + dy(iy) = dx(ix) + ix = ix + incx + iy = iy + incy + 10 continue + return +c +c code for both increments equal to 1 +c +c +c clean-up loop +c + 20 m = mod(n,7) + if( m .eq. 0 ) go to 40 + do 30 i = 1,m + dy(i) = dx(i) + 30 continue + if( n .lt. 7 ) return + 40 mp1 = m + 1 + do 50 i = mp1,n,7 + dy(i) = dx(i) + dy(i + 1) = dx(i + 1) + dy(i + 2) = dx(i + 2) + dy(i + 3) = dx(i + 3) + dy(i + 4) = dx(i + 4) + dy(i + 5) = dx(i + 5) + dy(i + 6) = dx(i + 6) + 50 continue + return + end diff --git a/src/fortran/blas/ddot.f b/src/fortran/blas/ddot.f new file mode 100644 index 0000000..e04c7c2 --- /dev/null +++ b/src/fortran/blas/ddot.f @@ -0,0 +1,49 @@ + double precision function ddot(n,dx,incx,dy,incy) +c +c forms the dot product of two vectors. +c uses unrolled loops for increments equal to one. +c jack dongarra, linpack, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision dx(*),dy(*),dtemp + integer i,incx,incy,ix,iy,m,mp1,n +c + ddot = 0.0d0 + dtemp = 0.0d0 + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments +c not equal to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + dtemp = dtemp + dx(ix)*dy(iy) + ix = ix + incx + iy = iy + incy + 10 continue + ddot = dtemp + return +c +c code for both increments equal to 1 +c +c +c clean-up loop +c + 20 m = mod(n,5) + if( m .eq. 0 ) go to 40 + do 30 i = 1,m + dtemp = dtemp + dx(i)*dy(i) + 30 continue + if( n .lt. 5 ) go to 60 + 40 mp1 = m + 1 + do 50 i = mp1,n,5 + dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + + * dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) + 50 continue + 60 ddot = dtemp + return + end diff --git a/src/fortran/blas/dgbmv.f b/src/fortran/blas/dgbmv.f new file mode 100644 index 0000000..e9c8f76 --- /dev/null +++ b/src/fortran/blas/dgbmv.f @@ -0,0 +1,300 @@ + SUBROUTINE DGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA, BETA + INTEGER INCX, INCY, KL, KU, LDA, M, N + CHARACTER*1 TRANS +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DGBMV performs one of the matrix-vector operations +* +* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, +* +* where alpha and beta are scalars, x and y are vectors and A is an +* m by n band matrix, with kl sub-diagonals and ku super-diagonals. +* +* Parameters +* ========== +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. +* +* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. +* +* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* KL - INTEGER. +* On entry, KL specifies the number of sub-diagonals of the +* matrix A. KL must satisfy 0 .le. KL. +* Unchanged on exit. +* +* KU - INTEGER. +* On entry, KU specifies the number of super-diagonals of the +* matrix A. KU must satisfy 0 .le. KU. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry, the leading ( kl + ku + 1 ) by n part of the +* array A must contain the matrix of coefficients, supplied +* column by column, with the leading diagonal of the matrix in +* row ( ku + 1 ) of the array, the first super-diagonal +* starting at position 2 in row ku, the first sub-diagonal +* starting at position 1 in row ( ku + 2 ), and so on. +* Elements in the array A that do not correspond to elements +* in the band matrix (such as the top left ku by ku triangle) +* are not referenced. +* The following program segment will transfer a band matrix +* from conventional full matrix storage to band storage: +* +* DO 20, J = 1, N +* K = KU + 1 - J +* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) +* A( K + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( kl + ku + 1 ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. +* Before entry, the incremented array X must contain the +* vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of DIMENSION at least +* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. +* Before entry, the incremented array Y must contain the +* vector y. On exit, Y is overwritten by the updated vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY, + $ LENX, LENY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 1 + ELSE IF( M.LT.0 )THEN + INFO = 2 + ELSE IF( N.LT.0 )THEN + INFO = 3 + ELSE IF( KL.LT.0 )THEN + INFO = 4 + ELSE IF( KU.LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN + INFO = 8 + ELSE IF( INCX.EQ.0 )THEN + INFO = 10 + ELSE IF( INCY.EQ.0 )THEN + INFO = 13 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DGBMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set LENX and LENY, the lengths of the vectors x and y, and set +* up the start points in X and Y. +* + IF( LSAME( TRANS, 'N' ) )THEN + LENX = N + LENY = M + ELSE + LENX = M + LENY = N + END IF + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( LENX - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( LENY - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the band part of A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, LENY + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, LENY + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, LENY + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, LENY + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + KUP1 = KU + 1 + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form y := alpha*A*x + y. +* + JX = KX + IF( INCY.EQ.1 )THEN + DO 60, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + K = KUP1 - J + DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL ) + Y( I ) = Y( I ) + TEMP*A( K + I, J ) + 50 CONTINUE + END IF + JX = JX + INCX + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IY = KY + K = KUP1 - J + DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL ) + Y( IY ) = Y( IY ) + TEMP*A( K + I, J ) + IY = IY + INCY + 70 CONTINUE + END IF + JX = JX + INCX + IF( J.GT.KU ) + $ KY = KY + INCY + 80 CONTINUE + END IF + ELSE +* +* Form y := alpha*A'*x + y. +* + JY = KY + IF( INCX.EQ.1 )THEN + DO 100, J = 1, N + TEMP = ZERO + K = KUP1 - J + DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL ) + TEMP = TEMP + A( K + I, J )*X( I ) + 90 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + 100 CONTINUE + ELSE + DO 120, J = 1, N + TEMP = ZERO + IX = KX + K = KUP1 - J + DO 110, I = MAX( 1, J - KU ), MIN( M, J + KL ) + TEMP = TEMP + A( K + I, J )*X( IX ) + IX = IX + INCX + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + IF( J.GT.KU ) + $ KX = KX + INCX + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of DGBMV . +* + END diff --git a/src/fortran/blas/dgemm.f b/src/fortran/blas/dgemm.f new file mode 100644 index 0000000..1531fd5 --- /dev/null +++ b/src/fortran/blas/dgemm.f @@ -0,0 +1,315 @@ + SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 TRANSA, TRANSB + INTEGER M, N, K, LDA, LDB, LDC + DOUBLE PRECISION ALPHA, BETA +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +C WARNING : this routine has been modified for Scilab (see comments +C Cscilab) because algorithm is not ok if A matrix contains NaN +C (NaN*0 should be NaN, not 0) +* Purpose +* ======= +* +* DGEMM performs one of the matrix-matrix operations +* +* C := alpha*op( A )*op( B ) + beta*C, +* +* where op( X ) is one of +* +* op( X ) = X or op( X ) = X', +* +* alpha and beta are scalars, and A, B and C are matrices, with op( A ) +* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. +* +* Parameters +* ========== +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n', op( A ) = A. +* +* TRANSA = 'T' or 't', op( A ) = A'. +* +* TRANSA = 'C' or 'c', op( A ) = A'. +* +* Unchanged on exit. +* +* TRANSB - CHARACTER*1. +* On entry, TRANSB specifies the form of op( B ) to be used in +* the matrix multiplication as follows: +* +* TRANSB = 'N' or 'n', op( B ) = B. +* +* TRANSB = 'T' or 't', op( B ) = B'. +* +* TRANSB = 'C' or 'c', op( B ) = B'. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix +* op( A ) and of the matrix C. M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix +* op( B ) and the number of columns of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry, K specifies the number of columns of the matrix +* op( A ) and the number of rows of the matrix op( B ). K must +* be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is +* k when TRANSA = 'N' or 'n', and is m otherwise. +* Before entry with TRANSA = 'N' or 'n', the leading m by k +* part of the array A must contain the matrix A, otherwise +* the leading k by m part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANSA = 'N' or 'n' then +* LDA must be at least max( 1, m ), otherwise LDA must be at +* least max( 1, k ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is +* n when TRANSB = 'N' or 'n', and is k otherwise. +* Before entry with TRANSB = 'N' or 'n', the leading k by n +* part of the array B must contain the matrix B, otherwise +* the leading n by k part of the array B must contain the +* matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. When TRANSB = 'N' or 'n' then +* LDB must be at least max( 1, k ), otherwise LDB must be at +* least max( 1, n ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then C need not be set on input. +* Unchanged on exit. +* +* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). +* Before entry, the leading m by n part of the array C must +* contain the matrix C, except when beta is zero, in which +* case C need not be set on entry. +* On exit, the array C is overwritten by the m by n matrix +* ( alpha*op( A )*op( B ) + beta*C ). +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL NOTA, NOTB + INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB + DOUBLE PRECISION TEMP +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* +* Set NOTA and NOTB as true if A and B respectively are not +* transposed and set NROWA, NCOLA and NROWB as the number of rows +* and columns of A and the number of rows of B respectively. +* + NOTA = LSAME( TRANSA, 'N' ) + NOTB = LSAME( TRANSB, 'N' ) + IF( NOTA )THEN + NROWA = M + NCOLA = K + ELSE + NROWA = K + NCOLA = M + END IF + IF( NOTB )THEN + NROWB = K + ELSE + NROWB = N + END IF +* +* Test the input parameters. +* + INFO = 0 + IF( ( .NOT.NOTA ).AND. + $ ( .NOT.LSAME( TRANSA, 'C' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.NOTB ).AND. + $ ( .NOT.LSAME( TRANSB, 'C' ) ).AND. + $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN + INFO = 2 + ELSE IF( M .LT.0 )THEN + INFO = 3 + ELSE IF( N .LT.0 )THEN + INFO = 4 + ELSE IF( K .LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 8 + ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN + INFO = 10 + ELSE IF( LDC.LT.MAX( 1, M ) )THEN + INFO = 13 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DGEMM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And if alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, M + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + RETURN + END IF +* +* Start the operations. +* + IF( NOTB )THEN + IF( NOTA )THEN +* +* Form C := alpha*A*B + beta*C. +* + DO 90, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 50, I = 1, M + C( I, J ) = ZERO + 50 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 60, I = 1, M + C( I, J ) = BETA*C( I, J ) + 60 CONTINUE + END IF + DO 80, L = 1, K +Cscilab IF( B( L, J ).NE.ZERO )THEN + TEMP = ALPHA*B( L, J ) + DO 70, I = 1, M + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 70 CONTINUE +Cscilab END IF + 80 CONTINUE + 90 CONTINUE + ELSE +* +* Form C := alpha*A'*B + beta*C +* + DO 120, J = 1, N + DO 110, I = 1, M + TEMP = ZERO + DO 100, L = 1, K + TEMP = TEMP + A( L, I )*B( L, J ) + 100 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 110 CONTINUE + 120 CONTINUE + END IF + ELSE + IF( NOTA )THEN +* +* Form C := alpha*A*B' + beta*C +* + DO 170, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 130, I = 1, M + C( I, J ) = ZERO + 130 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 140, I = 1, M + C( I, J ) = BETA*C( I, J ) + 140 CONTINUE + END IF + DO 160, L = 1, K +Cscilab IF( B( J, L ).NE.ZERO )THEN + TEMP = ALPHA*B( J, L ) + DO 150, I = 1, M + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 150 CONTINUE +Cscilab END IF + 160 CONTINUE + 170 CONTINUE + ELSE +* +* Form C := alpha*A'*B' + beta*C +* + DO 200, J = 1, N + DO 190, I = 1, M + TEMP = ZERO + DO 180, L = 1, K + TEMP = TEMP + A( L, I )*B( J, L ) + 180 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 190 CONTINUE + 200 CONTINUE + END IF + END IF +* + RETURN +* +* End of DGEMM . +* + END diff --git a/src/fortran/blas/dgemv.f b/src/fortran/blas/dgemv.f new file mode 100644 index 0000000..8ef80b3 --- /dev/null +++ b/src/fortran/blas/dgemv.f @@ -0,0 +1,261 @@ + SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA, BETA + INTEGER INCX, INCY, LDA, M, N + CHARACTER*1 TRANS +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DGEMV performs one of the matrix-vector operations +* +* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, +* +* where alpha and beta are scalars, x and y are vectors and A is an +* m by n matrix. +* +* Parameters +* ========== +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. +* +* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. +* +* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry, the leading m by n part of the array A must +* contain the matrix of coefficients. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, m ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. +* Before entry, the incremented array X must contain the +* vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of DIMENSION at least +* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. +* Before entry with BETA non-zero, the incremented array Y +* must contain the vector y. On exit, Y is overwritten by the +* updated vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 1 + ELSE IF( M.LT.0 )THEN + INFO = 2 + ELSE IF( N.LT.0 )THEN + INFO = 3 + ELSE IF( LDA.LT.MAX( 1, M ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + ELSE IF( INCY.EQ.0 )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DGEMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set LENX and LENY, the lengths of the vectors x and y, and set +* up the start points in X and Y. +* + IF( LSAME( TRANS, 'N' ) )THEN + LENX = N + LENY = M + ELSE + LENX = M + LENY = N + END IF + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( LENX - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( LENY - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, LENY + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, LENY + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, LENY + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, LENY + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form y := alpha*A*x + y. +* + JX = KX + IF( INCY.EQ.1 )THEN + DO 60, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + DO 50, I = 1, M + Y( I ) = Y( I ) + TEMP*A( I, J ) + 50 CONTINUE + END IF + JX = JX + INCX + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IY = KY + DO 70, I = 1, M + Y( IY ) = Y( IY ) + TEMP*A( I, J ) + IY = IY + INCY + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + ELSE +* +* Form y := alpha*A'*x + y. +* + JY = KY + IF( INCX.EQ.1 )THEN + DO 100, J = 1, N + TEMP = ZERO + DO 90, I = 1, M + TEMP = TEMP + A( I, J )*X( I ) + 90 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + 100 CONTINUE + ELSE + DO 120, J = 1, N + TEMP = ZERO + IX = KX + DO 110, I = 1, M + TEMP = TEMP + A( I, J )*X( IX ) + IX = IX + INCX + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of DGEMV . +* + END diff --git a/src/fortran/blas/dger.f b/src/fortran/blas/dger.f new file mode 100644 index 0000000..d316000 --- /dev/null +++ b/src/fortran/blas/dger.f @@ -0,0 +1,157 @@ + SUBROUTINE DGER ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, INCY, LDA, M, N +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DGER performs the rank 1 operation +* +* A := alpha*x*y' + A, +* +* where alpha is a scalar, x is an m element vector, y is an n element +* vector and A is an m by n matrix. +* +* Parameters +* ========== +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( m - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the m +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry, the leading m by n part of the array A must +* contain the matrix of coefficients. On exit, A is +* overwritten by the updated matrix. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JY, KX +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( M.LT.0 )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( INCY.EQ.0 )THEN + INFO = 7 + ELSE IF( LDA.LT.MAX( 1, M ) )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DGER ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( INCY.GT.0 )THEN + JY = 1 + ELSE + JY = 1 - ( N - 1 )*INCY + END IF + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( Y( JY ).NE.ZERO )THEN + TEMP = ALPHA*Y( JY ) + DO 10, I = 1, M + A( I, J ) = A( I, J ) + X( I )*TEMP + 10 CONTINUE + END IF + JY = JY + INCY + 20 CONTINUE + ELSE + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( M - 1 )*INCX + END IF + DO 40, J = 1, N + IF( Y( JY ).NE.ZERO )THEN + TEMP = ALPHA*Y( JY ) + IX = KX + DO 30, I = 1, M + A( I, J ) = A( I, J ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + END IF + JY = JY + INCY + 40 CONTINUE + END IF +* + RETURN +* +* End of DGER . +* + END diff --git a/src/fortran/blas/dnrm2.f b/src/fortran/blas/dnrm2.f new file mode 100644 index 0000000..119d047 --- /dev/null +++ b/src/fortran/blas/dnrm2.f @@ -0,0 +1,60 @@ + DOUBLE PRECISION FUNCTION DNRM2 ( N, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, N +* .. Array Arguments .. + DOUBLE PRECISION X( * ) +* .. +* +* DNRM2 returns the euclidean norm of a vector via the function +* name, so that +* +* DNRM2 := sqrt( x'*x ) +* +* +* +* -- This version written on 25-October-1982. +* Modified on 14-October-1993 to inline the call to DLASSQ. +* Sven Hammarling, Nag Ltd. +* +* +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. Local Scalars .. + INTEGER IX + DOUBLE PRECISION ABSXI, NORM, SCALE, SSQ +* .. Intrinsic Functions .. + INTRINSIC ABS, SQRT +* .. +* .. Executable Statements .. + IF( N.LT.1 .OR. INCX.LT.1 )THEN + NORM = ZERO + ELSE IF( N.EQ.1 )THEN + NORM = ABS( X( 1 ) ) + ELSE + SCALE = ZERO + SSQ = ONE +* The following loop is equivalent to this call to the LAPACK +* auxiliary routine: +* CALL DLASSQ( N, X, INCX, SCALE, SSQ ) +* + DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX + IF( X( IX ).NE.ZERO )THEN + ABSXI = ABS( X( IX ) ) + IF( SCALE.LT.ABSXI )THEN + SSQ = ONE + SSQ*( SCALE/ABSXI )**2 + SCALE = ABSXI + ELSE + SSQ = SSQ + ( ABSXI/SCALE )**2 + END IF + END IF + 10 CONTINUE + NORM = SCALE * SQRT( SSQ ) + END IF +* + DNRM2 = NORM + RETURN +* +* End of DNRM2. +* + END diff --git a/src/fortran/blas/drot.f b/src/fortran/blas/drot.f new file mode 100644 index 0000000..b9ea3bd --- /dev/null +++ b/src/fortran/blas/drot.f @@ -0,0 +1,37 @@ + subroutine drot (n,dx,incx,dy,incy,c,s) +c +c applies a plane rotation. +c jack dongarra, linpack, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision dx(*),dy(*),dtemp,c,s + integer i,incx,incy,ix,iy,n +c + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments not equal +c to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + dtemp = c*dx(ix) + s*dy(iy) + dy(iy) = c*dy(iy) - s*dx(ix) + dx(ix) = dtemp + ix = ix + incx + iy = iy + incy + 10 continue + return +c +c code for both increments equal to 1 +c + 20 do 30 i = 1,n + dtemp = c*dx(i) + s*dy(i) + dy(i) = c*dy(i) - s*dx(i) + dx(i) = dtemp + 30 continue + return + end diff --git a/src/fortran/blas/drotg.f b/src/fortran/blas/drotg.f new file mode 100644 index 0000000..67838e2 --- /dev/null +++ b/src/fortran/blas/drotg.f @@ -0,0 +1,27 @@ + subroutine drotg(da,db,c,s) +c +c construct givens plane rotation. +c jack dongarra, linpack, 3/11/78. +c + double precision da,db,c,s,roe,scale,r,z +c + roe = db + if( dabs(da) .gt. dabs(db) ) roe = da + scale = dabs(da) + dabs(db) + if( scale .ne. 0.0d0 ) go to 10 + c = 1.0d0 + s = 0.0d0 + r = 0.0d0 + z = 0.0d0 + go to 20 + 10 r = scale*dsqrt((da/scale)**2 + (db/scale)**2) + r = dsign(1.0d0,roe)*r + c = da/r + s = db/r + z = 1.0d0 + if( dabs(da) .gt. dabs(db) ) z = s + if( dabs(db) .ge. dabs(da) .and. c .ne. 0.0d0 ) z = 1.0d0/c + 20 da = r + db = z + return + end diff --git a/src/fortran/blas/dsbmv.f b/src/fortran/blas/dsbmv.f new file mode 100644 index 0000000..272042a --- /dev/null +++ b/src/fortran/blas/dsbmv.f @@ -0,0 +1,303 @@ + SUBROUTINE DSBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA, BETA + INTEGER INCX, INCY, K, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DSBMV performs the matrix-vector operation +* +* y := alpha*A*x + beta*y, +* +* where alpha and beta are scalars, x and y are n element vectors and +* A is an n by n symmetric band matrix, with k super-diagonals. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the band matrix A is being supplied as +* follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* being supplied. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* being supplied. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry, K specifies the number of super-diagonals of the +* matrix A. K must satisfy 0 .le. K. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) +* by n part of the array A must contain the upper triangular +* band part of the symmetric matrix, supplied column by +* column, with the leading diagonal of the matrix in row +* ( k + 1 ) of the array, the first super-diagonal starting at +* position 2 in row k, and so on. The top left k by k triangle +* of the array A is not referenced. +* The following program segment will transfer the upper +* triangular part of a symmetric band matrix from conventional +* full matrix storage to band storage: +* +* DO 20, J = 1, N +* M = K + 1 - J +* DO 10, I = MAX( 1, J - K ), J +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) +* by n part of the array A must contain the lower triangular +* band part of the symmetric matrix, supplied column by +* column, with the leading diagonal of the matrix in row 1 of +* the array, the first sub-diagonal starting at position 1 in +* row 2, and so on. The bottom right k by k triangle of the +* array A is not referenced. +* The following program segment will transfer the lower +* triangular part of a symmetric band matrix from conventional +* full matrix storage to band storage: +* +* DO 20, J = 1, N +* M = 1 - J +* DO 10, I = J, MIN( N, J + K ) +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( k + 1 ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the +* vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the +* vector y. On exit, Y is overwritten by the updated vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( K.LT.0 )THEN + INFO = 3 + ELSE IF( LDA.LT.( K + 1 ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + ELSE IF( INCY.EQ.0 )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSBMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set up the start points in X and Y. +* + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of the array A +* are accessed sequentially with one pass through A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, N + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, N + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, N + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, N + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form y when upper triangle of A is stored. +* + KPLUS1 = K + 1 + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + L = KPLUS1 - J + DO 50, I = MAX( 1, J - K ), J - 1 + Y( I ) = Y( I ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + A( L + I, J )*X( I ) + 50 CONTINUE + Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2 + 60 CONTINUE + ELSE + JX = KX + JY = KY + DO 80, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + IX = KX + IY = KY + L = KPLUS1 - J + DO 70, I = MAX( 1, J - K ), J - 1 + Y( IY ) = Y( IY ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + A( L + I, J )*X( IX ) + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + IF( J.GT.K )THEN + KX = KX + INCX + KY = KY + INCY + END IF + 80 CONTINUE + END IF + ELSE +* +* Form y when lower triangle of A is stored. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 100, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + Y( J ) = Y( J ) + TEMP1*A( 1, J ) + L = 1 - J + DO 90, I = J + 1, MIN( N, J + K ) + Y( I ) = Y( I ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + A( L + I, J )*X( I ) + 90 CONTINUE + Y( J ) = Y( J ) + ALPHA*TEMP2 + 100 CONTINUE + ELSE + JX = KX + JY = KY + DO 120, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + Y( JY ) = Y( JY ) + TEMP1*A( 1, J ) + L = 1 - J + IX = JX + IY = JY + DO 110, I = J + 1, MIN( N, J + K ) + IX = IX + INCX + IY = IY + INCY + Y( IY ) = Y( IY ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + A( L + I, J )*X( IX ) + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSBMV . +* + END diff --git a/src/fortran/blas/dscal.f b/src/fortran/blas/dscal.f new file mode 100644 index 0000000..e1467fa --- /dev/null +++ b/src/fortran/blas/dscal.f @@ -0,0 +1,43 @@ + subroutine dscal(n,da,dx,incx) +c +c scales a vector by a constant. +c uses unrolled loops for increment equal to one. +c jack dongarra, linpack, 3/11/78. +c modified 3/93 to return if incx .le. 0. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision da,dx(*) + integer i,incx,m,mp1,n,nincx +c + if( n.le.0 .or. incx.le.0 )return + if(incx.eq.1)go to 20 +c +c code for increment not equal to 1 +c + nincx = n*incx + do 10 i = 1,nincx,incx + dx(i) = da*dx(i) + 10 continue + return +c +c code for increment equal to 1 +c +c +c clean-up loop +c + 20 m = mod(n,5) + if( m .eq. 0 ) go to 40 + do 30 i = 1,m + dx(i) = da*dx(i) + 30 continue + if( n .lt. 5 ) return + 40 mp1 = m + 1 + do 50 i = mp1,n,5 + dx(i) = da*dx(i) + dx(i + 1) = da*dx(i + 1) + dx(i + 2) = da*dx(i + 2) + dx(i + 3) = da*dx(i + 3) + dx(i + 4) = da*dx(i + 4) + 50 continue + return + end diff --git a/src/fortran/blas/dspmv.f b/src/fortran/blas/dspmv.f new file mode 100644 index 0000000..3ace7bf --- /dev/null +++ b/src/fortran/blas/dspmv.f @@ -0,0 +1,262 @@ + SUBROUTINE DSPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA, BETA + INTEGER INCX, INCY, N + CHARACTER*1 UPLO +* .. Array Arguments .. + DOUBLE PRECISION AP( * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DSPMV performs the matrix-vector operation +* +* y := alpha*A*x + beta*y, +* +* where alpha and beta are scalars, x and y are n element vectors and +* A is an n by n symmetric matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the matrix A is supplied in the packed +* array AP as follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* supplied in AP. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* supplied in AP. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* AP - DOUBLE PRECISION array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular part of the symmetric matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) +* and a( 2, 2 ) respectively, and so on. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular part of the symmetric matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) +* and a( 3, 1 ) respectively, and so on. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. On exit, Y is overwritten by the updated +* vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 6 + ELSE IF( INCY.EQ.0 )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSPMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set up the start points in X and Y. +* + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of the array AP +* are accessed sequentially with one pass through AP. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, N + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, N + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, N + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, N + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + KK = 1 + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form y when AP contains the upper triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + K = KK + DO 50, I = 1, J - 1 + Y( I ) = Y( I ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + AP( K )*X( I ) + K = K + 1 + 50 CONTINUE + Y( J ) = Y( J ) + TEMP1*AP( KK + J - 1 ) + ALPHA*TEMP2 + KK = KK + J + 60 CONTINUE + ELSE + JX = KX + JY = KY + DO 80, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + IX = KX + IY = KY + DO 70, K = KK, KK + J - 2 + Y( IY ) = Y( IY ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + AP( K )*X( IX ) + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + Y( JY ) = Y( JY ) + TEMP1*AP( KK + J - 1 ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + KK = KK + J + 80 CONTINUE + END IF + ELSE +* +* Form y when AP contains the lower triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 100, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + Y( J ) = Y( J ) + TEMP1*AP( KK ) + K = KK + 1 + DO 90, I = J + 1, N + Y( I ) = Y( I ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + AP( K )*X( I ) + K = K + 1 + 90 CONTINUE + Y( J ) = Y( J ) + ALPHA*TEMP2 + KK = KK + ( N - J + 1 ) + 100 CONTINUE + ELSE + JX = KX + JY = KY + DO 120, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + Y( JY ) = Y( JY ) + TEMP1*AP( KK ) + IX = JX + IY = JY + DO 110, K = KK + 1, KK + N - J + IX = IX + INCX + IY = IY + INCY + Y( IY ) = Y( IY ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + AP( K )*X( IX ) + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + KK = KK + ( N - J + 1 ) + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSPMV . +* + END diff --git a/src/fortran/blas/dspr.f b/src/fortran/blas/dspr.f new file mode 100644 index 0000000..3da6889 --- /dev/null +++ b/src/fortran/blas/dspr.f @@ -0,0 +1,198 @@ + SUBROUTINE DSPR ( UPLO, N, ALPHA, X, INCX, AP ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, N + CHARACTER*1 UPLO +* .. Array Arguments .. + DOUBLE PRECISION AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DSPR performs the symmetric rank 1 operation +* +* A := alpha*x*x' + A, +* +* where alpha is a real scalar, x is an n element vector and A is an +* n by n symmetric matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the matrix A is supplied in the packed +* array AP as follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* supplied in AP. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* supplied in AP. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* AP - DOUBLE PRECISION array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular part of the symmetric matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) +* and a( 2, 2 ) respectively, and so on. On exit, the array +* AP is overwritten by the upper triangular part of the +* updated matrix. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular part of the symmetric matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) +* and a( 3, 1 ) respectively, and so on. On exit, the array +* AP is overwritten by the lower triangular part of the +* updated matrix. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSPR ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Set the start point in X if the increment is not unity. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of the array AP +* are accessed sequentially with one pass through AP. +* + KK = 1 + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when upper triangle is stored in AP. +* + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*X( J ) + K = KK + DO 10, I = 1, J + AP( K ) = AP( K ) + X( I )*TEMP + K = K + 1 + 10 CONTINUE + END IF + KK = KK + J + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IX = KX + DO 30, K = KK, KK + J - 1 + AP( K ) = AP( K ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + END IF + JX = JX + INCX + KK = KK + J + 40 CONTINUE + END IF + ELSE +* +* Form A when lower triangle is stored in AP. +* + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*X( J ) + K = KK + DO 50, I = J, N + AP( K ) = AP( K ) + X( I )*TEMP + K = K + 1 + 50 CONTINUE + END IF + KK = KK + N - J + 1 + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IX = JX + DO 70, K = KK, KK + N - J + AP( K ) = AP( K ) + X( IX )*TEMP + IX = IX + INCX + 70 CONTINUE + END IF + JX = JX + INCX + KK = KK + N - J + 1 + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSPR . +* + END diff --git a/src/fortran/blas/dspr2.f b/src/fortran/blas/dspr2.f new file mode 100644 index 0000000..1cfce21 --- /dev/null +++ b/src/fortran/blas/dspr2.f @@ -0,0 +1,229 @@ + SUBROUTINE DSPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, INCY, N + CHARACTER*1 UPLO +* .. Array Arguments .. + DOUBLE PRECISION AP( * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DSPR2 performs the symmetric rank 2 operation +* +* A := alpha*x*y' + alpha*y*x' + A, +* +* where alpha is a scalar, x and y are n element vectors and A is an +* n by n symmetric matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the matrix A is supplied in the packed +* array AP as follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* supplied in AP. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* supplied in AP. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* AP - DOUBLE PRECISION array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular part of the symmetric matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) +* and a( 2, 2 ) respectively, and so on. On exit, the array +* AP is overwritten by the upper triangular part of the +* updated matrix. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular part of the symmetric matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) +* and a( 3, 1 ) respectively, and so on. On exit, the array +* AP is overwritten by the lower triangular part of the +* updated matrix. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( INCY.EQ.0 )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSPR2 ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Set up the start points in X and Y if the increments are not both +* unity. +* + IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF + JX = KX + JY = KY + END IF +* +* Start the operations. In this version the elements of the array AP +* are accessed sequentially with one pass through AP. +* + KK = 1 + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when upper triangle is stored in AP. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 20, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( J ) + TEMP2 = ALPHA*X( J ) + K = KK + DO 10, I = 1, J + AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2 + K = K + 1 + 10 CONTINUE + END IF + KK = KK + J + 20 CONTINUE + ELSE + DO 40, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( JY ) + TEMP2 = ALPHA*X( JX ) + IX = KX + IY = KY + DO 30, K = KK, KK + J - 1 + AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2 + IX = IX + INCX + IY = IY + INCY + 30 CONTINUE + END IF + JX = JX + INCX + JY = JY + INCY + KK = KK + J + 40 CONTINUE + END IF + ELSE +* +* Form A when lower triangle is stored in AP. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( J ) + TEMP2 = ALPHA*X( J ) + K = KK + DO 50, I = J, N + AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2 + K = K + 1 + 50 CONTINUE + END IF + KK = KK + N - J + 1 + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( JY ) + TEMP2 = ALPHA*X( JX ) + IX = JX + IY = JY + DO 70, K = KK, KK + N - J + AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2 + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + END IF + JX = JX + INCX + JY = JY + INCY + KK = KK + N - J + 1 + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSPR2 . +* + END diff --git a/src/fortran/blas/dswap.f b/src/fortran/blas/dswap.f new file mode 100644 index 0000000..7f7d1fb --- /dev/null +++ b/src/fortran/blas/dswap.f @@ -0,0 +1,56 @@ + subroutine dswap (n,dx,incx,dy,incy) +c +c interchanges two vectors. +c uses unrolled loops for increments equal one. +c jack dongarra, linpack, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision dx(*),dy(*),dtemp + integer i,incx,incy,ix,iy,m,mp1,n +c + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments not equal +c to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + dtemp = dx(ix) + dx(ix) = dy(iy) + dy(iy) = dtemp + ix = ix + incx + iy = iy + incy + 10 continue + return +c +c code for both increments equal to 1 +c +c +c clean-up loop +c + 20 m = mod(n,3) + if( m .eq. 0 ) go to 40 + do 30 i = 1,m + dtemp = dx(i) + dx(i) = dy(i) + dy(i) = dtemp + 30 continue + if( n .lt. 3 ) return + 40 mp1 = m + 1 + do 50 i = mp1,n,3 + dtemp = dx(i) + dx(i) = dy(i) + dy(i) = dtemp + dtemp = dx(i + 1) + dx(i + 1) = dy(i + 1) + dy(i + 1) = dtemp + dtemp = dx(i + 2) + dx(i + 2) = dy(i + 2) + dy(i + 2) = dtemp + 50 continue + return + end diff --git a/src/fortran/blas/dsymm.f b/src/fortran/blas/dsymm.f new file mode 100644 index 0000000..0f25141 --- /dev/null +++ b/src/fortran/blas/dsymm.f @@ -0,0 +1,294 @@ + SUBROUTINE DSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 SIDE, UPLO + INTEGER M, N, LDA, LDB, LDC + DOUBLE PRECISION ALPHA, BETA +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* DSYMM performs one of the matrix-matrix operations +* +* C := alpha*A*B + beta*C, +* +* or +* +* C := alpha*B*A + beta*C, +* +* where alpha and beta are scalars, A is a symmetric matrix and B and +* C are m by n matrices. +* +* Parameters +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether the symmetric matrix A +* appears on the left or right in the operation as follows: +* +* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, +* +* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the symmetric matrix A is to be +* referenced as follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of the +* symmetric matrix is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of the +* symmetric matrix is to be referenced. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix C. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix C. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is +* m when SIDE = 'L' or 'l' and is n otherwise. +* Before entry with SIDE = 'L' or 'l', the m by m part of +* the array A must contain the symmetric matrix, such that +* when UPLO = 'U' or 'u', the leading m by m upper triangular +* part of the array A must contain the upper triangular part +* of the symmetric matrix and the strictly lower triangular +* part of A is not referenced, and when UPLO = 'L' or 'l', +* the leading m by m lower triangular part of the array A +* must contain the lower triangular part of the symmetric +* matrix and the strictly upper triangular part of A is not +* referenced. +* Before entry with SIDE = 'R' or 'r', the n by n part of +* the array A must contain the symmetric matrix, such that +* when UPLO = 'U' or 'u', the leading n by n upper triangular +* part of the array A must contain the upper triangular part +* of the symmetric matrix and the strictly lower triangular +* part of A is not referenced, and when UPLO = 'L' or 'l', +* the leading n by n lower triangular part of the array A +* must contain the lower triangular part of the symmetric +* matrix and the strictly upper triangular part of A is not +* referenced. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), otherwise LDA must be at +* least max( 1, n ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then C need not be set on input. +* Unchanged on exit. +* +* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). +* Before entry, the leading m by n part of the array C must +* contain the matrix C, except when beta is zero, in which +* case C need not be set on entry. +* On exit, the array C is overwritten by the m by n updated +* matrix. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, K, NROWA + DOUBLE PRECISION TEMP1, TEMP2 +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* +* Set NROWA as the number of rows of A. +* + IF( LSAME( SIDE, 'L' ) )THEN + NROWA = M + ELSE + NROWA = N + END IF + UPPER = LSAME( UPLO, 'U' ) +* +* Test the input parameters. +* + INFO = 0 + IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND. + $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN + INFO = 2 + ELSE IF( M .LT.0 )THEN + INFO = 3 + ELSE IF( N .LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 7 + ELSE IF( LDB.LT.MAX( 1, M ) )THEN + INFO = 9 + ELSE IF( LDC.LT.MAX( 1, M ) )THEN + INFO = 12 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSYMM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, M + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( SIDE, 'L' ) )THEN +* +* Form C := alpha*A*B + beta*C. +* + IF( UPPER )THEN + DO 70, J = 1, N + DO 60, I = 1, M + TEMP1 = ALPHA*B( I, J ) + TEMP2 = ZERO + DO 50, K = 1, I - 1 + C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) + TEMP2 = TEMP2 + B( K, J )*A( K, I ) + 50 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ TEMP1*A( I, I ) + ALPHA*TEMP2 + END IF + 60 CONTINUE + 70 CONTINUE + ELSE + DO 100, J = 1, N + DO 90, I = M, 1, -1 + TEMP1 = ALPHA*B( I, J ) + TEMP2 = ZERO + DO 80, K = I + 1, M + C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) + TEMP2 = TEMP2 + B( K, J )*A( K, I ) + 80 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ TEMP1*A( I, I ) + ALPHA*TEMP2 + END IF + 90 CONTINUE + 100 CONTINUE + END IF + ELSE +* +* Form C := alpha*B*A + beta*C. +* + DO 170, J = 1, N + TEMP1 = ALPHA*A( J, J ) + IF( BETA.EQ.ZERO )THEN + DO 110, I = 1, M + C( I, J ) = TEMP1*B( I, J ) + 110 CONTINUE + ELSE + DO 120, I = 1, M + C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J ) + 120 CONTINUE + END IF + DO 140, K = 1, J - 1 + IF( UPPER )THEN + TEMP1 = ALPHA*A( K, J ) + ELSE + TEMP1 = ALPHA*A( J, K ) + END IF + DO 130, I = 1, M + C( I, J ) = C( I, J ) + TEMP1*B( I, K ) + 130 CONTINUE + 140 CONTINUE + DO 160, K = J + 1, N + IF( UPPER )THEN + TEMP1 = ALPHA*A( J, K ) + ELSE + TEMP1 = ALPHA*A( K, J ) + END IF + DO 150, I = 1, M + C( I, J ) = C( I, J ) + TEMP1*B( I, K ) + 150 CONTINUE + 160 CONTINUE + 170 CONTINUE + END IF +* + RETURN +* +* End of DSYMM . +* + END diff --git a/src/fortran/blas/dsymv.f b/src/fortran/blas/dsymv.f new file mode 100644 index 0000000..7592d15 --- /dev/null +++ b/src/fortran/blas/dsymv.f @@ -0,0 +1,262 @@ + SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA, BETA + INTEGER INCX, INCY, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DSYMV performs the matrix-vector operation +* +* y := alpha*A*x + beta*y, +* +* where alpha and beta are scalars, x and y are n element vectors and +* A is an n by n symmetric matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array A is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of A +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of A +* is to be referenced. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of A is not referenced. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. On exit, Y is overwritten by the updated +* vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 5 + ELSE IF( INCX.EQ.0 )THEN + INFO = 7 + ELSE IF( INCY.EQ.0 )THEN + INFO = 10 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSYMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set up the start points in X and Y. +* + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the triangular part +* of A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, N + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, N + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, N + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, N + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form y when A is stored in upper triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + DO 50, I = 1, J - 1 + Y( I ) = Y( I ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( I ) + 50 CONTINUE + Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2 + 60 CONTINUE + ELSE + JX = KX + JY = KY + DO 80, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + IX = KX + IY = KY + DO 70, I = 1, J - 1 + Y( IY ) = Y( IY ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( IX ) + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 80 CONTINUE + END IF + ELSE +* +* Form y when A is stored in lower triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 100, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + Y( J ) = Y( J ) + TEMP1*A( J, J ) + DO 90, I = J + 1, N + Y( I ) = Y( I ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( I ) + 90 CONTINUE + Y( J ) = Y( J ) + ALPHA*TEMP2 + 100 CONTINUE + ELSE + JX = KX + JY = KY + DO 120, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + IX = JX + IY = JY + DO 110, I = J + 1, N + IX = IX + INCX + IY = IY + INCY + Y( IY ) = Y( IY ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( IX ) + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSYMV . +* + END diff --git a/src/fortran/blas/dsyr.f b/src/fortran/blas/dsyr.f new file mode 100644 index 0000000..8737719 --- /dev/null +++ b/src/fortran/blas/dsyr.f @@ -0,0 +1,197 @@ + SUBROUTINE DSYR ( UPLO, N, ALPHA, X, INCX, A, LDA ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DSYR performs the symmetric rank 1 operation +* +* A := alpha*x*x' + A, +* +* where alpha is a real scalar, x is an n element vector and A is an +* n by n symmetric matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array A is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of A +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of A +* is to be referenced. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of A is not referenced. On exit, the +* upper triangular part of the array A is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of A is not referenced. On exit, the +* lower triangular part of the array A is overwritten by the +* lower triangular part of the updated matrix. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, KX +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSYR ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Set the start point in X if the increment is not unity. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the triangular part +* of A. +* + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when A is stored in upper triangle. +* + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*X( J ) + DO 10, I = 1, J + A( I, J ) = A( I, J ) + X( I )*TEMP + 10 CONTINUE + END IF + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IX = KX + DO 30, I = 1, J + A( I, J ) = A( I, J ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + END IF + JX = JX + INCX + 40 CONTINUE + END IF + ELSE +* +* Form A when A is stored in lower triangle. +* + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*X( J ) + DO 50, I = J, N + A( I, J ) = A( I, J ) + X( I )*TEMP + 50 CONTINUE + END IF + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IX = JX + DO 70, I = J, N + A( I, J ) = A( I, J ) + X( IX )*TEMP + IX = IX + INCX + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSYR . +* + END diff --git a/src/fortran/blas/dsyr2.f b/src/fortran/blas/dsyr2.f new file mode 100644 index 0000000..918ad8a --- /dev/null +++ b/src/fortran/blas/dsyr2.f @@ -0,0 +1,230 @@ + SUBROUTINE DSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, INCY, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* DSYR2 performs the symmetric rank 2 operation +* +* A := alpha*x*y' + alpha*y*x' + A, +* +* where alpha is a scalar, x and y are n element vectors and A is an n +* by n symmetric matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array A is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of A +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of A +* is to be referenced. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of A is not referenced. On exit, the +* upper triangular part of the array A is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of A is not referenced. On exit, the +* lower triangular part of the array A is overwritten by the +* lower triangular part of the updated matrix. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( INCY.EQ.0 )THEN + INFO = 7 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSYR2 ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Set up the start points in X and Y if the increments are not both +* unity. +* + IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF + JX = KX + JY = KY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the triangular part +* of A. +* + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when A is stored in the upper triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 20, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( J ) + TEMP2 = ALPHA*X( J ) + DO 10, I = 1, J + A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2 + 10 CONTINUE + END IF + 20 CONTINUE + ELSE + DO 40, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( JY ) + TEMP2 = ALPHA*X( JX ) + IX = KX + IY = KY + DO 30, I = 1, J + A( I, J ) = A( I, J ) + X( IX )*TEMP1 + $ + Y( IY )*TEMP2 + IX = IX + INCX + IY = IY + INCY + 30 CONTINUE + END IF + JX = JX + INCX + JY = JY + INCY + 40 CONTINUE + END IF + ELSE +* +* Form A when A is stored in the lower triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( J ) + TEMP2 = ALPHA*X( J ) + DO 50, I = J, N + A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2 + 50 CONTINUE + END IF + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*Y( JY ) + TEMP2 = ALPHA*X( JX ) + IX = JX + IY = JY + DO 70, I = J, N + A( I, J ) = A( I, J ) + X( IX )*TEMP1 + $ + Y( IY )*TEMP2 + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + END IF + JX = JX + INCX + JY = JY + INCY + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSYR2 . +* + END diff --git a/src/fortran/blas/dsyr2k.f b/src/fortran/blas/dsyr2k.f new file mode 100644 index 0000000..ac7d97d --- /dev/null +++ b/src/fortran/blas/dsyr2k.f @@ -0,0 +1,327 @@ + SUBROUTINE DSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 UPLO, TRANS + INTEGER N, K, LDA, LDB, LDC + DOUBLE PRECISION ALPHA, BETA +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* DSYR2K performs one of the symmetric rank 2k operations +* +* C := alpha*A*B' + alpha*B*A' + beta*C, +* +* or +* +* C := alpha*A'*B + alpha*B'*A + beta*C, +* +* where alpha and beta are scalars, C is an n by n symmetric matrix +* and A and B are n by k matrices in the first case and k by n +* matrices in the second case. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array C is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of C +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of C +* is to be referenced. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + +* beta*C. +* +* TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + +* beta*C. +* +* TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + +* beta*C. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with TRANS = 'N' or 'n', K specifies the number +* of columns of the matrices A and B, and on entry with +* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number +* of rows of the matrices A and B. K must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array A must contain the matrix A, otherwise +* the leading k by n part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDA must be at least max( 1, n ), otherwise LDA must +* be at least max( 1, k ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array B must contain the matrix B, otherwise +* the leading k by n part of the array B must contain the +* matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDB must be at least max( 1, n ), otherwise LDB must +* be at least max( 1, k ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array C must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of C is not referenced. On exit, the +* upper triangular part of the array C is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array C must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of C is not referenced. On exit, the +* lower triangular part of the array C is overwritten by the +* lower triangular part of the updated matrix. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, L, NROWA + DOUBLE PRECISION TEMP1, TEMP2 +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + IF( LSAME( TRANS, 'N' ) )THEN + NROWA = N + ELSE + NROWA = K + END IF + UPPER = LSAME( UPLO, 'U' ) +* + INFO = 0 + IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANS, 'T' ) ).AND. + $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN + INFO = 2 + ELSE IF( N .LT.0 )THEN + INFO = 3 + ELSE IF( K .LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 7 + ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN + INFO = 9 + ELSE IF( LDC.LT.MAX( 1, N ) )THEN + INFO = 12 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSYR2K', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR. + $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( UPPER )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, J + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, J + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + ELSE + IF( BETA.EQ.ZERO )THEN + DO 60, J = 1, N + DO 50, I = J, N + C( I, J ) = ZERO + 50 CONTINUE + 60 CONTINUE + ELSE + DO 80, J = 1, N + DO 70, I = J, N + C( I, J ) = BETA*C( I, J ) + 70 CONTINUE + 80 CONTINUE + END IF + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form C := alpha*A*B' + alpha*B*A' + C. +* + IF( UPPER )THEN + DO 130, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 90, I = 1, J + C( I, J ) = ZERO + 90 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 100, I = 1, J + C( I, J ) = BETA*C( I, J ) + 100 CONTINUE + END IF + DO 120, L = 1, K + IF( ( A( J, L ).NE.ZERO ).OR. + $ ( B( J, L ).NE.ZERO ) )THEN + TEMP1 = ALPHA*B( J, L ) + TEMP2 = ALPHA*A( J, L ) + DO 110, I = 1, J + C( I, J ) = C( I, J ) + + $ A( I, L )*TEMP1 + B( I, L )*TEMP2 + 110 CONTINUE + END IF + 120 CONTINUE + 130 CONTINUE + ELSE + DO 180, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 140, I = J, N + C( I, J ) = ZERO + 140 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 150, I = J, N + C( I, J ) = BETA*C( I, J ) + 150 CONTINUE + END IF + DO 170, L = 1, K + IF( ( A( J, L ).NE.ZERO ).OR. + $ ( B( J, L ).NE.ZERO ) )THEN + TEMP1 = ALPHA*B( J, L ) + TEMP2 = ALPHA*A( J, L ) + DO 160, I = J, N + C( I, J ) = C( I, J ) + + $ A( I, L )*TEMP1 + B( I, L )*TEMP2 + 160 CONTINUE + END IF + 170 CONTINUE + 180 CONTINUE + END IF + ELSE +* +* Form C := alpha*A'*B + alpha*B'*A + C. +* + IF( UPPER )THEN + DO 210, J = 1, N + DO 200, I = 1, J + TEMP1 = ZERO + TEMP2 = ZERO + DO 190, L = 1, K + TEMP1 = TEMP1 + A( L, I )*B( L, J ) + TEMP2 = TEMP2 + B( L, I )*A( L, J ) + 190 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ ALPHA*TEMP1 + ALPHA*TEMP2 + END IF + 200 CONTINUE + 210 CONTINUE + ELSE + DO 240, J = 1, N + DO 230, I = J, N + TEMP1 = ZERO + TEMP2 = ZERO + DO 220, L = 1, K + TEMP1 = TEMP1 + A( L, I )*B( L, J ) + TEMP2 = TEMP2 + B( L, I )*A( L, J ) + 220 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ ALPHA*TEMP1 + ALPHA*TEMP2 + END IF + 230 CONTINUE + 240 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSYR2K. +* + END diff --git a/src/fortran/blas/dsyrk.f b/src/fortran/blas/dsyrk.f new file mode 100644 index 0000000..b618b29 --- /dev/null +++ b/src/fortran/blas/dsyrk.f @@ -0,0 +1,294 @@ + SUBROUTINE DSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 UPLO, TRANS + INTEGER N, K, LDA, LDC + DOUBLE PRECISION ALPHA, BETA +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* DSYRK performs one of the symmetric rank k operations +* +* C := alpha*A*A' + beta*C, +* +* or +* +* C := alpha*A'*A + beta*C, +* +* where alpha and beta are scalars, C is an n by n symmetric matrix +* and A is an n by k matrix in the first case and a k by n matrix +* in the second case. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array C is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of C +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of C +* is to be referenced. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. +* +* TRANS = 'T' or 't' C := alpha*A'*A + beta*C. +* +* TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with TRANS = 'N' or 'n', K specifies the number +* of columns of the matrix A, and on entry with +* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number +* of rows of the matrix A. K must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array A must contain the matrix A, otherwise +* the leading k by n part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDA must be at least max( 1, n ), otherwise LDA must +* be at least max( 1, k ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array C must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of C is not referenced. On exit, the +* upper triangular part of the array C is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array C must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of C is not referenced. On exit, the +* lower triangular part of the array C is overwritten by the +* lower triangular part of the updated matrix. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, L, NROWA + DOUBLE PRECISION TEMP +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + IF( LSAME( TRANS, 'N' ) )THEN + NROWA = N + ELSE + NROWA = K + END IF + UPPER = LSAME( UPLO, 'U' ) +* + INFO = 0 + IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANS, 'T' ) ).AND. + $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN + INFO = 2 + ELSE IF( N .LT.0 )THEN + INFO = 3 + ELSE IF( K .LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 7 + ELSE IF( LDC.LT.MAX( 1, N ) )THEN + INFO = 10 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DSYRK ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR. + $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( UPPER )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, J + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, J + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + ELSE + IF( BETA.EQ.ZERO )THEN + DO 60, J = 1, N + DO 50, I = J, N + C( I, J ) = ZERO + 50 CONTINUE + 60 CONTINUE + ELSE + DO 80, J = 1, N + DO 70, I = J, N + C( I, J ) = BETA*C( I, J ) + 70 CONTINUE + 80 CONTINUE + END IF + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form C := alpha*A*A' + beta*C. +* + IF( UPPER )THEN + DO 130, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 90, I = 1, J + C( I, J ) = ZERO + 90 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 100, I = 1, J + C( I, J ) = BETA*C( I, J ) + 100 CONTINUE + END IF + DO 120, L = 1, K + IF( A( J, L ).NE.ZERO )THEN + TEMP = ALPHA*A( J, L ) + DO 110, I = 1, J + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 110 CONTINUE + END IF + 120 CONTINUE + 130 CONTINUE + ELSE + DO 180, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 140, I = J, N + C( I, J ) = ZERO + 140 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 150, I = J, N + C( I, J ) = BETA*C( I, J ) + 150 CONTINUE + END IF + DO 170, L = 1, K + IF( A( J, L ).NE.ZERO )THEN + TEMP = ALPHA*A( J, L ) + DO 160, I = J, N + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 160 CONTINUE + END IF + 170 CONTINUE + 180 CONTINUE + END IF + ELSE +* +* Form C := alpha*A'*A + beta*C. +* + IF( UPPER )THEN + DO 210, J = 1, N + DO 200, I = 1, J + TEMP = ZERO + DO 190, L = 1, K + TEMP = TEMP + A( L, I )*A( L, J ) + 190 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 200 CONTINUE + 210 CONTINUE + ELSE + DO 240, J = 1, N + DO 230, I = J, N + TEMP = ZERO + DO 220, L = 1, K + TEMP = TEMP + A( L, I )*A( L, J ) + 220 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 230 CONTINUE + 240 CONTINUE + END IF + END IF +* + RETURN +* +* End of DSYRK . +* + END diff --git a/src/fortran/blas/dtbmv.f b/src/fortran/blas/dtbmv.f new file mode 100644 index 0000000..1363db7 --- /dev/null +++ b/src/fortran/blas/dtbmv.f @@ -0,0 +1,342 @@ + SUBROUTINE DTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, K, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DTBMV performs one of the matrix-vector operations +* +* x := A*x, or x := A'*x, +* +* where x is an n element vector and A is an n by n unit, or non-unit, +* upper or lower triangular band matrix, with ( k + 1 ) diagonals. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' x := A*x. +* +* TRANS = 'T' or 't' x := A'*x. +* +* TRANS = 'C' or 'c' x := A'*x. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with UPLO = 'U' or 'u', K specifies the number of +* super-diagonals of the matrix A. +* On entry with UPLO = 'L' or 'l', K specifies the number of +* sub-diagonals of the matrix A. +* K must satisfy 0 .le. K. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) +* by n part of the array A must contain the upper triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row +* ( k + 1 ) of the array, the first super-diagonal starting at +* position 2 in row k, and so on. The top left k by k triangle +* of the array A is not referenced. +* The following program segment will transfer an upper +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = K + 1 - J +* DO 10, I = MAX( 1, J - K ), J +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) +* by n part of the array A must contain the lower triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row 1 of +* the array, the first sub-diagonal starting at position 1 in +* row 2, and so on. The bottom right k by k triangle of the +* array A is not referenced. +* The following program segment will transfer a lower +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = 1 - J +* DO 10, I = J, MIN( N, J + K ) +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Note that when DIAG = 'U' or 'u' the elements of the array A +* corresponding to the diagonal elements of the matrix are not +* referenced, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( k + 1 ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. On exit, X is overwritten with the +* tranformed vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L + LOGICAL NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( K.LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.( K + 1 ) )THEN + INFO = 7 + ELSE IF( INCX.EQ.0 )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTBMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOUNIT = LSAME( DIAG, 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := A*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + L = KPLUS1 - J + DO 10, I = MAX( 1, J - K ), J - 1 + X( I ) = X( I ) + TEMP*A( L + I, J ) + 10 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( KPLUS1, J ) + END IF + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + L = KPLUS1 - J + DO 30, I = MAX( 1, J - K ), J - 1 + X( IX ) = X( IX ) + TEMP*A( L + I, J ) + IX = IX + INCX + 30 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( KPLUS1, J ) + END IF + JX = JX + INCX + IF( J.GT.K ) + $ KX = KX + INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + L = 1 - J + DO 50, I = MIN( N, J + K ), J + 1, -1 + X( I ) = X( I ) + TEMP*A( L + I, J ) + 50 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( 1, J ) + END IF + 60 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 80, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + L = 1 - J + DO 70, I = MIN( N, J + K ), J + 1, -1 + X( IX ) = X( IX ) + TEMP*A( L + I, J ) + IX = IX - INCX + 70 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( 1, J ) + END IF + JX = JX - INCX + IF( ( N - J ).GE.K ) + $ KX = KX - INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := A'*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 100, J = N, 1, -1 + TEMP = X( J ) + L = KPLUS1 - J + IF( NOUNIT ) + $ TEMP = TEMP*A( KPLUS1, J ) + DO 90, I = J - 1, MAX( 1, J - K ), -1 + TEMP = TEMP + A( L + I, J )*X( I ) + 90 CONTINUE + X( J ) = TEMP + 100 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 120, J = N, 1, -1 + TEMP = X( JX ) + KX = KX - INCX + IX = KX + L = KPLUS1 - J + IF( NOUNIT ) + $ TEMP = TEMP*A( KPLUS1, J ) + DO 110, I = J - 1, MAX( 1, J - K ), -1 + TEMP = TEMP + A( L + I, J )*X( IX ) + IX = IX - INCX + 110 CONTINUE + X( JX ) = TEMP + JX = JX - INCX + 120 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 140, J = 1, N + TEMP = X( J ) + L = 1 - J + IF( NOUNIT ) + $ TEMP = TEMP*A( 1, J ) + DO 130, I = J + 1, MIN( N, J + K ) + TEMP = TEMP + A( L + I, J )*X( I ) + 130 CONTINUE + X( J ) = TEMP + 140 CONTINUE + ELSE + JX = KX + DO 160, J = 1, N + TEMP = X( JX ) + KX = KX + INCX + IX = KX + L = 1 - J + IF( NOUNIT ) + $ TEMP = TEMP*A( 1, J ) + DO 150, I = J + 1, MIN( N, J + K ) + TEMP = TEMP + A( L + I, J )*X( IX ) + IX = IX + INCX + 150 CONTINUE + X( JX ) = TEMP + JX = JX + INCX + 160 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTBMV . +* + END diff --git a/src/fortran/blas/dtbsv.f b/src/fortran/blas/dtbsv.f new file mode 100644 index 0000000..d87ed82 --- /dev/null +++ b/src/fortran/blas/dtbsv.f @@ -0,0 +1,346 @@ + SUBROUTINE DTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, K, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DTBSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular band matrix, with ( k + 1 ) +* diagonals. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' A'*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with UPLO = 'U' or 'u', K specifies the number of +* super-diagonals of the matrix A. +* On entry with UPLO = 'L' or 'l', K specifies the number of +* sub-diagonals of the matrix A. +* K must satisfy 0 .le. K. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) +* by n part of the array A must contain the upper triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row +* ( k + 1 ) of the array, the first super-diagonal starting at +* position 2 in row k, and so on. The top left k by k triangle +* of the array A is not referenced. +* The following program segment will transfer an upper +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = K + 1 - J +* DO 10, I = MAX( 1, J - K ), J +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) +* by n part of the array A must contain the lower triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row 1 of +* the array, the first sub-diagonal starting at position 1 in +* row 2, and so on. The bottom right k by k triangle of the +* array A is not referenced. +* The following program segment will transfer a lower +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = 1 - J +* DO 10, I = J, MIN( N, J + K ) +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Note that when DIAG = 'U' or 'u' the elements of the array A +* corresponding to the diagonal elements of the matrix are not +* referenced, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( k + 1 ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L + LOGICAL NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( K.LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.( K + 1 ) )THEN + INFO = 7 + ELSE IF( INCX.EQ.0 )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTBSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOUNIT = LSAME( DIAG, 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed by sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + L = KPLUS1 - J + IF( NOUNIT ) + $ X( J ) = X( J )/A( KPLUS1, J ) + TEMP = X( J ) + DO 10, I = J - 1, MAX( 1, J - K ), -1 + X( I ) = X( I ) - TEMP*A( L + I, J ) + 10 CONTINUE + END IF + 20 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 40, J = N, 1, -1 + KX = KX - INCX + IF( X( JX ).NE.ZERO )THEN + IX = KX + L = KPLUS1 - J + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( KPLUS1, J ) + TEMP = X( JX ) + DO 30, I = J - 1, MAX( 1, J - K ), -1 + X( IX ) = X( IX ) - TEMP*A( L + I, J ) + IX = IX - INCX + 30 CONTINUE + END IF + JX = JX - INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + L = 1 - J + IF( NOUNIT ) + $ X( J ) = X( J )/A( 1, J ) + TEMP = X( J ) + DO 50, I = J + 1, MIN( N, J + K ) + X( I ) = X( I ) - TEMP*A( L + I, J ) + 50 CONTINUE + END IF + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + KX = KX + INCX + IF( X( JX ).NE.ZERO )THEN + IX = KX + L = 1 - J + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( 1, J ) + TEMP = X( JX ) + DO 70, I = J + 1, MIN( N, J + K ) + X( IX ) = X( IX ) - TEMP*A( L + I, J ) + IX = IX + INCX + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A')*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 100, J = 1, N + TEMP = X( J ) + L = KPLUS1 - J + DO 90, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - A( L + I, J )*X( I ) + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( KPLUS1, J ) + X( J ) = TEMP + 100 CONTINUE + ELSE + JX = KX + DO 120, J = 1, N + TEMP = X( JX ) + IX = KX + L = KPLUS1 - J + DO 110, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - A( L + I, J )*X( IX ) + IX = IX + INCX + 110 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( KPLUS1, J ) + X( JX ) = TEMP + JX = JX + INCX + IF( J.GT.K ) + $ KX = KX + INCX + 120 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 140, J = N, 1, -1 + TEMP = X( J ) + L = 1 - J + DO 130, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - A( L + I, J )*X( I ) + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( 1, J ) + X( J ) = TEMP + 140 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 160, J = N, 1, -1 + TEMP = X( JX ) + IX = KX + L = 1 - J + DO 150, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - A( L + I, J )*X( IX ) + IX = IX - INCX + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( 1, J ) + X( JX ) = TEMP + JX = JX - INCX + IF( ( N - J ).GE.K ) + $ KX = KX - INCX + 160 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTBSV . +* + END diff --git a/src/fortran/blas/dtpmv.f b/src/fortran/blas/dtpmv.f new file mode 100644 index 0000000..ee11bc1 --- /dev/null +++ b/src/fortran/blas/dtpmv.f @@ -0,0 +1,299 @@ + SUBROUTINE DTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + DOUBLE PRECISION AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DTPMV performs one of the matrix-vector operations +* +* x := A*x, or x := A'*x, +* +* where x is an n element vector and A is an n by n unit, or non-unit, +* upper or lower triangular matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' x := A*x. +* +* TRANS = 'T' or 't' x := A'*x. +* +* TRANS = 'C' or 'c' x := A'*x. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* AP - DOUBLE PRECISION array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) +* respectively, and so on. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) +* respectively, and so on. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced, but are assumed to be unity. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. On exit, X is overwritten with the +* tranformed vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX + LOGICAL NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( INCX.EQ.0 )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTPMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOUNIT = LSAME( DIAG, 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of AP are +* accessed sequentially with one pass through AP. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x:= A*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK =1 + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + K = KK + DO 10, I = 1, J - 1 + X( I ) = X( I ) + TEMP*AP( K ) + K = K + 1 + 10 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*AP( KK + J - 1 ) + END IF + KK = KK + J + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 30, K = KK, KK + J - 2 + X( IX ) = X( IX ) + TEMP*AP( K ) + IX = IX + INCX + 30 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*AP( KK + J - 1 ) + END IF + JX = JX + INCX + KK = KK + J + 40 CONTINUE + END IF + ELSE + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 60, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + K = KK + DO 50, I = N, J + 1, -1 + X( I ) = X( I ) + TEMP*AP( K ) + K = K - 1 + 50 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*AP( KK - N + J ) + END IF + KK = KK - ( N - J + 1 ) + 60 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 80, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1 + X( IX ) = X( IX ) + TEMP*AP( K ) + IX = IX - INCX + 70 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*AP( KK - N + J ) + END IF + JX = JX - INCX + KK = KK - ( N - J + 1 ) + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := A'*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 100, J = N, 1, -1 + TEMP = X( J ) + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + K = KK - 1 + DO 90, I = J - 1, 1, -1 + TEMP = TEMP + AP( K )*X( I ) + K = K - 1 + 90 CONTINUE + X( J ) = TEMP + KK = KK - J + 100 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 120, J = N, 1, -1 + TEMP = X( JX ) + IX = JX + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + DO 110, K = KK - 1, KK - J + 1, -1 + IX = IX - INCX + TEMP = TEMP + AP( K )*X( IX ) + 110 CONTINUE + X( JX ) = TEMP + JX = JX - INCX + KK = KK - J + 120 CONTINUE + END IF + ELSE + KK = 1 + IF( INCX.EQ.1 )THEN + DO 140, J = 1, N + TEMP = X( J ) + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + K = KK + 1 + DO 130, I = J + 1, N + TEMP = TEMP + AP( K )*X( I ) + K = K + 1 + 130 CONTINUE + X( J ) = TEMP + KK = KK + ( N - J + 1 ) + 140 CONTINUE + ELSE + JX = KX + DO 160, J = 1, N + TEMP = X( JX ) + IX = JX + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + DO 150, K = KK + 1, KK + N - J + IX = IX + INCX + TEMP = TEMP + AP( K )*X( IX ) + 150 CONTINUE + X( JX ) = TEMP + JX = JX + INCX + KK = KK + ( N - J + 1 ) + 160 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTPMV . +* + END diff --git a/src/fortran/blas/dtpsv.f b/src/fortran/blas/dtpsv.f new file mode 100644 index 0000000..91930d9 --- /dev/null +++ b/src/fortran/blas/dtpsv.f @@ -0,0 +1,302 @@ + SUBROUTINE DTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + DOUBLE PRECISION AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DTPSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular matrix, supplied in packed form. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' A'*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* AP - DOUBLE PRECISION array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) +* respectively, and so on. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) +* respectively, and so on. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced, but are assumed to be unity. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX + LOGICAL NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( INCX.EQ.0 )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTPSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOUNIT = LSAME( DIAG, 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of AP are +* accessed sequentially with one pass through AP. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/AP( KK ) + TEMP = X( J ) + K = KK - 1 + DO 10, I = J - 1, 1, -1 + X( I ) = X( I ) - TEMP*AP( K ) + K = K - 1 + 10 CONTINUE + END IF + KK = KK - J + 20 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 40, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/AP( KK ) + TEMP = X( JX ) + IX = JX + DO 30, K = KK - 1, KK - J + 1, -1 + IX = IX - INCX + X( IX ) = X( IX ) - TEMP*AP( K ) + 30 CONTINUE + END IF + JX = JX - INCX + KK = KK - J + 40 CONTINUE + END IF + ELSE + KK = 1 + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/AP( KK ) + TEMP = X( J ) + K = KK + 1 + DO 50, I = J + 1, N + X( I ) = X( I ) - TEMP*AP( K ) + K = K + 1 + 50 CONTINUE + END IF + KK = KK + ( N - J + 1 ) + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/AP( KK ) + TEMP = X( JX ) + IX = JX + DO 70, K = KK + 1, KK + N - J + IX = IX + INCX + X( IX ) = X( IX ) - TEMP*AP( K ) + 70 CONTINUE + END IF + JX = JX + INCX + KK = KK + ( N - J + 1 ) + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A' )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = 1 + IF( INCX.EQ.1 )THEN + DO 100, J = 1, N + TEMP = X( J ) + K = KK + DO 90, I = 1, J - 1 + TEMP = TEMP - AP( K )*X( I ) + K = K + 1 + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK + J - 1 ) + X( J ) = TEMP + KK = KK + J + 100 CONTINUE + ELSE + JX = KX + DO 120, J = 1, N + TEMP = X( JX ) + IX = KX + DO 110, K = KK, KK + J - 2 + TEMP = TEMP - AP( K )*X( IX ) + IX = IX + INCX + 110 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK + J - 1 ) + X( JX ) = TEMP + JX = JX + INCX + KK = KK + J + 120 CONTINUE + END IF + ELSE + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 140, J = N, 1, -1 + TEMP = X( J ) + K = KK + DO 130, I = N, J + 1, -1 + TEMP = TEMP - AP( K )*X( I ) + K = K - 1 + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK - N + J ) + X( J ) = TEMP + KK = KK - ( N - J + 1 ) + 140 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 160, J = N, 1, -1 + TEMP = X( JX ) + IX = KX + DO 150, K = KK, KK - ( N - ( J + 1 ) ), -1 + TEMP = TEMP - AP( K )*X( IX ) + IX = IX - INCX + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK - N + J ) + X( JX ) = TEMP + JX = JX - INCX + KK = KK - (N - J + 1 ) + 160 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTPSV . +* + END diff --git a/src/fortran/blas/dtrmm.f b/src/fortran/blas/dtrmm.f new file mode 100644 index 0000000..f98da46 --- /dev/null +++ b/src/fortran/blas/dtrmm.f @@ -0,0 +1,355 @@ + SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, + $ B, LDB ) +* .. Scalar Arguments .. + CHARACTER*1 SIDE, UPLO, TRANSA, DIAG + INTEGER M, N, LDA, LDB + DOUBLE PRECISION ALPHA +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* Purpose +* ======= +* +* DTRMM performs one of the matrix-matrix operations +* +* B := alpha*op( A )*B, or B := alpha*B*op( A ), +* +* where alpha is a scalar, B is an m by n matrix, A is a unit, or +* non-unit, upper or lower triangular matrix and op( A ) is one of +* +* op( A ) = A or op( A ) = A'. +* +* Parameters +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether op( A ) multiplies B from +* the left or right as follows: +* +* SIDE = 'L' or 'l' B := alpha*op( A )*B. +* +* SIDE = 'R' or 'r' B := alpha*B*op( A ). +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix A is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n' op( A ) = A. +* +* TRANSA = 'T' or 't' op( A ) = A'. +* +* TRANSA = 'C' or 'c' op( A ) = A'. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit triangular +* as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of B. M must be at +* least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of B. N must be +* at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. When alpha is +* zero then A is not referenced and B need not be set before +* entry. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m +* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. +* Before entry with UPLO = 'U' or 'u', the leading k by k +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading k by k +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' +* then LDA must be at least max( 1, n ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the matrix B, and on exit is overwritten by the +* transformed matrix. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL LSIDE, NOUNIT, UPPER + INTEGER I, INFO, J, K, NROWA + DOUBLE PRECISION TEMP +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + LSIDE = LSAME( SIDE , 'L' ) + IF( LSIDE )THEN + NROWA = M + ELSE + NROWA = N + END IF + NOUNIT = LSAME( DIAG , 'N' ) + UPPER = LSAME( UPLO , 'U' ) +* + INFO = 0 + IF( ( .NOT.LSIDE ).AND. + $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 2 + ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN + INFO = 3 + ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. + $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN + INFO = 4 + ELSE IF( M .LT.0 )THEN + INFO = 5 + ELSE IF( N .LT.0 )THEN + INFO = 6 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 9 + ELSE IF( LDB.LT.MAX( 1, M ) )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTRMM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + B( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + RETURN + END IF +* +* Start the operations. +* + IF( LSIDE )THEN + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*A*B. +* + IF( UPPER )THEN + DO 50, J = 1, N + DO 40, K = 1, M + IF( B( K, J ).NE.ZERO )THEN + TEMP = ALPHA*B( K, J ) + DO 30, I = 1, K - 1 + B( I, J ) = B( I, J ) + TEMP*A( I, K ) + 30 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP*A( K, K ) + B( K, J ) = TEMP + END IF + 40 CONTINUE + 50 CONTINUE + ELSE + DO 80, J = 1, N + DO 70 K = M, 1, -1 + IF( B( K, J ).NE.ZERO )THEN + TEMP = ALPHA*B( K, J ) + B( K, J ) = TEMP + IF( NOUNIT ) + $ B( K, J ) = B( K, J )*A( K, K ) + DO 60, I = K + 1, M + B( I, J ) = B( I, J ) + TEMP*A( I, K ) + 60 CONTINUE + END IF + 70 CONTINUE + 80 CONTINUE + END IF + ELSE +* +* Form B := alpha*B*A'. +* + IF( UPPER )THEN + DO 110, J = 1, N + DO 100, I = M, 1, -1 + TEMP = B( I, J ) + IF( NOUNIT ) + $ TEMP = TEMP*A( I, I ) + DO 90, K = 1, I - 1 + TEMP = TEMP + A( K, I )*B( K, J ) + 90 CONTINUE + B( I, J ) = ALPHA*TEMP + 100 CONTINUE + 110 CONTINUE + ELSE + DO 140, J = 1, N + DO 130, I = 1, M + TEMP = B( I, J ) + IF( NOUNIT ) + $ TEMP = TEMP*A( I, I ) + DO 120, K = I + 1, M + TEMP = TEMP + A( K, I )*B( K, J ) + 120 CONTINUE + B( I, J ) = ALPHA*TEMP + 130 CONTINUE + 140 CONTINUE + END IF + END IF + ELSE + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*B*A. +* + IF( UPPER )THEN + DO 180, J = N, 1, -1 + TEMP = ALPHA + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 150, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 150 CONTINUE + DO 170, K = 1, J - 1 + IF( A( K, J ).NE.ZERO )THEN + TEMP = ALPHA*A( K, J ) + DO 160, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 160 CONTINUE + END IF + 170 CONTINUE + 180 CONTINUE + ELSE + DO 220, J = 1, N + TEMP = ALPHA + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 190, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 190 CONTINUE + DO 210, K = J + 1, N + IF( A( K, J ).NE.ZERO )THEN + TEMP = ALPHA*A( K, J ) + DO 200, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 200 CONTINUE + END IF + 210 CONTINUE + 220 CONTINUE + END IF + ELSE +* +* Form B := alpha*B*A'. +* + IF( UPPER )THEN + DO 260, K = 1, N + DO 240, J = 1, K - 1 + IF( A( J, K ).NE.ZERO )THEN + TEMP = ALPHA*A( J, K ) + DO 230, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 230 CONTINUE + END IF + 240 CONTINUE + TEMP = ALPHA + IF( NOUNIT ) + $ TEMP = TEMP*A( K, K ) + IF( TEMP.NE.ONE )THEN + DO 250, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 250 CONTINUE + END IF + 260 CONTINUE + ELSE + DO 300, K = N, 1, -1 + DO 280, J = K + 1, N + IF( A( J, K ).NE.ZERO )THEN + TEMP = ALPHA*A( J, K ) + DO 270, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 270 CONTINUE + END IF + 280 CONTINUE + TEMP = ALPHA + IF( NOUNIT ) + $ TEMP = TEMP*A( K, K ) + IF( TEMP.NE.ONE )THEN + DO 290, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 290 CONTINUE + END IF + 300 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTRMM . +* + END diff --git a/src/fortran/blas/dtrmv.f b/src/fortran/blas/dtrmv.f new file mode 100644 index 0000000..3d5c61b --- /dev/null +++ b/src/fortran/blas/dtrmv.f @@ -0,0 +1,286 @@ + SUBROUTINE DTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DTRMV performs one of the matrix-vector operations +* +* x := A*x, or x := A'*x, +* +* where x is an n element vector and A is an n by n unit, or non-unit, +* upper or lower triangular matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' x := A*x. +* +* TRANS = 'T' or 't' x := A'*x. +* +* TRANS = 'C' or 'c' x := A'*x. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. On exit, X is overwritten with the +* tranformed vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, KX + LOGICAL NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTRMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOUNIT = LSAME( DIAG, 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := A*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + DO 10, I = 1, J - 1 + X( I ) = X( I ) + TEMP*A( I, J ) + 10 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( J, J ) + END IF + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 30, I = 1, J - 1 + X( IX ) = X( IX ) + TEMP*A( I, J ) + IX = IX + INCX + 30 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( J, J ) + END IF + JX = JX + INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + DO 50, I = N, J + 1, -1 + X( I ) = X( I ) + TEMP*A( I, J ) + 50 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( J, J ) + END IF + 60 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 80, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 70, I = N, J + 1, -1 + X( IX ) = X( IX ) + TEMP*A( I, J ) + IX = IX - INCX + 70 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( J, J ) + END IF + JX = JX - INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := A'*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 100, J = N, 1, -1 + TEMP = X( J ) + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 90, I = J - 1, 1, -1 + TEMP = TEMP + A( I, J )*X( I ) + 90 CONTINUE + X( J ) = TEMP + 100 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 120, J = N, 1, -1 + TEMP = X( JX ) + IX = JX + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 110, I = J - 1, 1, -1 + IX = IX - INCX + TEMP = TEMP + A( I, J )*X( IX ) + 110 CONTINUE + X( JX ) = TEMP + JX = JX - INCX + 120 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 140, J = 1, N + TEMP = X( J ) + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 130, I = J + 1, N + TEMP = TEMP + A( I, J )*X( I ) + 130 CONTINUE + X( J ) = TEMP + 140 CONTINUE + ELSE + JX = KX + DO 160, J = 1, N + TEMP = X( JX ) + IX = JX + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 150, I = J + 1, N + IX = IX + INCX + TEMP = TEMP + A( I, J )*X( IX ) + 150 CONTINUE + X( JX ) = TEMP + JX = JX + INCX + 160 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTRMV . +* + END diff --git a/src/fortran/blas/dtrsm.f b/src/fortran/blas/dtrsm.f new file mode 100644 index 0000000..e842514 --- /dev/null +++ b/src/fortran/blas/dtrsm.f @@ -0,0 +1,378 @@ + SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, + $ B, LDB ) +* .. Scalar Arguments .. + CHARACTER*1 SIDE, UPLO, TRANSA, DIAG + INTEGER M, N, LDA, LDB + DOUBLE PRECISION ALPHA +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* Purpose +* ======= +* +* DTRSM solves one of the matrix equations +* +* op( A )*X = alpha*B, or X*op( A ) = alpha*B, +* +* where alpha is a scalar, X and B are m by n matrices, A is a unit, or +* non-unit, upper or lower triangular matrix and op( A ) is one of +* +* op( A ) = A or op( A ) = A'. +* +* The matrix X is overwritten on B. +* +* Parameters +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether op( A ) appears on the left +* or right of X as follows: +* +* SIDE = 'L' or 'l' op( A )*X = alpha*B. +* +* SIDE = 'R' or 'r' X*op( A ) = alpha*B. +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix A is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n' op( A ) = A. +* +* TRANSA = 'T' or 't' op( A ) = A'. +* +* TRANSA = 'C' or 'c' op( A ) = A'. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit triangular +* as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of B. M must be at +* least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of B. N must be +* at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. When alpha is +* zero then A is not referenced and B need not be set before +* entry. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m +* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. +* Before entry with UPLO = 'U' or 'u', the leading k by k +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading k by k +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' +* then LDA must be at least max( 1, n ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the right-hand side matrix B, and on exit is +* overwritten by the solution matrix X. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL LSIDE, NOUNIT, UPPER + INTEGER I, INFO, J, K, NROWA + DOUBLE PRECISION TEMP +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + LSIDE = LSAME( SIDE , 'L' ) + IF( LSIDE )THEN + NROWA = M + ELSE + NROWA = N + END IF + NOUNIT = LSAME( DIAG , 'N' ) + UPPER = LSAME( UPLO , 'U' ) +* + INFO = 0 + IF( ( .NOT.LSIDE ).AND. + $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 2 + ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN + INFO = 3 + ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. + $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN + INFO = 4 + ELSE IF( M .LT.0 )THEN + INFO = 5 + ELSE IF( N .LT.0 )THEN + INFO = 6 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 9 + ELSE IF( LDB.LT.MAX( 1, M ) )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTRSM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + B( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + RETURN + END IF +* +* Start the operations. +* + IF( LSIDE )THEN + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*inv( A )*B. +* + IF( UPPER )THEN + DO 60, J = 1, N + IF( ALPHA.NE.ONE )THEN + DO 30, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 30 CONTINUE + END IF + DO 50, K = M, 1, -1 + IF( B( K, J ).NE.ZERO )THEN + IF( NOUNIT ) + $ B( K, J ) = B( K, J )/A( K, K ) + DO 40, I = 1, K - 1 + B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) + 40 CONTINUE + END IF + 50 CONTINUE + 60 CONTINUE + ELSE + DO 100, J = 1, N + IF( ALPHA.NE.ONE )THEN + DO 70, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 70 CONTINUE + END IF + DO 90 K = 1, M + IF( B( K, J ).NE.ZERO )THEN + IF( NOUNIT ) + $ B( K, J ) = B( K, J )/A( K, K ) + DO 80, I = K + 1, M + B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) + 80 CONTINUE + END IF + 90 CONTINUE + 100 CONTINUE + END IF + ELSE +* +* Form B := alpha*inv( A' )*B. +* + IF( UPPER )THEN + DO 130, J = 1, N + DO 120, I = 1, M + TEMP = ALPHA*B( I, J ) + DO 110, K = 1, I - 1 + TEMP = TEMP - A( K, I )*B( K, J ) + 110 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( I, I ) + B( I, J ) = TEMP + 120 CONTINUE + 130 CONTINUE + ELSE + DO 160, J = 1, N + DO 150, I = M, 1, -1 + TEMP = ALPHA*B( I, J ) + DO 140, K = I + 1, M + TEMP = TEMP - A( K, I )*B( K, J ) + 140 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( I, I ) + B( I, J ) = TEMP + 150 CONTINUE + 160 CONTINUE + END IF + END IF + ELSE + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*B*inv( A ). +* + IF( UPPER )THEN + DO 210, J = 1, N + IF( ALPHA.NE.ONE )THEN + DO 170, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 170 CONTINUE + END IF + DO 190, K = 1, J - 1 + IF( A( K, J ).NE.ZERO )THEN + DO 180, I = 1, M + B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) + 180 CONTINUE + END IF + 190 CONTINUE + IF( NOUNIT )THEN + TEMP = ONE/A( J, J ) + DO 200, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 200 CONTINUE + END IF + 210 CONTINUE + ELSE + DO 260, J = N, 1, -1 + IF( ALPHA.NE.ONE )THEN + DO 220, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 220 CONTINUE + END IF + DO 240, K = J + 1, N + IF( A( K, J ).NE.ZERO )THEN + DO 230, I = 1, M + B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) + 230 CONTINUE + END IF + 240 CONTINUE + IF( NOUNIT )THEN + TEMP = ONE/A( J, J ) + DO 250, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 250 CONTINUE + END IF + 260 CONTINUE + END IF + ELSE +* +* Form B := alpha*B*inv( A' ). +* + IF( UPPER )THEN + DO 310, K = N, 1, -1 + IF( NOUNIT )THEN + TEMP = ONE/A( K, K ) + DO 270, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 270 CONTINUE + END IF + DO 290, J = 1, K - 1 + IF( A( J, K ).NE.ZERO )THEN + TEMP = A( J, K ) + DO 280, I = 1, M + B( I, J ) = B( I, J ) - TEMP*B( I, K ) + 280 CONTINUE + END IF + 290 CONTINUE + IF( ALPHA.NE.ONE )THEN + DO 300, I = 1, M + B( I, K ) = ALPHA*B( I, K ) + 300 CONTINUE + END IF + 310 CONTINUE + ELSE + DO 360, K = 1, N + IF( NOUNIT )THEN + TEMP = ONE/A( K, K ) + DO 320, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 320 CONTINUE + END IF + DO 340, J = K + 1, N + IF( A( J, K ).NE.ZERO )THEN + TEMP = A( J, K ) + DO 330, I = 1, M + B( I, J ) = B( I, J ) - TEMP*B( I, K ) + 330 CONTINUE + END IF + 340 CONTINUE + IF( ALPHA.NE.ONE )THEN + DO 350, I = 1, M + B( I, K ) = ALPHA*B( I, K ) + 350 CONTINUE + END IF + 360 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTRSM . +* + END diff --git a/src/fortran/blas/dtrsv.f b/src/fortran/blas/dtrsv.f new file mode 100644 index 0000000..9c3e90a --- /dev/null +++ b/src/fortran/blas/dtrsv.f @@ -0,0 +1,289 @@ + SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DTRSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular matrix. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' A'*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, KX + LOGICAL NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTRSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOUNIT = LSAME( DIAG, 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/A( J, J ) + TEMP = X( J ) + DO 10, I = J - 1, 1, -1 + X( I ) = X( I ) - TEMP*A( I, J ) + 10 CONTINUE + END IF + 20 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 40, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( J, J ) + TEMP = X( JX ) + IX = JX + DO 30, I = J - 1, 1, -1 + IX = IX - INCX + X( IX ) = X( IX ) - TEMP*A( I, J ) + 30 CONTINUE + END IF + JX = JX - INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/A( J, J ) + TEMP = X( J ) + DO 50, I = J + 1, N + X( I ) = X( I ) - TEMP*A( I, J ) + 50 CONTINUE + END IF + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( J, J ) + TEMP = X( JX ) + IX = JX + DO 70, I = J + 1, N + IX = IX + INCX + X( IX ) = X( IX ) - TEMP*A( I, J ) + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A' )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 100, J = 1, N + TEMP = X( J ) + DO 90, I = 1, J - 1 + TEMP = TEMP - A( I, J )*X( I ) + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + X( J ) = TEMP + 100 CONTINUE + ELSE + JX = KX + DO 120, J = 1, N + TEMP = X( JX ) + IX = KX + DO 110, I = 1, J - 1 + TEMP = TEMP - A( I, J )*X( IX ) + IX = IX + INCX + 110 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + X( JX ) = TEMP + JX = JX + INCX + 120 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 140, J = N, 1, -1 + TEMP = X( J ) + DO 130, I = N, J + 1, -1 + TEMP = TEMP - A( I, J )*X( I ) + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + X( J ) = TEMP + 140 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 160, J = N, 1, -1 + TEMP = X( JX ) + IX = KX + DO 150, I = N, J + 1, -1 + TEMP = TEMP - A( I, J )*X( IX ) + IX = IX - INCX + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + X( JX ) = TEMP + JX = JX - INCX + 160 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTRSV . +* + END diff --git a/src/fortran/blas/dzasum.f b/src/fortran/blas/dzasum.f new file mode 100644 index 0000000..d21c1ff --- /dev/null +++ b/src/fortran/blas/dzasum.f @@ -0,0 +1,34 @@ + double precision function dzasum(n,zx,incx) +c +c takes the sum of the absolute values. +c jack dongarra, 3/11/78. +c modified 3/93 to return if incx .le. 0. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*) + double precision stemp,dcabs1 + integer i,incx,ix,n +c + dzasum = 0.0d0 + stemp = 0.0d0 + if( n.le.0 .or. incx.le.0 )return + if(incx.eq.1)go to 20 +c +c code for increment not equal to 1 +c + ix = 1 + do 10 i = 1,n + stemp = stemp + dcabs1(zx(ix)) + ix = ix + incx + 10 continue + dzasum = stemp + return +c +c code for increment equal to 1 +c + 20 do 30 i = 1,n + stemp = stemp + dcabs1(zx(i)) + 30 continue + dzasum = stemp + return + end diff --git a/src/fortran/blas/dznrm2.f b/src/fortran/blas/dznrm2.f new file mode 100644 index 0000000..205ce39 --- /dev/null +++ b/src/fortran/blas/dznrm2.f @@ -0,0 +1,67 @@ + DOUBLE PRECISION FUNCTION DZNRM2( N, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, N +* .. Array Arguments .. + COMPLEX*16 X( * ) +* .. +* +* DZNRM2 returns the euclidean norm of a vector via the function +* name, so that +* +* DZNRM2 := sqrt( conjg( x' )*x ) +* +* +* +* -- This version written on 25-October-1982. +* Modified on 14-October-1993 to inline the call to ZLASSQ. +* Sven Hammarling, Nag Ltd. +* +* +* .. Parameters .. + DOUBLE PRECISION ONE , ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. Local Scalars .. + INTEGER IX + DOUBLE PRECISION NORM, SCALE, SSQ, TEMP +* .. Intrinsic Functions .. + INTRINSIC ABS, DIMAG, DBLE, SQRT +* .. +* .. Executable Statements .. + IF( N.LT.1 .OR. INCX.LT.1 )THEN + NORM = ZERO + ELSE + SCALE = ZERO + SSQ = ONE +* The following loop is equivalent to this call to the LAPACK +* auxiliary routine: +* CALL ZLASSQ( N, X, INCX, SCALE, SSQ ) +* + DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX + IF( DBLE( X( IX ) ).NE.ZERO )THEN + TEMP = ABS( DBLE( X( IX ) ) ) + IF( SCALE.LT.TEMP )THEN + SSQ = ONE + SSQ*( SCALE/TEMP )**2 + SCALE = TEMP + ELSE + SSQ = SSQ + ( TEMP/SCALE )**2 + END IF + END IF + IF( DIMAG( X( IX ) ).NE.ZERO )THEN + TEMP = ABS( DIMAG( X( IX ) ) ) + IF( SCALE.LT.TEMP )THEN + SSQ = ONE + SSQ*( SCALE/TEMP )**2 + SCALE = TEMP + ELSE + SSQ = SSQ + ( TEMP/SCALE )**2 + END IF + END IF + 10 CONTINUE + NORM = SCALE * SQRT( SSQ ) + END IF +* + DZNRM2 = NORM + RETURN +* +* End of DZNRM2. +* + END diff --git a/src/fortran/blas/idamax.f b/src/fortran/blas/idamax.f new file mode 100644 index 0000000..59d80dc --- /dev/null +++ b/src/fortran/blas/idamax.f @@ -0,0 +1,39 @@ + integer function idamax(n,dx,incx) +c +c finds the index of element having max. absolute value. +c jack dongarra, linpack, 3/11/78. +c modified 3/93 to return if incx .le. 0. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double precision dx(*),dmax + integer i,incx,ix,n +c + idamax = 0 + if( n.lt.1 .or. incx.le.0 ) return + idamax = 1 + if(n.eq.1)return + if(incx.eq.1)go to 20 +c +c code for increment not equal to 1 +c + ix = 1 + dmax = dabs(dx(1)) + ix = ix + incx + do 10 i = 2,n + if(dabs(dx(ix)).le.dmax) go to 5 + idamax = i + dmax = dabs(dx(ix)) + 5 ix = ix + incx + 10 continue + return +c +c code for increment equal to 1 +c + 20 dmax = dabs(dx(1)) + do 30 i = 2,n + if(dabs(dx(i)).le.dmax) go to 30 + idamax = i + dmax = dabs(dx(i)) + 30 continue + return + end diff --git a/src/fortran/blas/izamax.f b/src/fortran/blas/izamax.f new file mode 100644 index 0000000..ec14f82 --- /dev/null +++ b/src/fortran/blas/izamax.f @@ -0,0 +1,41 @@ + integer function izamax(n,zx,incx) +c +c finds the index of element having max. absolute value. +c jack dongarra, 1/15/85. +c modified 3/93 to return if incx .le. 0. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*) + double precision smax + integer i,incx,ix,n + double precision dcabs1 +c + izamax = 0 + if( n.lt.1 .or. incx.le.0 )return + izamax = 1 + if(n.eq.1)return + if(incx.eq.1)go to 20 +c +c code for increment not equal to 1 +c + ix = 1 + smax = dcabs1(zx(1)) + ix = ix + incx + do 10 i = 2,n + if(dcabs1(zx(ix)).le.smax) go to 5 + izamax = i + smax = dcabs1(zx(ix)) + 5 ix = ix + incx + 10 continue + return +c +c code for increment equal to 1 +c + 20 smax = dcabs1(zx(1)) + do 30 i = 2,n + if(dcabs1(zx(i)).le.smax) go to 30 + izamax = i + smax = dcabs1(zx(i)) + 30 continue + return + end diff --git a/src/fortran/blas/license.txt b/src/fortran/blas/license.txt new file mode 100644 index 0000000..8014a5b --- /dev/null +++ b/src/fortran/blas/license.txt @@ -0,0 +1,6 @@ +This software is in the public domain + + +More information: +http://www.netlib.org/blas/faq.html#2 +http://packages.debian.org/changelogs/pool/main/b/blas/blas_1.1-14/blas.copyright
\ No newline at end of file diff --git a/src/fortran/blas/lsame.f b/src/fortran/blas/lsame.f new file mode 100644 index 0000000..bf25d86 --- /dev/null +++ b/src/fortran/blas/lsame.f @@ -0,0 +1,87 @@ + LOGICAL FUNCTION LSAME( CA, CB ) +* +* -- LAPACK auxiliary routine (version 3.0) -- +* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., +* Courant Institute, Argonne National Lab, and Rice University +* September 30, 1994 +* +* .. Scalar Arguments .. + CHARACTER CA, CB +* .. +* +* Purpose +* ======= +* +* LSAME returns .TRUE. if CA is the same letter as CB regardless of +* case. +* +* Arguments +* ========= +* +* CA (input) CHARACTER*1 +* CB (input) CHARACTER*1 +* CA and CB specify the single characters to be compared. +* +* ===================================================================== +* +* .. Intrinsic Functions .. + INTRINSIC ICHAR +* .. +* .. Local Scalars .. + INTEGER INTA, INTB, ZCODE +* .. +* .. Executable Statements .. +* +* Test if the characters are equal +* + LSAME = CA.EQ.CB + IF( LSAME ) + $ RETURN +* +* Now test for equivalence if both characters are alphabetic. +* + ZCODE = ICHAR( 'Z' ) +* +* Use 'Z' rather than 'A' so that ASCII can be detected on Prime +* machines, on which ICHAR returns a value with bit 8 set. +* ICHAR('A') on Prime machines returns 193 which is the same as +* ICHAR('A') on an EBCDIC machine. +* + INTA = ICHAR( CA ) + INTB = ICHAR( CB ) +* + IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN +* +* ASCII is assumed - ZCODE is the ASCII code of either lower or +* upper case 'Z'. +* + IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32 + IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32 +* + ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN +* +* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or +* upper case 'Z'. +* + IF( INTA.GE.129 .AND. INTA.LE.137 .OR. + $ INTA.GE.145 .AND. INTA.LE.153 .OR. + $ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64 + IF( INTB.GE.129 .AND. INTB.LE.137 .OR. + $ INTB.GE.145 .AND. INTB.LE.153 .OR. + $ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64 +* + ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN +* +* ASCII is assumed, on Prime machines - ZCODE is the ASCII code +* plus 128 of either lower or upper case 'Z'. +* + IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32 + IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32 + END IF + LSAME = INTA.EQ.INTB +* +* RETURN +* +* End of LSAME +* + END diff --git a/src/fortran/blas/xerbla.f b/src/fortran/blas/xerbla.f new file mode 100644 index 0000000..6e11175 --- /dev/null +++ b/src/fortran/blas/xerbla.f @@ -0,0 +1,46 @@ + SUBROUTINE XERBLA( SRNAME, INFO ) +* +* -- LAPACK auxiliary routine (version 3.0) -- +* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., +* Courant Institute, Argonne National Lab, and Rice University +* September 30, 1994 +* +* .. Scalar Arguments .. + CHARACTER*6 SRNAME + INTEGER INFO +* .. +* +* Purpose +* ======= +* +* XERBLA is an error handler for the LAPACK routines. +* It is called by an LAPACK routine if an input parameter has an +* invalid value. A message is printed and execution stops. +* +* Installers may consider modifying the STOP statement in order to +* call system-specific exception-handling facilities. +* +* Arguments +* ========= +* +* SRNAME (input) CHARACTER*6 +* The name of the routine which called XERBLA. +* +* INFO (input) INTEGER +* The position of the invalid parameter in the parameter list +* of the calling routine. +* +* ===================================================================== +* +* .. Executable Statements .. +* + WRITE( *, FMT = 9999 )SRNAME, INFO +* + STOP +* + 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ', + $ 'an illegal value' ) +* +* End of XERBLA +* + END diff --git a/src/fortran/blas/zaxpy.f b/src/fortran/blas/zaxpy.f new file mode 100644 index 0000000..4fa3b1e --- /dev/null +++ b/src/fortran/blas/zaxpy.f @@ -0,0 +1,34 @@ + subroutine zaxpy(n,za,zx,incx,zy,incy) +c +c constant times a vector plus a vector. +c jack dongarra, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*),zy(*),za + integer i,incx,incy,ix,iy,n + double precision dcabs1 + if(n.le.0)return + if (dcabs1(za) .eq. 0.0d0) return + if (incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments +c not equal to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + zy(iy) = zy(iy) + za*zx(ix) + ix = ix + incx + iy = iy + incy + 10 continue + return +c +c code for both increments equal to 1 +c + 20 do 30 i = 1,n + zy(i) = zy(i) + za*zx(i) + 30 continue + return + end diff --git a/src/fortran/blas/zcopy.f b/src/fortran/blas/zcopy.f new file mode 100644 index 0000000..9ccfa88 --- /dev/null +++ b/src/fortran/blas/zcopy.f @@ -0,0 +1,33 @@ + subroutine zcopy(n,zx,incx,zy,incy) +c +c copies a vector, x, to a vector, y. +c jack dongarra, linpack, 4/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*),zy(*) + integer i,incx,incy,ix,iy,n +c + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments +c not equal to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + zy(iy) = zx(ix) + ix = ix + incx + iy = iy + incy + 10 continue + return +c +c code for both increments equal to 1 +c + 20 do 30 i = 1,n + zy(i) = zx(i) + 30 continue + return + end diff --git a/src/fortran/blas/zdotc.f b/src/fortran/blas/zdotc.f new file mode 100644 index 0000000..d6ac685 --- /dev/null +++ b/src/fortran/blas/zdotc.f @@ -0,0 +1,36 @@ + double complex function zdotc(n,zx,incx,zy,incy) +c +c forms the dot product of a vector. +c jack dongarra, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*),zy(*),ztemp + integer i,incx,incy,ix,iy,n + ztemp = (0.0d0,0.0d0) + zdotc = (0.0d0,0.0d0) + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments +c not equal to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + ztemp = ztemp + dconjg(zx(ix))*zy(iy) + ix = ix + incx + iy = iy + incy + 10 continue + zdotc = ztemp + return +c +c code for both increments equal to 1 +c + 20 do 30 i = 1,n + ztemp = ztemp + dconjg(zx(i))*zy(i) + 30 continue + zdotc = ztemp + return + end diff --git a/src/fortran/blas/zdotu.f b/src/fortran/blas/zdotu.f new file mode 100644 index 0000000..329e988 --- /dev/null +++ b/src/fortran/blas/zdotu.f @@ -0,0 +1,36 @@ + double complex function zdotu(n,zx,incx,zy,incy) +c +c forms the dot product of two vectors. +c jack dongarra, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*),zy(*),ztemp + integer i,incx,incy,ix,iy,n + ztemp = (0.0d0,0.0d0) + zdotu = (0.0d0,0.0d0) + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments +c not equal to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + ztemp = ztemp + zx(ix)*zy(iy) + ix = ix + incx + iy = iy + incy + 10 continue + zdotu = ztemp + return +c +c code for both increments equal to 1 +c + 20 do 30 i = 1,n + ztemp = ztemp + zx(i)*zy(i) + 30 continue + zdotu = ztemp + return + end diff --git a/src/fortran/blas/zdscal.f b/src/fortran/blas/zdscal.f new file mode 100644 index 0000000..8123424 --- /dev/null +++ b/src/fortran/blas/zdscal.f @@ -0,0 +1,30 @@ + subroutine zdscal(n,da,zx,incx) +c +c scales a vector by a constant. +c jack dongarra, 3/11/78. +c modified 3/93 to return if incx .le. 0. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*) + double precision da + integer i,incx,ix,n +c + if( n.le.0 .or. incx.le.0 )return + if(incx.eq.1)go to 20 +c +c code for increment not equal to 1 +c + ix = 1 + do 10 i = 1,n + zx(ix) = dcmplx(da,0.0d0)*zx(ix) + ix = ix + incx + 10 continue + return +c +c code for increment equal to 1 +c + 20 do 30 i = 1,n + zx(i) = dcmplx(da,0.0d0)*zx(i) + 30 continue + return + end diff --git a/src/fortran/blas/zgbmv.f b/src/fortran/blas/zgbmv.f new file mode 100644 index 0000000..91ce9a6 --- /dev/null +++ b/src/fortran/blas/zgbmv.f @@ -0,0 +1,322 @@ + SUBROUTINE ZGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA, BETA + INTEGER INCX, INCY, KL, KU, LDA, M, N + CHARACTER*1 TRANS +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZGBMV performs one of the matrix-vector operations +* +* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or +* +* y := alpha*conjg( A' )*x + beta*y, +* +* where alpha and beta are scalars, x and y are vectors and A is an +* m by n band matrix, with kl sub-diagonals and ku super-diagonals. +* +* Parameters +* ========== +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. +* +* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. +* +* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* KL - INTEGER. +* On entry, KL specifies the number of sub-diagonals of the +* matrix A. KL must satisfy 0 .le. KL. +* Unchanged on exit. +* +* KU - INTEGER. +* On entry, KU specifies the number of super-diagonals of the +* matrix A. KU must satisfy 0 .le. KU. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry, the leading ( kl + ku + 1 ) by n part of the +* array A must contain the matrix of coefficients, supplied +* column by column, with the leading diagonal of the matrix in +* row ( ku + 1 ) of the array, the first super-diagonal +* starting at position 2 in row ku, the first sub-diagonal +* starting at position 1 in row ( ku + 2 ), and so on. +* Elements in the array A that do not correspond to elements +* in the band matrix (such as the top left ku by ku triangle) +* are not referenced. +* The following program segment will transfer a band matrix +* from conventional full matrix storage to band storage: +* +* DO 20, J = 1, N +* K = KU + 1 - J +* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) +* A( K + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( kl + ku + 1 ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. +* Before entry, the incremented array X must contain the +* vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of DIMENSION at least +* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. +* Before entry, the incremented array Y must contain the +* vector y. On exit, Y is overwritten by the updated vector y. +* +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY, + $ LENX, LENY + LOGICAL NOCONJ +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 1 + ELSE IF( M.LT.0 )THEN + INFO = 2 + ELSE IF( N.LT.0 )THEN + INFO = 3 + ELSE IF( KL.LT.0 )THEN + INFO = 4 + ELSE IF( KU.LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN + INFO = 8 + ELSE IF( INCX.EQ.0 )THEN + INFO = 10 + ELSE IF( INCY.EQ.0 )THEN + INFO = 13 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZGBMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) +* +* Set LENX and LENY, the lengths of the vectors x and y, and set +* up the start points in X and Y. +* + IF( LSAME( TRANS, 'N' ) )THEN + LENX = N + LENY = M + ELSE + LENX = M + LENY = N + END IF + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( LENX - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( LENY - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the band part of A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, LENY + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, LENY + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, LENY + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, LENY + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + KUP1 = KU + 1 + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form y := alpha*A*x + y. +* + JX = KX + IF( INCY.EQ.1 )THEN + DO 60, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + K = KUP1 - J + DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL ) + Y( I ) = Y( I ) + TEMP*A( K + I, J ) + 50 CONTINUE + END IF + JX = JX + INCX + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IY = KY + K = KUP1 - J + DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL ) + Y( IY ) = Y( IY ) + TEMP*A( K + I, J ) + IY = IY + INCY + 70 CONTINUE + END IF + JX = JX + INCX + IF( J.GT.KU ) + $ KY = KY + INCY + 80 CONTINUE + END IF + ELSE +* +* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. +* + JY = KY + IF( INCX.EQ.1 )THEN + DO 110, J = 1, N + TEMP = ZERO + K = KUP1 - J + IF( NOCONJ )THEN + DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL ) + TEMP = TEMP + A( K + I, J )*X( I ) + 90 CONTINUE + ELSE + DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL ) + TEMP = TEMP + DCONJG( A( K + I, J ) )*X( I ) + 100 CONTINUE + END IF + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + 110 CONTINUE + ELSE + DO 140, J = 1, N + TEMP = ZERO + IX = KX + K = KUP1 - J + IF( NOCONJ )THEN + DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL ) + TEMP = TEMP + A( K + I, J )*X( IX ) + IX = IX + INCX + 120 CONTINUE + ELSE + DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL ) + TEMP = TEMP + DCONJG( A( K + I, J ) )*X( IX ) + IX = IX + INCX + 130 CONTINUE + END IF + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + IF( J.GT.KU ) + $ KX = KX + INCX + 140 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZGBMV . +* + END diff --git a/src/fortran/blas/zgemm.f b/src/fortran/blas/zgemm.f new file mode 100644 index 0000000..09cd151 --- /dev/null +++ b/src/fortran/blas/zgemm.f @@ -0,0 +1,415 @@ + SUBROUTINE ZGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 TRANSA, TRANSB + INTEGER M, N, K, LDA, LDB, LDC + COMPLEX*16 ALPHA, BETA +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZGEMM performs one of the matrix-matrix operations +* +* C := alpha*op( A )*op( B ) + beta*C, +* +* where op( X ) is one of +* +* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), +* +* alpha and beta are scalars, and A, B and C are matrices, with op( A ) +* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. +* +* Parameters +* ========== +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n', op( A ) = A. +* +* TRANSA = 'T' or 't', op( A ) = A'. +* +* TRANSA = 'C' or 'c', op( A ) = conjg( A' ). +* +* Unchanged on exit. +* +* TRANSB - CHARACTER*1. +* On entry, TRANSB specifies the form of op( B ) to be used in +* the matrix multiplication as follows: +* +* TRANSB = 'N' or 'n', op( B ) = B. +* +* TRANSB = 'T' or 't', op( B ) = B'. +* +* TRANSB = 'C' or 'c', op( B ) = conjg( B' ). +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix +* op( A ) and of the matrix C. M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix +* op( B ) and the number of columns of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry, K specifies the number of columns of the matrix +* op( A ) and the number of rows of the matrix op( B ). K must +* be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is +* k when TRANSA = 'N' or 'n', and is m otherwise. +* Before entry with TRANSA = 'N' or 'n', the leading m by k +* part of the array A must contain the matrix A, otherwise +* the leading k by m part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANSA = 'N' or 'n' then +* LDA must be at least max( 1, m ), otherwise LDA must be at +* least max( 1, k ). +* Unchanged on exit. +* +* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is +* n when TRANSB = 'N' or 'n', and is k otherwise. +* Before entry with TRANSB = 'N' or 'n', the leading k by n +* part of the array B must contain the matrix B, otherwise +* the leading n by k part of the array B must contain the +* matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. When TRANSB = 'N' or 'n' then +* LDB must be at least max( 1, k ), otherwise LDB must be at +* least max( 1, n ). +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then C need not be set on input. +* Unchanged on exit. +* +* C - COMPLEX*16 array of DIMENSION ( LDC, n ). +* Before entry, the leading m by n part of the array C must +* contain the matrix C, except when beta is zero, in which +* case C need not be set on entry. +* On exit, the array C is overwritten by the m by n matrix +* ( alpha*op( A )*op( B ) + beta*C ). +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX +* .. Local Scalars .. + LOGICAL CONJA, CONJB, NOTA, NOTB + INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB + COMPLEX*16 TEMP +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Set NOTA and NOTB as true if A and B respectively are not +* conjugated or transposed, set CONJA and CONJB as true if A and +* B respectively are to be transposed but not conjugated and set +* NROWA, NCOLA and NROWB as the number of rows and columns of A +* and the number of rows of B respectively. +* + NOTA = LSAME( TRANSA, 'N' ) + NOTB = LSAME( TRANSB, 'N' ) + CONJA = LSAME( TRANSA, 'C' ) + CONJB = LSAME( TRANSB, 'C' ) + IF( NOTA )THEN + NROWA = M + NCOLA = K + ELSE + NROWA = K + NCOLA = M + END IF + IF( NOTB )THEN + NROWB = K + ELSE + NROWB = N + END IF +* +* Test the input parameters. +* + INFO = 0 + IF( ( .NOT.NOTA ).AND. + $ ( .NOT.CONJA ).AND. + $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.NOTB ).AND. + $ ( .NOT.CONJB ).AND. + $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN + INFO = 2 + ELSE IF( M .LT.0 )THEN + INFO = 3 + ELSE IF( N .LT.0 )THEN + INFO = 4 + ELSE IF( K .LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 8 + ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN + INFO = 10 + ELSE IF( LDC.LT.MAX( 1, M ) )THEN + INFO = 13 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZGEMM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, M + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + RETURN + END IF +* +* Start the operations. +* + IF( NOTB )THEN + IF( NOTA )THEN +* +* Form C := alpha*A*B + beta*C. +* + DO 90, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 50, I = 1, M + C( I, J ) = ZERO + 50 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 60, I = 1, M + C( I, J ) = BETA*C( I, J ) + 60 CONTINUE + END IF + DO 80, L = 1, K + IF( B( L, J ).NE.ZERO )THEN + TEMP = ALPHA*B( L, J ) + DO 70, I = 1, M + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 70 CONTINUE + END IF + 80 CONTINUE + 90 CONTINUE + ELSE IF( CONJA )THEN +* +* Form C := alpha*conjg( A' )*B + beta*C. +* + DO 120, J = 1, N + DO 110, I = 1, M + TEMP = ZERO + DO 100, L = 1, K + TEMP = TEMP + DCONJG( A( L, I ) )*B( L, J ) + 100 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 110 CONTINUE + 120 CONTINUE + ELSE +* +* Form C := alpha*A'*B + beta*C +* + DO 150, J = 1, N + DO 140, I = 1, M + TEMP = ZERO + DO 130, L = 1, K + TEMP = TEMP + A( L, I )*B( L, J ) + 130 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 140 CONTINUE + 150 CONTINUE + END IF + ELSE IF( NOTA )THEN + IF( CONJB )THEN +* +* Form C := alpha*A*conjg( B' ) + beta*C. +* + DO 200, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 160, I = 1, M + C( I, J ) = ZERO + 160 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 170, I = 1, M + C( I, J ) = BETA*C( I, J ) + 170 CONTINUE + END IF + DO 190, L = 1, K + IF( B( J, L ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( B( J, L ) ) + DO 180, I = 1, M + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 180 CONTINUE + END IF + 190 CONTINUE + 200 CONTINUE + ELSE +* +* Form C := alpha*A*B' + beta*C +* + DO 250, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 210, I = 1, M + C( I, J ) = ZERO + 210 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 220, I = 1, M + C( I, J ) = BETA*C( I, J ) + 220 CONTINUE + END IF + DO 240, L = 1, K + IF( B( J, L ).NE.ZERO )THEN + TEMP = ALPHA*B( J, L ) + DO 230, I = 1, M + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 230 CONTINUE + END IF + 240 CONTINUE + 250 CONTINUE + END IF + ELSE IF( CONJA )THEN + IF( CONJB )THEN +* +* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. +* + DO 280, J = 1, N + DO 270, I = 1, M + TEMP = ZERO + DO 260, L = 1, K + TEMP = TEMP + + $ DCONJG( A( L, I ) )*DCONJG( B( J, L ) ) + 260 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 270 CONTINUE + 280 CONTINUE + ELSE +* +* Form C := alpha*conjg( A' )*B' + beta*C +* + DO 310, J = 1, N + DO 300, I = 1, M + TEMP = ZERO + DO 290, L = 1, K + TEMP = TEMP + DCONJG( A( L, I ) )*B( J, L ) + 290 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 300 CONTINUE + 310 CONTINUE + END IF + ELSE + IF( CONJB )THEN +* +* Form C := alpha*A'*conjg( B' ) + beta*C +* + DO 340, J = 1, N + DO 330, I = 1, M + TEMP = ZERO + DO 320, L = 1, K + TEMP = TEMP + A( L, I )*DCONJG( B( J, L ) ) + 320 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 330 CONTINUE + 340 CONTINUE + ELSE +* +* Form C := alpha*A'*B' + beta*C +* + DO 370, J = 1, N + DO 360, I = 1, M + TEMP = ZERO + DO 350, L = 1, K + TEMP = TEMP + A( L, I )*B( J, L ) + 350 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 360 CONTINUE + 370 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZGEMM . +* + END diff --git a/src/fortran/blas/zgemv.f b/src/fortran/blas/zgemv.f new file mode 100644 index 0000000..014a5e0 --- /dev/null +++ b/src/fortran/blas/zgemv.f @@ -0,0 +1,281 @@ + SUBROUTINE ZGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA, BETA + INTEGER INCX, INCY, LDA, M, N + CHARACTER*1 TRANS +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZGEMV performs one of the matrix-vector operations +* +* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or +* +* y := alpha*conjg( A' )*x + beta*y, +* +* where alpha and beta are scalars, x and y are vectors and A is an +* m by n matrix. +* +* Parameters +* ========== +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. +* +* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. +* +* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry, the leading m by n part of the array A must +* contain the matrix of coefficients. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, m ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. +* Before entry, the incremented array X must contain the +* vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of DIMENSION at least +* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' +* and at least +* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. +* Before entry with BETA non-zero, the incremented array Y +* must contain the vector y. On exit, Y is overwritten by the +* updated vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY + LOGICAL NOCONJ +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 1 + ELSE IF( M.LT.0 )THEN + INFO = 2 + ELSE IF( N.LT.0 )THEN + INFO = 3 + ELSE IF( LDA.LT.MAX( 1, M ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + ELSE IF( INCY.EQ.0 )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZGEMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) +* +* Set LENX and LENY, the lengths of the vectors x and y, and set +* up the start points in X and Y. +* + IF( LSAME( TRANS, 'N' ) )THEN + LENX = N + LENY = M + ELSE + LENX = M + LENY = N + END IF + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( LENX - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( LENY - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, LENY + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, LENY + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, LENY + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, LENY + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form y := alpha*A*x + y. +* + JX = KX + IF( INCY.EQ.1 )THEN + DO 60, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + DO 50, I = 1, M + Y( I ) = Y( I ) + TEMP*A( I, J ) + 50 CONTINUE + END IF + JX = JX + INCX + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*X( JX ) + IY = KY + DO 70, I = 1, M + Y( IY ) = Y( IY ) + TEMP*A( I, J ) + IY = IY + INCY + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + ELSE +* +* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. +* + JY = KY + IF( INCX.EQ.1 )THEN + DO 110, J = 1, N + TEMP = ZERO + IF( NOCONJ )THEN + DO 90, I = 1, M + TEMP = TEMP + A( I, J )*X( I ) + 90 CONTINUE + ELSE + DO 100, I = 1, M + TEMP = TEMP + DCONJG( A( I, J ) )*X( I ) + 100 CONTINUE + END IF + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + 110 CONTINUE + ELSE + DO 140, J = 1, N + TEMP = ZERO + IX = KX + IF( NOCONJ )THEN + DO 120, I = 1, M + TEMP = TEMP + A( I, J )*X( IX ) + IX = IX + INCX + 120 CONTINUE + ELSE + DO 130, I = 1, M + TEMP = TEMP + DCONJG( A( I, J ) )*X( IX ) + IX = IX + INCX + 130 CONTINUE + END IF + Y( JY ) = Y( JY ) + ALPHA*TEMP + JY = JY + INCY + 140 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZGEMV . +* + END diff --git a/src/fortran/blas/zgerc.f b/src/fortran/blas/zgerc.f new file mode 100644 index 0000000..968c5b4 --- /dev/null +++ b/src/fortran/blas/zgerc.f @@ -0,0 +1,157 @@ + SUBROUTINE ZGERC ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA + INTEGER INCX, INCY, LDA, M, N +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZGERC performs the rank 1 operation +* +* A := alpha*x*conjg( y' ) + A, +* +* where alpha is a scalar, x is an m element vector, y is an n element +* vector and A is an m by n matrix. +* +* Parameters +* ========== +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( m - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the m +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry, the leading m by n part of the array A must +* contain the matrix of coefficients. On exit, A is +* overwritten by the updated matrix. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JY, KX +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( M.LT.0 )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( INCY.EQ.0 )THEN + INFO = 7 + ELSE IF( LDA.LT.MAX( 1, M ) )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZGERC ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( INCY.GT.0 )THEN + JY = 1 + ELSE + JY = 1 - ( N - 1 )*INCY + END IF + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( Y( JY ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( Y( JY ) ) + DO 10, I = 1, M + A( I, J ) = A( I, J ) + X( I )*TEMP + 10 CONTINUE + END IF + JY = JY + INCY + 20 CONTINUE + ELSE + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( M - 1 )*INCX + END IF + DO 40, J = 1, N + IF( Y( JY ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( Y( JY ) ) + IX = KX + DO 30, I = 1, M + A( I, J ) = A( I, J ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + END IF + JY = JY + INCY + 40 CONTINUE + END IF +* + RETURN +* +* End of ZGERC . +* + END diff --git a/src/fortran/blas/zgeru.f b/src/fortran/blas/zgeru.f new file mode 100644 index 0000000..5283af6 --- /dev/null +++ b/src/fortran/blas/zgeru.f @@ -0,0 +1,157 @@ + SUBROUTINE ZGERU ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA + INTEGER INCX, INCY, LDA, M, N +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZGERU performs the rank 1 operation +* +* A := alpha*x*y' + A, +* +* where alpha is a scalar, x is an m element vector, y is an n element +* vector and A is an m by n matrix. +* +* Parameters +* ========== +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( m - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the m +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry, the leading m by n part of the array A must +* contain the matrix of coefficients. On exit, A is +* overwritten by the updated matrix. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JY, KX +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( M.LT.0 )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( INCY.EQ.0 )THEN + INFO = 7 + ELSE IF( LDA.LT.MAX( 1, M ) )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZGERU ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( INCY.GT.0 )THEN + JY = 1 + ELSE + JY = 1 - ( N - 1 )*INCY + END IF + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( Y( JY ).NE.ZERO )THEN + TEMP = ALPHA*Y( JY ) + DO 10, I = 1, M + A( I, J ) = A( I, J ) + X( I )*TEMP + 10 CONTINUE + END IF + JY = JY + INCY + 20 CONTINUE + ELSE + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( M - 1 )*INCX + END IF + DO 40, J = 1, N + IF( Y( JY ).NE.ZERO )THEN + TEMP = ALPHA*Y( JY ) + IX = KX + DO 30, I = 1, M + A( I, J ) = A( I, J ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + END IF + JY = JY + INCY + 40 CONTINUE + END IF +* + RETURN +* +* End of ZGERU . +* + END diff --git a/src/fortran/blas/zhbmv.f b/src/fortran/blas/zhbmv.f new file mode 100644 index 0000000..1c04493 --- /dev/null +++ b/src/fortran/blas/zhbmv.f @@ -0,0 +1,309 @@ + SUBROUTINE ZHBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA, BETA + INTEGER INCX, INCY, K, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZHBMV performs the matrix-vector operation +* +* y := alpha*A*x + beta*y, +* +* where alpha and beta are scalars, x and y are n element vectors and +* A is an n by n hermitian band matrix, with k super-diagonals. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the band matrix A is being supplied as +* follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* being supplied. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* being supplied. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry, K specifies the number of super-diagonals of the +* matrix A. K must satisfy 0 .le. K. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) +* by n part of the array A must contain the upper triangular +* band part of the hermitian matrix, supplied column by +* column, with the leading diagonal of the matrix in row +* ( k + 1 ) of the array, the first super-diagonal starting at +* position 2 in row k, and so on. The top left k by k triangle +* of the array A is not referenced. +* The following program segment will transfer the upper +* triangular part of a hermitian band matrix from conventional +* full matrix storage to band storage: +* +* DO 20, J = 1, N +* M = K + 1 - J +* DO 10, I = MAX( 1, J - K ), J +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) +* by n part of the array A must contain the lower triangular +* band part of the hermitian matrix, supplied column by +* column, with the leading diagonal of the matrix in row 1 of +* the array, the first sub-diagonal starting at position 1 in +* row 2, and so on. The bottom right k by k triangle of the +* array A is not referenced. +* The following program segment will transfer the lower +* triangular part of a hermitian band matrix from conventional +* full matrix storage to band storage: +* +* DO 20, J = 1, N +* M = 1 - J +* DO 10, I = J, MIN( N, J + K ) +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Note that the imaginary parts of the diagonal elements need +* not be set and are assumed to be zero. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( k + 1 ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the +* vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of DIMENSION at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the +* vector y. On exit, Y is overwritten by the updated vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, MIN, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( K.LT.0 )THEN + INFO = 3 + ELSE IF( LDA.LT.( K + 1 ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + ELSE IF( INCY.EQ.0 )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHBMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set up the start points in X and Y. +* + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of the array A +* are accessed sequentially with one pass through A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, N + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, N + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, N + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, N + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form y when upper triangle of A is stored. +* + KPLUS1 = K + 1 + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + L = KPLUS1 - J + DO 50, I = MAX( 1, J - K ), J - 1 + Y( I ) = Y( I ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( I ) + 50 CONTINUE + Y( J ) = Y( J ) + TEMP1*DBLE( A( KPLUS1, J ) ) + $ + ALPHA*TEMP2 + 60 CONTINUE + ELSE + JX = KX + JY = KY + DO 80, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + IX = KX + IY = KY + L = KPLUS1 - J + DO 70, I = MAX( 1, J - K ), J - 1 + Y( IY ) = Y( IY ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( IX ) + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + Y( JY ) = Y( JY ) + TEMP1*DBLE( A( KPLUS1, J ) ) + $ + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + IF( J.GT.K )THEN + KX = KX + INCX + KY = KY + INCY + END IF + 80 CONTINUE + END IF + ELSE +* +* Form y when lower triangle of A is stored. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 100, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + Y( J ) = Y( J ) + TEMP1*DBLE( A( 1, J ) ) + L = 1 - J + DO 90, I = J + 1, MIN( N, J + K ) + Y( I ) = Y( I ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( I ) + 90 CONTINUE + Y( J ) = Y( J ) + ALPHA*TEMP2 + 100 CONTINUE + ELSE + JX = KX + JY = KY + DO 120, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + Y( JY ) = Y( JY ) + TEMP1*DBLE( A( 1, J ) ) + L = 1 - J + IX = JX + IY = JY + DO 110, I = J + 1, MIN( N, J + K ) + IX = IX + INCX + IY = IY + INCY + Y( IY ) = Y( IY ) + TEMP1*A( L + I, J ) + TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( IX ) + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHBMV . +* + END diff --git a/src/fortran/blas/zhemm.f b/src/fortran/blas/zhemm.f new file mode 100644 index 0000000..d3912c0 --- /dev/null +++ b/src/fortran/blas/zhemm.f @@ -0,0 +1,304 @@ + SUBROUTINE ZHEMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 SIDE, UPLO + INTEGER M, N, LDA, LDB, LDC + COMPLEX*16 ALPHA, BETA +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZHEMM performs one of the matrix-matrix operations +* +* C := alpha*A*B + beta*C, +* +* or +* +* C := alpha*B*A + beta*C, +* +* where alpha and beta are scalars, A is an hermitian matrix and B and +* C are m by n matrices. +* +* Parameters +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether the hermitian matrix A +* appears on the left or right in the operation as follows: +* +* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, +* +* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the hermitian matrix A is to be +* referenced as follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of the +* hermitian matrix is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of the +* hermitian matrix is to be referenced. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix C. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix C. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is +* m when SIDE = 'L' or 'l' and is n otherwise. +* Before entry with SIDE = 'L' or 'l', the m by m part of +* the array A must contain the hermitian matrix, such that +* when UPLO = 'U' or 'u', the leading m by m upper triangular +* part of the array A must contain the upper triangular part +* of the hermitian matrix and the strictly lower triangular +* part of A is not referenced, and when UPLO = 'L' or 'l', +* the leading m by m lower triangular part of the array A +* must contain the lower triangular part of the hermitian +* matrix and the strictly upper triangular part of A is not +* referenced. +* Before entry with SIDE = 'R' or 'r', the n by n part of +* the array A must contain the hermitian matrix, such that +* when UPLO = 'U' or 'u', the leading n by n upper triangular +* part of the array A must contain the upper triangular part +* of the hermitian matrix and the strictly lower triangular +* part of A is not referenced, and when UPLO = 'L' or 'l', +* the leading n by n lower triangular part of the array A +* must contain the lower triangular part of the hermitian +* matrix and the strictly upper triangular part of A is not +* referenced. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), otherwise LDA must be at +* least max( 1, n ). +* Unchanged on exit. +* +* B - COMPLEX*16 array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then C need not be set on input. +* Unchanged on exit. +* +* C - COMPLEX*16 array of DIMENSION ( LDC, n ). +* Before entry, the leading m by n part of the array C must +* contain the matrix C, except when beta is zero, in which +* case C need not be set on entry. +* On exit, the array C is overwritten by the m by n updated +* matrix. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, DBLE +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, K, NROWA + COMPLEX*16 TEMP1, TEMP2 +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Set NROWA as the number of rows of A. +* + IF( LSAME( SIDE, 'L' ) )THEN + NROWA = M + ELSE + NROWA = N + END IF + UPPER = LSAME( UPLO, 'U' ) +* +* Test the input parameters. +* + INFO = 0 + IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND. + $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN + INFO = 2 + ELSE IF( M .LT.0 )THEN + INFO = 3 + ELSE IF( N .LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 7 + ELSE IF( LDB.LT.MAX( 1, M ) )THEN + INFO = 9 + ELSE IF( LDC.LT.MAX( 1, M ) )THEN + INFO = 12 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHEMM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, M + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( SIDE, 'L' ) )THEN +* +* Form C := alpha*A*B + beta*C. +* + IF( UPPER )THEN + DO 70, J = 1, N + DO 60, I = 1, M + TEMP1 = ALPHA*B( I, J ) + TEMP2 = ZERO + DO 50, K = 1, I - 1 + C( K, J ) = C( K, J ) + TEMP1*A( K, I ) + TEMP2 = TEMP2 + + $ B( K, J )*DCONJG( A( K, I ) ) + 50 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = TEMP1*DBLE( A( I, I ) ) + + $ ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ TEMP1*DBLE( A( I, I ) ) + + $ ALPHA*TEMP2 + END IF + 60 CONTINUE + 70 CONTINUE + ELSE + DO 100, J = 1, N + DO 90, I = M, 1, -1 + TEMP1 = ALPHA*B( I, J ) + TEMP2 = ZERO + DO 80, K = I + 1, M + C( K, J ) = C( K, J ) + TEMP1*A( K, I ) + TEMP2 = TEMP2 + + $ B( K, J )*DCONJG( A( K, I ) ) + 80 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = TEMP1*DBLE( A( I, I ) ) + + $ ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ TEMP1*DBLE( A( I, I ) ) + + $ ALPHA*TEMP2 + END IF + 90 CONTINUE + 100 CONTINUE + END IF + ELSE +* +* Form C := alpha*B*A + beta*C. +* + DO 170, J = 1, N + TEMP1 = ALPHA*DBLE( A( J, J ) ) + IF( BETA.EQ.ZERO )THEN + DO 110, I = 1, M + C( I, J ) = TEMP1*B( I, J ) + 110 CONTINUE + ELSE + DO 120, I = 1, M + C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J ) + 120 CONTINUE + END IF + DO 140, K = 1, J - 1 + IF( UPPER )THEN + TEMP1 = ALPHA*A( K, J ) + ELSE + TEMP1 = ALPHA*DCONJG( A( J, K ) ) + END IF + DO 130, I = 1, M + C( I, J ) = C( I, J ) + TEMP1*B( I, K ) + 130 CONTINUE + 140 CONTINUE + DO 160, K = J + 1, N + IF( UPPER )THEN + TEMP1 = ALPHA*DCONJG( A( J, K ) ) + ELSE + TEMP1 = ALPHA*A( K, J ) + END IF + DO 150, I = 1, M + C( I, J ) = C( I, J ) + TEMP1*B( I, K ) + 150 CONTINUE + 160 CONTINUE + 170 CONTINUE + END IF +* + RETURN +* +* End of ZHEMM . +* + END diff --git a/src/fortran/blas/zhemv.f b/src/fortran/blas/zhemv.f new file mode 100644 index 0000000..54aa7b9 --- /dev/null +++ b/src/fortran/blas/zhemv.f @@ -0,0 +1,266 @@ + SUBROUTINE ZHEMV ( UPLO, N, ALPHA, A, LDA, X, INCX, + $ BETA, Y, INCY ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA, BETA + INTEGER INCX, INCY, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZHEMV performs the matrix-vector operation +* +* y := alpha*A*x + beta*y, +* +* where alpha and beta are scalars, x and y are n element vectors and +* A is an n by n hermitian matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array A is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of A +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of A +* is to be referenced. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular part of the hermitian matrix and the strictly +* lower triangular part of A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular part of the hermitian matrix and the strictly +* upper triangular part of A is not referenced. +* Note that the imaginary parts of the diagonal elements need +* not be set and are assumed to be zero. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. On exit, Y is overwritten by the updated +* vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 5 + ELSE IF( INCX.EQ.0 )THEN + INFO = 7 + ELSE IF( INCY.EQ.0 )THEN + INFO = 10 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHEMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set up the start points in X and Y. +* + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the triangular part +* of A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, N + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, N + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, N + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, N + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form y when A is stored in upper triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + DO 50, I = 1, J - 1 + Y( I ) = Y( I ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( I ) + 50 CONTINUE + Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2 + 60 CONTINUE + ELSE + JX = KX + JY = KY + DO 80, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + IX = KX + IY = KY + DO 70, I = 1, J - 1 + Y( IY ) = Y( IY ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( IX ) + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 80 CONTINUE + END IF + ELSE +* +* Form y when A is stored in lower triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 100, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) ) + DO 90, I = J + 1, N + Y( I ) = Y( I ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( I ) + 90 CONTINUE + Y( J ) = Y( J ) + ALPHA*TEMP2 + 100 CONTINUE + ELSE + JX = KX + JY = KY + DO 120, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) ) + IX = JX + IY = JY + DO 110, I = J + 1, N + IX = IX + INCX + IY = IY + INCY + Y( IY ) = Y( IY ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( IX ) + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHEMV . +* + END diff --git a/src/fortran/blas/zher.f b/src/fortran/blas/zher.f new file mode 100644 index 0000000..fcf40a5 --- /dev/null +++ b/src/fortran/blas/zher.f @@ -0,0 +1,212 @@ + SUBROUTINE ZHER ( UPLO, N, ALPHA, X, INCX, A, LDA ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZHER performs the hermitian rank 1 operation +* +* A := alpha*x*conjg( x' ) + A, +* +* where alpha is a real scalar, x is an n element vector and A is an +* n by n hermitian matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array A is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of A +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of A +* is to be referenced. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular part of the hermitian matrix and the strictly +* lower triangular part of A is not referenced. On exit, the +* upper triangular part of the array A is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular part of the hermitian matrix and the strictly +* upper triangular part of A is not referenced. On exit, the +* lower triangular part of the array A is overwritten by the +* lower triangular part of the updated matrix. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero, and on exit they +* are set to zero. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, KX +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHER ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) ) + $ RETURN +* +* Set the start point in X if the increment is not unity. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the triangular part +* of A. +* + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when A is stored in upper triangle. +* + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( J ) ) + DO 10, I = 1, J - 1 + A( I, J ) = A( I, J ) + X( I )*TEMP + 10 CONTINUE + A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( J )*TEMP ) + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( JX ) ) + IX = KX + DO 30, I = 1, J - 1 + A( I, J ) = A( I, J ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( JX )*TEMP ) + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + JX = JX + INCX + 40 CONTINUE + END IF + ELSE +* +* Form A when A is stored in lower triangle. +* + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( J ) ) + A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( J ) ) + DO 50, I = J + 1, N + A( I, J ) = A( I, J ) + X( I )*TEMP + 50 CONTINUE + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( JX ) ) + A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( JX ) ) + IX = JX + DO 70, I = J + 1, N + IX = IX + INCX + A( I, J ) = A( I, J ) + X( IX )*TEMP + 70 CONTINUE + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + JX = JX + INCX + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHER . +* + END diff --git a/src/fortran/blas/zher2.f b/src/fortran/blas/zher2.f new file mode 100644 index 0000000..06acdff --- /dev/null +++ b/src/fortran/blas/zher2.f @@ -0,0 +1,249 @@ + SUBROUTINE ZHER2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA + INTEGER INCX, INCY, LDA, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZHER2 performs the hermitian rank 2 operation +* +* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, +* +* where alpha is a scalar, x and y are n element vectors and A is an n +* by n hermitian matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array A is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of A +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of A +* is to be referenced. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular part of the hermitian matrix and the strictly +* lower triangular part of A is not referenced. On exit, the +* upper triangular part of the array A is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular part of the hermitian matrix and the strictly +* upper triangular part of A is not referenced. On exit, the +* lower triangular part of the array A is overwritten by the +* lower triangular part of the updated matrix. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero, and on exit they +* are set to zero. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( INCY.EQ.0 )THEN + INFO = 7 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHER2 ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Set up the start points in X and Y if the increments are not both +* unity. +* + IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF + JX = KX + JY = KY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the triangular part +* of A. +* + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when A is stored in the upper triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 20, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( J ) ) + TEMP2 = DCONJG( ALPHA*X( J ) ) + DO 10, I = 1, J - 1 + A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2 + 10 CONTINUE + A( J, J ) = DBLE( A( J, J ) ) + + $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 ) + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + 20 CONTINUE + ELSE + DO 40, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( JY ) ) + TEMP2 = DCONJG( ALPHA*X( JX ) ) + IX = KX + IY = KY + DO 30, I = 1, J - 1 + A( I, J ) = A( I, J ) + X( IX )*TEMP1 + $ + Y( IY )*TEMP2 + IX = IX + INCX + IY = IY + INCY + 30 CONTINUE + A( J, J ) = DBLE( A( J, J ) ) + + $ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 ) + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + JX = JX + INCX + JY = JY + INCY + 40 CONTINUE + END IF + ELSE +* +* Form A when A is stored in the lower triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( J ) ) + TEMP2 = DCONJG( ALPHA*X( J ) ) + A( J, J ) = DBLE( A( J, J ) ) + + $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 ) + DO 50, I = J + 1, N + A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2 + 50 CONTINUE + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( JY ) ) + TEMP2 = DCONJG( ALPHA*X( JX ) ) + A( J, J ) = DBLE( A( J, J ) ) + + $ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 ) + IX = JX + IY = JY + DO 70, I = J + 1, N + IX = IX + INCX + IY = IY + INCY + A( I, J ) = A( I, J ) + X( IX )*TEMP1 + $ + Y( IY )*TEMP2 + 70 CONTINUE + ELSE + A( J, J ) = DBLE( A( J, J ) ) + END IF + JX = JX + INCX + JY = JY + INCY + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHER2 . +* + END diff --git a/src/fortran/blas/zher2k.f b/src/fortran/blas/zher2k.f new file mode 100644 index 0000000..408d75c --- /dev/null +++ b/src/fortran/blas/zher2k.f @@ -0,0 +1,372 @@ + SUBROUTINE ZHER2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, + $ C, LDC ) +* .. Scalar Arguments .. + CHARACTER TRANS, UPLO + INTEGER K, LDA, LDB, LDC, N + DOUBLE PRECISION BETA + COMPLEX*16 ALPHA +* .. +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZHER2K performs one of the hermitian rank 2k operations +* +* C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C, +* +* or +* +* C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C, +* +* where alpha and beta are scalars with beta real, C is an n by n +* hermitian matrix and A and B are n by k matrices in the first case +* and k by n matrices in the second case. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array C is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of C +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of C +* is to be referenced. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) + +* conjg( alpha )*B*conjg( A' ) + +* beta*C. +* +* TRANS = 'C' or 'c' C := alpha*conjg( A' )*B + +* conjg( alpha )*conjg( B' )*A + +* beta*C. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with TRANS = 'N' or 'n', K specifies the number +* of columns of the matrices A and B, and on entry with +* TRANS = 'C' or 'c', K specifies the number of rows of the +* matrices A and B. K must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array A must contain the matrix A, otherwise +* the leading k by n part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDA must be at least max( 1, n ), otherwise LDA must +* be at least max( 1, k ). +* Unchanged on exit. +* +* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array B must contain the matrix B, otherwise +* the leading k by n part of the array B must contain the +* matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDB must be at least max( 1, n ), otherwise LDB must +* be at least max( 1, k ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION . +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* C - COMPLEX*16 array of DIMENSION ( LDC, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array C must contain the upper +* triangular part of the hermitian matrix and the strictly +* lower triangular part of C is not referenced. On exit, the +* upper triangular part of the array C is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array C must contain the lower +* triangular part of the hermitian matrix and the strictly +* upper triangular part of C is not referenced. On exit, the +* lower triangular part of the array C is overwritten by the +* lower triangular part of the updated matrix. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero, and on exit they +* are set to zero. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. +* Ed Anderson, Cray Research Inc. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC DBLE, DCONJG, MAX +* .. +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, L, NROWA + COMPLEX*16 TEMP1, TEMP2 +* .. +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D+0 ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + IF( LSAME( TRANS, 'N' ) ) THEN + NROWA = N + ELSE + NROWA = K + END IF + UPPER = LSAME( UPLO, 'U' ) +* + INFO = 0 + IF( ( .NOT.UPPER ) .AND. ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN + INFO = 1 + ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ) .AND. + $ ( .NOT.LSAME( TRANS, 'C' ) ) ) THEN + INFO = 2 + ELSE IF( N.LT.0 ) THEN + INFO = 3 + ELSE IF( K.LT.0 ) THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN + INFO = 7 + ELSE IF( LDB.LT.MAX( 1, NROWA ) ) THEN + INFO = 9 + ELSE IF( LDC.LT.MAX( 1, N ) ) THEN + INFO = 12 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZHER2K', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND. + $ ( BETA.EQ.ONE ) ) )RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO ) THEN + IF( UPPER ) THEN + IF( BETA.EQ.DBLE( ZERO ) ) THEN + DO 20 J = 1, N + DO 10 I = 1, J + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40 J = 1, N + DO 30 I = 1, J - 1 + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + C( J, J ) = BETA*DBLE( C( J, J ) ) + 40 CONTINUE + END IF + ELSE + IF( BETA.EQ.DBLE( ZERO ) ) THEN + DO 60 J = 1, N + DO 50 I = J, N + C( I, J ) = ZERO + 50 CONTINUE + 60 CONTINUE + ELSE + DO 80 J = 1, N + C( J, J ) = BETA*DBLE( C( J, J ) ) + DO 70 I = J + 1, N + C( I, J ) = BETA*C( I, J ) + 70 CONTINUE + 80 CONTINUE + END IF + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( TRANS, 'N' ) ) THEN +* +* Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + +* C. +* + IF( UPPER ) THEN + DO 130 J = 1, N + IF( BETA.EQ.DBLE( ZERO ) ) THEN + DO 90 I = 1, J + C( I, J ) = ZERO + 90 CONTINUE + ELSE IF( BETA.NE.ONE ) THEN + DO 100 I = 1, J - 1 + C( I, J ) = BETA*C( I, J ) + 100 CONTINUE + C( J, J ) = BETA*DBLE( C( J, J ) ) + ELSE + C( J, J ) = DBLE( C( J, J ) ) + END IF + DO 120 L = 1, K + IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) ) + $ THEN + TEMP1 = ALPHA*DCONJG( B( J, L ) ) + TEMP2 = DCONJG( ALPHA*A( J, L ) ) + DO 110 I = 1, J - 1 + C( I, J ) = C( I, J ) + A( I, L )*TEMP1 + + $ B( I, L )*TEMP2 + 110 CONTINUE + C( J, J ) = DBLE( C( J, J ) ) + + $ DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 ) + END IF + 120 CONTINUE + 130 CONTINUE + ELSE + DO 180 J = 1, N + IF( BETA.EQ.DBLE( ZERO ) ) THEN + DO 140 I = J, N + C( I, J ) = ZERO + 140 CONTINUE + ELSE IF( BETA.NE.ONE ) THEN + DO 150 I = J + 1, N + C( I, J ) = BETA*C( I, J ) + 150 CONTINUE + C( J, J ) = BETA*DBLE( C( J, J ) ) + ELSE + C( J, J ) = DBLE( C( J, J ) ) + END IF + DO 170 L = 1, K + IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) ) + $ THEN + TEMP1 = ALPHA*DCONJG( B( J, L ) ) + TEMP2 = DCONJG( ALPHA*A( J, L ) ) + DO 160 I = J + 1, N + C( I, J ) = C( I, J ) + A( I, L )*TEMP1 + + $ B( I, L )*TEMP2 + 160 CONTINUE + C( J, J ) = DBLE( C( J, J ) ) + + $ DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 ) + END IF + 170 CONTINUE + 180 CONTINUE + END IF + ELSE +* +* Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + +* C. +* + IF( UPPER ) THEN + DO 210 J = 1, N + DO 200 I = 1, J + TEMP1 = ZERO + TEMP2 = ZERO + DO 190 L = 1, K + TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J ) + TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J ) + 190 CONTINUE + IF( I.EQ.J ) THEN + IF( BETA.EQ.DBLE( ZERO ) ) THEN + C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* + $ TEMP2 ) + ELSE + C( J, J ) = BETA*DBLE( C( J, J ) ) + + $ DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* + $ TEMP2 ) + END IF + ELSE + IF( BETA.EQ.DBLE( ZERO ) ) THEN + C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2 + ELSE + C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 + + $ DCONJG( ALPHA )*TEMP2 + END IF + END IF + 200 CONTINUE + 210 CONTINUE + ELSE + DO 240 J = 1, N + DO 230 I = J, N + TEMP1 = ZERO + TEMP2 = ZERO + DO 220 L = 1, K + TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J ) + TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J ) + 220 CONTINUE + IF( I.EQ.J ) THEN + IF( BETA.EQ.DBLE( ZERO ) ) THEN + C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* + $ TEMP2 ) + ELSE + C( J, J ) = BETA*DBLE( C( J, J ) ) + + $ DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* + $ TEMP2 ) + END IF + ELSE + IF( BETA.EQ.DBLE( ZERO ) ) THEN + C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2 + ELSE + C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 + + $ DCONJG( ALPHA )*TEMP2 + END IF + END IF + 230 CONTINUE + 240 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHER2K. +* + END diff --git a/src/fortran/blas/zherk.f b/src/fortran/blas/zherk.f new file mode 100644 index 0000000..cfbf718 --- /dev/null +++ b/src/fortran/blas/zherk.f @@ -0,0 +1,330 @@ + SUBROUTINE ZHERK( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER TRANS, UPLO + INTEGER K, LDA, LDC, N + DOUBLE PRECISION ALPHA, BETA +* .. +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZHERK performs one of the hermitian rank k operations +* +* C := alpha*A*conjg( A' ) + beta*C, +* +* or +* +* C := alpha*conjg( A' )*A + beta*C, +* +* where alpha and beta are real scalars, C is an n by n hermitian +* matrix and A is an n by k matrix in the first case and a k by n +* matrix in the second case. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array C is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of C +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of C +* is to be referenced. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. +* +* TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with TRANS = 'N' or 'n', K specifies the number +* of columns of the matrix A, and on entry with +* TRANS = 'C' or 'c', K specifies the number of rows of the +* matrix A. K must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array A must contain the matrix A, otherwise +* the leading k by n part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDA must be at least max( 1, n ), otherwise LDA must +* be at least max( 1, k ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* C - COMPLEX*16 array of DIMENSION ( LDC, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array C must contain the upper +* triangular part of the hermitian matrix and the strictly +* lower triangular part of C is not referenced. On exit, the +* upper triangular part of the array C is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array C must contain the lower +* triangular part of the hermitian matrix and the strictly +* upper triangular part of C is not referenced. On exit, the +* lower triangular part of the array C is overwritten by the +* lower triangular part of the updated matrix. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero, and on exit they +* are set to zero. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. +* Ed Anderson, Cray Research Inc. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC DBLE, DCMPLX, DCONJG, MAX +* .. +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, L, NROWA + DOUBLE PRECISION RTEMP + COMPLEX*16 TEMP +* .. +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + IF( LSAME( TRANS, 'N' ) ) THEN + NROWA = N + ELSE + NROWA = K + END IF + UPPER = LSAME( UPLO, 'U' ) +* + INFO = 0 + IF( ( .NOT.UPPER ) .AND. ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN + INFO = 1 + ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ) .AND. + $ ( .NOT.LSAME( TRANS, 'C' ) ) ) THEN + INFO = 2 + ELSE IF( N.LT.0 ) THEN + INFO = 3 + ELSE IF( K.LT.0 ) THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN + INFO = 7 + ELSE IF( LDC.LT.MAX( 1, N ) ) THEN + INFO = 10 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZHERK ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND. + $ ( BETA.EQ.ONE ) ) )RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO ) THEN + IF( UPPER ) THEN + IF( BETA.EQ.ZERO ) THEN + DO 20 J = 1, N + DO 10 I = 1, J + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40 J = 1, N + DO 30 I = 1, J - 1 + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + C( J, J ) = BETA*DBLE( C( J, J ) ) + 40 CONTINUE + END IF + ELSE + IF( BETA.EQ.ZERO ) THEN + DO 60 J = 1, N + DO 50 I = J, N + C( I, J ) = ZERO + 50 CONTINUE + 60 CONTINUE + ELSE + DO 80 J = 1, N + C( J, J ) = BETA*DBLE( C( J, J ) ) + DO 70 I = J + 1, N + C( I, J ) = BETA*C( I, J ) + 70 CONTINUE + 80 CONTINUE + END IF + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( TRANS, 'N' ) ) THEN +* +* Form C := alpha*A*conjg( A' ) + beta*C. +* + IF( UPPER ) THEN + DO 130 J = 1, N + IF( BETA.EQ.ZERO ) THEN + DO 90 I = 1, J + C( I, J ) = ZERO + 90 CONTINUE + ELSE IF( BETA.NE.ONE ) THEN + DO 100 I = 1, J - 1 + C( I, J ) = BETA*C( I, J ) + 100 CONTINUE + C( J, J ) = BETA*DBLE( C( J, J ) ) + ELSE + C( J, J ) = DBLE( C( J, J ) ) + END IF + DO 120 L = 1, K + IF( A( J, L ).NE.DCMPLX( ZERO ) ) THEN + TEMP = ALPHA*DCONJG( A( J, L ) ) + DO 110 I = 1, J - 1 + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 110 CONTINUE + C( J, J ) = DBLE( C( J, J ) ) + + $ DBLE( TEMP*A( I, L ) ) + END IF + 120 CONTINUE + 130 CONTINUE + ELSE + DO 180 J = 1, N + IF( BETA.EQ.ZERO ) THEN + DO 140 I = J, N + C( I, J ) = ZERO + 140 CONTINUE + ELSE IF( BETA.NE.ONE ) THEN + C( J, J ) = BETA*DBLE( C( J, J ) ) + DO 150 I = J + 1, N + C( I, J ) = BETA*C( I, J ) + 150 CONTINUE + ELSE + C( J, J ) = DBLE( C( J, J ) ) + END IF + DO 170 L = 1, K + IF( A( J, L ).NE.DCMPLX( ZERO ) ) THEN + TEMP = ALPHA*DCONJG( A( J, L ) ) + C( J, J ) = DBLE( C( J, J ) ) + + $ DBLE( TEMP*A( J, L ) ) + DO 160 I = J + 1, N + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 160 CONTINUE + END IF + 170 CONTINUE + 180 CONTINUE + END IF + ELSE +* +* Form C := alpha*conjg( A' )*A + beta*C. +* + IF( UPPER ) THEN + DO 220 J = 1, N + DO 200 I = 1, J - 1 + TEMP = ZERO + DO 190 L = 1, K + TEMP = TEMP + DCONJG( A( L, I ) )*A( L, J ) + 190 CONTINUE + IF( BETA.EQ.ZERO ) THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 200 CONTINUE + RTEMP = ZERO + DO 210 L = 1, K + RTEMP = RTEMP + DCONJG( A( L, J ) )*A( L, J ) + 210 CONTINUE + IF( BETA.EQ.ZERO ) THEN + C( J, J ) = ALPHA*RTEMP + ELSE + C( J, J ) = ALPHA*RTEMP + BETA*DBLE( C( J, J ) ) + END IF + 220 CONTINUE + ELSE + DO 260 J = 1, N + RTEMP = ZERO + DO 230 L = 1, K + RTEMP = RTEMP + DCONJG( A( L, J ) )*A( L, J ) + 230 CONTINUE + IF( BETA.EQ.ZERO ) THEN + C( J, J ) = ALPHA*RTEMP + ELSE + C( J, J ) = ALPHA*RTEMP + BETA*DBLE( C( J, J ) ) + END IF + DO 250 I = J + 1, N + TEMP = ZERO + DO 240 L = 1, K + TEMP = TEMP + DCONJG( A( L, I ) )*A( L, J ) + 240 CONTINUE + IF( BETA.EQ.ZERO ) THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 250 CONTINUE + 260 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHERK . +* + END diff --git a/src/fortran/blas/zhpmv.f b/src/fortran/blas/zhpmv.f new file mode 100644 index 0000000..9cde923 --- /dev/null +++ b/src/fortran/blas/zhpmv.f @@ -0,0 +1,270 @@ + SUBROUTINE ZHPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA, BETA + INTEGER INCX, INCY, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 AP( * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZHPMV performs the matrix-vector operation +* +* y := alpha*A*x + beta*y, +* +* where alpha and beta are scalars, x and y are n element vectors and +* A is an n by n hermitian matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the matrix A is supplied in the packed +* array AP as follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* supplied in AP. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* supplied in AP. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* AP - COMPLEX*16 array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) +* and a( 2, 2 ) respectively, and so on. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) +* and a( 3, 1 ) respectively, and so on. +* Note that the imaginary parts of the diagonal elements need +* not be set and are assumed to be zero. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. On exit, Y is overwritten by the updated +* vector y. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 6 + ELSE IF( INCY.EQ.0 )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHPMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set up the start points in X and Y. +* + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF +* +* Start the operations. In this version the elements of the array AP +* are accessed sequentially with one pass through AP. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE )THEN + IF( INCY.EQ.1 )THEN + IF( BETA.EQ.ZERO )THEN + DO 10, I = 1, N + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20, I = 1, N + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO )THEN + DO 30, I = 1, N + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40, I = 1, N + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + KK = 1 + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form y when AP contains the upper triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + K = KK + DO 50, I = 1, J - 1 + Y( I ) = Y( I ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( I ) + K = K + 1 + 50 CONTINUE + Y( J ) = Y( J ) + TEMP1*DBLE( AP( KK + J - 1 ) ) + $ + ALPHA*TEMP2 + KK = KK + J + 60 CONTINUE + ELSE + JX = KX + JY = KY + DO 80, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + IX = KX + IY = KY + DO 70, K = KK, KK + J - 2 + Y( IY ) = Y( IY ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( IX ) + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + Y( JY ) = Y( JY ) + TEMP1*DBLE( AP( KK + J - 1 ) ) + $ + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + KK = KK + J + 80 CONTINUE + END IF + ELSE +* +* Form y when AP contains the lower triangle. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 100, J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + Y( J ) = Y( J ) + TEMP1*DBLE( AP( KK ) ) + K = KK + 1 + DO 90, I = J + 1, N + Y( I ) = Y( I ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( I ) + K = K + 1 + 90 CONTINUE + Y( J ) = Y( J ) + ALPHA*TEMP2 + KK = KK + ( N - J + 1 ) + 100 CONTINUE + ELSE + JX = KX + JY = KY + DO 120, J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + Y( JY ) = Y( JY ) + TEMP1*DBLE( AP( KK ) ) + IX = JX + IY = JY + DO 110, K = KK + 1, KK + N - J + IX = IX + INCX + IY = IY + INCY + Y( IY ) = Y( IY ) + TEMP1*AP( K ) + TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( IX ) + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + KK = KK + ( N - J + 1 ) + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHPMV . +* + END diff --git a/src/fortran/blas/zhpr.f b/src/fortran/blas/zhpr.f new file mode 100644 index 0000000..2e368de --- /dev/null +++ b/src/fortran/blas/zhpr.f @@ -0,0 +1,217 @@ + SUBROUTINE ZHPR ( UPLO, N, ALPHA, X, INCX, AP ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZHPR performs the hermitian rank 1 operation +* +* A := alpha*x*conjg( x' ) + A, +* +* where alpha is a real scalar, x is an n element vector and A is an +* n by n hermitian matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the matrix A is supplied in the packed +* array AP as follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* supplied in AP. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* supplied in AP. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* AP - COMPLEX*16 array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) +* and a( 2, 2 ) respectively, and so on. On exit, the array +* AP is overwritten by the upper triangular part of the +* updated matrix. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) +* and a( 3, 1 ) respectively, and so on. On exit, the array +* AP is overwritten by the lower triangular part of the +* updated matrix. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero, and on exit they +* are set to zero. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHPR ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) ) + $ RETURN +* +* Set the start point in X if the increment is not unity. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of the array AP +* are accessed sequentially with one pass through AP. +* + KK = 1 + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when upper triangle is stored in AP. +* + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( J ) ) + K = KK + DO 10, I = 1, J - 1 + AP( K ) = AP( K ) + X( I )*TEMP + K = K + 1 + 10 CONTINUE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + $ + DBLE( X( J )*TEMP ) + ELSE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + END IF + KK = KK + J + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( JX ) ) + IX = KX + DO 30, K = KK, KK + J - 2 + AP( K ) = AP( K ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + $ + DBLE( X( JX )*TEMP ) + ELSE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + END IF + JX = JX + INCX + KK = KK + J + 40 CONTINUE + END IF + ELSE +* +* Form A when lower triangle is stored in AP. +* + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( J ) ) + AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( J ) ) + K = KK + 1 + DO 50, I = J + 1, N + AP( K ) = AP( K ) + X( I )*TEMP + K = K + 1 + 50 CONTINUE + ELSE + AP( KK ) = DBLE( AP( KK ) ) + END IF + KK = KK + N - J + 1 + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( JX ) ) + AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( JX ) ) + IX = JX + DO 70, K = KK + 1, KK + N - J + IX = IX + INCX + AP( K ) = AP( K ) + X( IX )*TEMP + 70 CONTINUE + ELSE + AP( KK ) = DBLE( AP( KK ) ) + END IF + JX = JX + INCX + KK = KK + N - J + 1 + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHPR . +* + END diff --git a/src/fortran/blas/zhpr2.f b/src/fortran/blas/zhpr2.f new file mode 100644 index 0000000..e10774b --- /dev/null +++ b/src/fortran/blas/zhpr2.f @@ -0,0 +1,251 @@ + SUBROUTINE ZHPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) +* .. Scalar Arguments .. + COMPLEX*16 ALPHA + INTEGER INCX, INCY, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 AP( * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZHPR2 performs the hermitian rank 2 operation +* +* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, +* +* where alpha is a scalar, x and y are n element vectors and A is an +* n by n hermitian matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the matrix A is supplied in the packed +* array AP as follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* supplied in AP. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* supplied in AP. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* AP - COMPLEX*16 array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) +* and a( 2, 2 ) respectively, and so on. On exit, the array +* AP is overwritten by the upper triangular part of the +* updated matrix. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) +* and a( 3, 1 ) respectively, and so on. On exit, the array +* AP is overwritten by the lower triangular part of the +* updated matrix. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero, and on exit they +* are set to zero. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP1, TEMP2 + INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + ELSE IF( INCY.EQ.0 )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHPR2 ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) + $ RETURN +* +* Set up the start points in X and Y if the increments are not both +* unity. +* + IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN + IF( INCX.GT.0 )THEN + KX = 1 + ELSE + KX = 1 - ( N - 1 )*INCX + END IF + IF( INCY.GT.0 )THEN + KY = 1 + ELSE + KY = 1 - ( N - 1 )*INCY + END IF + JX = KX + JY = KY + END IF +* +* Start the operations. In this version the elements of the array AP +* are accessed sequentially with one pass through AP. +* + KK = 1 + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when upper triangle is stored in AP. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 20, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( J ) ) + TEMP2 = DCONJG( ALPHA*X( J ) ) + K = KK + DO 10, I = 1, J - 1 + AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2 + K = K + 1 + 10 CONTINUE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + + $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 ) + ELSE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + END IF + KK = KK + J + 20 CONTINUE + ELSE + DO 40, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( JY ) ) + TEMP2 = DCONJG( ALPHA*X( JX ) ) + IX = KX + IY = KY + DO 30, K = KK, KK + J - 2 + AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2 + IX = IX + INCX + IY = IY + INCY + 30 CONTINUE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + + $ DBLE( X( JX )*TEMP1 + + $ Y( JY )*TEMP2 ) + ELSE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + END IF + JX = JX + INCX + JY = JY + INCY + KK = KK + J + 40 CONTINUE + END IF + ELSE +* +* Form A when lower triangle is stored in AP. +* + IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN + DO 60, J = 1, N + IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( J ) ) + TEMP2 = DCONJG( ALPHA*X( J ) ) + AP( KK ) = DBLE( AP( KK ) ) + + $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 ) + K = KK + 1 + DO 50, I = J + 1, N + AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2 + K = K + 1 + 50 CONTINUE + ELSE + AP( KK ) = DBLE( AP( KK ) ) + END IF + KK = KK + N - J + 1 + 60 CONTINUE + ELSE + DO 80, J = 1, N + IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN + TEMP1 = ALPHA*DCONJG( Y( JY ) ) + TEMP2 = DCONJG( ALPHA*X( JX ) ) + AP( KK ) = DBLE( AP( KK ) ) + + $ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 ) + IX = JX + IY = JY + DO 70, K = KK + 1, KK + N - J + IX = IX + INCX + IY = IY + INCY + AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2 + 70 CONTINUE + ELSE + AP( KK ) = DBLE( AP( KK ) ) + END IF + JX = JX + INCX + JY = JY + INCY + KK = KK + N - J + 1 + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHPR2 . +* + END diff --git a/src/fortran/blas/zrotg.f b/src/fortran/blas/zrotg.f new file mode 100644 index 0000000..f6a4aa1 --- /dev/null +++ b/src/fortran/blas/zrotg.f @@ -0,0 +1,21 @@ + subroutine zrotg(ca,cb,c,s) + double complex ca,cb,s + double precision c + double precision norm,scale + double complex alpha + if (cdabs(ca) .ne. 0.0d0) go to 10 + c = 0.0d0 + s = (1.0d0,0.0d0) + ca = cb + go to 20 + 10 continue + scale = cdabs(ca) + cdabs(cb) + norm = scale*dsqrt((cdabs(ca/dcmplx(scale,0.0d0)))**2 + + * (cdabs(cb/dcmplx(scale,0.0d0)))**2) + alpha = ca /cdabs(ca) + c = cdabs(ca) / norm + s = alpha * dconjg(cb) / norm + ca = alpha * norm + 20 continue + return + end diff --git a/src/fortran/blas/zscal.f b/src/fortran/blas/zscal.f new file mode 100644 index 0000000..6fa8576 --- /dev/null +++ b/src/fortran/blas/zscal.f @@ -0,0 +1,29 @@ + subroutine zscal(n,za,zx,incx) +c +c scales a vector by a constant. +c jack dongarra, 3/11/78. +c modified 3/93 to return if incx .le. 0. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex za,zx(*) + integer i,incx,ix,n +c + if( n.le.0 .or. incx.le.0 )return + if(incx.eq.1)go to 20 +c +c code for increment not equal to 1 +c + ix = 1 + do 10 i = 1,n + zx(ix) = za*zx(ix) + ix = ix + incx + 10 continue + return +c +c code for increment equal to 1 +c + 20 do 30 i = 1,n + zx(i) = za*zx(i) + 30 continue + return + end diff --git a/src/fortran/blas/zswap.f b/src/fortran/blas/zswap.f new file mode 100644 index 0000000..f28a4e4 --- /dev/null +++ b/src/fortran/blas/zswap.f @@ -0,0 +1,36 @@ + subroutine zswap (n,zx,incx,zy,incy) +c +c interchanges two vectors. +c jack dongarra, 3/11/78. +c modified 12/3/93, array(1) declarations changed to array(*) +c + double complex zx(*),zy(*),ztemp + integer i,incx,incy,ix,iy,n +c + if(n.le.0)return + if(incx.eq.1.and.incy.eq.1)go to 20 +c +c code for unequal increments or equal increments not equal +c to 1 +c + ix = 1 + iy = 1 + if(incx.lt.0)ix = (-n+1)*incx + 1 + if(incy.lt.0)iy = (-n+1)*incy + 1 + do 10 i = 1,n + ztemp = zx(ix) + zx(ix) = zy(iy) + zy(iy) = ztemp + ix = ix + incx + iy = iy + incy + 10 continue + return +c +c code for both increments equal to 1 + 20 do 30 i = 1,n + ztemp = zx(i) + zx(i) = zy(i) + zy(i) = ztemp + 30 continue + return + end diff --git a/src/fortran/blas/zsymm.f b/src/fortran/blas/zsymm.f new file mode 100644 index 0000000..20b7c08 --- /dev/null +++ b/src/fortran/blas/zsymm.f @@ -0,0 +1,296 @@ + SUBROUTINE ZSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 SIDE, UPLO + INTEGER M, N, LDA, LDB, LDC + COMPLEX*16 ALPHA, BETA +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZSYMM performs one of the matrix-matrix operations +* +* C := alpha*A*B + beta*C, +* +* or +* +* C := alpha*B*A + beta*C, +* +* where alpha and beta are scalars, A is a symmetric matrix and B and +* C are m by n matrices. +* +* Parameters +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether the symmetric matrix A +* appears on the left or right in the operation as follows: +* +* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, +* +* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the symmetric matrix A is to be +* referenced as follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of the +* symmetric matrix is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of the +* symmetric matrix is to be referenced. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix C. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix C. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is +* m when SIDE = 'L' or 'l' and is n otherwise. +* Before entry with SIDE = 'L' or 'l', the m by m part of +* the array A must contain the symmetric matrix, such that +* when UPLO = 'U' or 'u', the leading m by m upper triangular +* part of the array A must contain the upper triangular part +* of the symmetric matrix and the strictly lower triangular +* part of A is not referenced, and when UPLO = 'L' or 'l', +* the leading m by m lower triangular part of the array A +* must contain the lower triangular part of the symmetric +* matrix and the strictly upper triangular part of A is not +* referenced. +* Before entry with SIDE = 'R' or 'r', the n by n part of +* the array A must contain the symmetric matrix, such that +* when UPLO = 'U' or 'u', the leading n by n upper triangular +* part of the array A must contain the upper triangular part +* of the symmetric matrix and the strictly lower triangular +* part of A is not referenced, and when UPLO = 'L' or 'l', +* the leading n by n lower triangular part of the array A +* must contain the lower triangular part of the symmetric +* matrix and the strictly upper triangular part of A is not +* referenced. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), otherwise LDA must be at +* least max( 1, n ). +* Unchanged on exit. +* +* B - COMPLEX*16 array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then C need not be set on input. +* Unchanged on exit. +* +* C - COMPLEX*16 array of DIMENSION ( LDC, n ). +* Before entry, the leading m by n part of the array C must +* contain the matrix C, except when beta is zero, in which +* case C need not be set on entry. +* On exit, the array C is overwritten by the m by n updated +* matrix. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, K, NROWA + COMPLEX*16 TEMP1, TEMP2 +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Set NROWA as the number of rows of A. +* + IF( LSAME( SIDE, 'L' ) )THEN + NROWA = M + ELSE + NROWA = N + END IF + UPPER = LSAME( UPLO, 'U' ) +* +* Test the input parameters. +* + INFO = 0 + IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND. + $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN + INFO = 2 + ELSE IF( M .LT.0 )THEN + INFO = 3 + ELSE IF( N .LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 7 + ELSE IF( LDB.LT.MAX( 1, M ) )THEN + INFO = 9 + ELSE IF( LDC.LT.MAX( 1, M ) )THEN + INFO = 12 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZSYMM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. + $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, M + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( SIDE, 'L' ) )THEN +* +* Form C := alpha*A*B + beta*C. +* + IF( UPPER )THEN + DO 70, J = 1, N + DO 60, I = 1, M + TEMP1 = ALPHA*B( I, J ) + TEMP2 = ZERO + DO 50, K = 1, I - 1 + C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) + TEMP2 = TEMP2 + B( K, J )*A( K, I ) + 50 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ TEMP1*A( I, I ) + ALPHA*TEMP2 + END IF + 60 CONTINUE + 70 CONTINUE + ELSE + DO 100, J = 1, N + DO 90, I = M, 1, -1 + TEMP1 = ALPHA*B( I, J ) + TEMP2 = ZERO + DO 80, K = I + 1, M + C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) + TEMP2 = TEMP2 + B( K, J )*A( K, I ) + 80 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ TEMP1*A( I, I ) + ALPHA*TEMP2 + END IF + 90 CONTINUE + 100 CONTINUE + END IF + ELSE +* +* Form C := alpha*B*A + beta*C. +* + DO 170, J = 1, N + TEMP1 = ALPHA*A( J, J ) + IF( BETA.EQ.ZERO )THEN + DO 110, I = 1, M + C( I, J ) = TEMP1*B( I, J ) + 110 CONTINUE + ELSE + DO 120, I = 1, M + C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J ) + 120 CONTINUE + END IF + DO 140, K = 1, J - 1 + IF( UPPER )THEN + TEMP1 = ALPHA*A( K, J ) + ELSE + TEMP1 = ALPHA*A( J, K ) + END IF + DO 130, I = 1, M + C( I, J ) = C( I, J ) + TEMP1*B( I, K ) + 130 CONTINUE + 140 CONTINUE + DO 160, K = J + 1, N + IF( UPPER )THEN + TEMP1 = ALPHA*A( J, K ) + ELSE + TEMP1 = ALPHA*A( K, J ) + END IF + DO 150, I = 1, M + C( I, J ) = C( I, J ) + TEMP1*B( I, K ) + 150 CONTINUE + 160 CONTINUE + 170 CONTINUE + END IF +* + RETURN +* +* End of ZSYMM . +* + END diff --git a/src/fortran/blas/zsyr2k.f b/src/fortran/blas/zsyr2k.f new file mode 100644 index 0000000..aba2071 --- /dev/null +++ b/src/fortran/blas/zsyr2k.f @@ -0,0 +1,324 @@ + SUBROUTINE ZSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 UPLO, TRANS + INTEGER N, K, LDA, LDB, LDC + COMPLEX*16 ALPHA, BETA +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZSYR2K performs one of the symmetric rank 2k operations +* +* C := alpha*A*B' + alpha*B*A' + beta*C, +* +* or +* +* C := alpha*A'*B + alpha*B'*A + beta*C, +* +* where alpha and beta are scalars, C is an n by n symmetric matrix +* and A and B are n by k matrices in the first case and k by n +* matrices in the second case. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array C is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of C +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of C +* is to be referenced. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + +* beta*C. +* +* TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + +* beta*C. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with TRANS = 'N' or 'n', K specifies the number +* of columns of the matrices A and B, and on entry with +* TRANS = 'T' or 't', K specifies the number of rows of the +* matrices A and B. K must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array A must contain the matrix A, otherwise +* the leading k by n part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDA must be at least max( 1, n ), otherwise LDA must +* be at least max( 1, k ). +* Unchanged on exit. +* +* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array B must contain the matrix B, otherwise +* the leading k by n part of the array B must contain the +* matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDB must be at least max( 1, n ), otherwise LDB must +* be at least max( 1, k ). +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* C - COMPLEX*16 array of DIMENSION ( LDC, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array C must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of C is not referenced. On exit, the +* upper triangular part of the array C is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array C must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of C is not referenced. On exit, the +* lower triangular part of the array C is overwritten by the +* lower triangular part of the updated matrix. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, L, NROWA + COMPLEX*16 TEMP1, TEMP2 +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + IF( LSAME( TRANS, 'N' ) )THEN + NROWA = N + ELSE + NROWA = K + END IF + UPPER = LSAME( UPLO, 'U' ) +* + INFO = 0 + IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANS, 'T' ) ) )THEN + INFO = 2 + ELSE IF( N .LT.0 )THEN + INFO = 3 + ELSE IF( K .LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 7 + ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN + INFO = 9 + ELSE IF( LDC.LT.MAX( 1, N ) )THEN + INFO = 12 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZSYR2K', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR. + $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( UPPER )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, J + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, J + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + ELSE + IF( BETA.EQ.ZERO )THEN + DO 60, J = 1, N + DO 50, I = J, N + C( I, J ) = ZERO + 50 CONTINUE + 60 CONTINUE + ELSE + DO 80, J = 1, N + DO 70, I = J, N + C( I, J ) = BETA*C( I, J ) + 70 CONTINUE + 80 CONTINUE + END IF + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form C := alpha*A*B' + alpha*B*A' + C. +* + IF( UPPER )THEN + DO 130, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 90, I = 1, J + C( I, J ) = ZERO + 90 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 100, I = 1, J + C( I, J ) = BETA*C( I, J ) + 100 CONTINUE + END IF + DO 120, L = 1, K + IF( ( A( J, L ).NE.ZERO ).OR. + $ ( B( J, L ).NE.ZERO ) )THEN + TEMP1 = ALPHA*B( J, L ) + TEMP2 = ALPHA*A( J, L ) + DO 110, I = 1, J + C( I, J ) = C( I, J ) + A( I, L )*TEMP1 + + $ B( I, L )*TEMP2 + 110 CONTINUE + END IF + 120 CONTINUE + 130 CONTINUE + ELSE + DO 180, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 140, I = J, N + C( I, J ) = ZERO + 140 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 150, I = J, N + C( I, J ) = BETA*C( I, J ) + 150 CONTINUE + END IF + DO 170, L = 1, K + IF( ( A( J, L ).NE.ZERO ).OR. + $ ( B( J, L ).NE.ZERO ) )THEN + TEMP1 = ALPHA*B( J, L ) + TEMP2 = ALPHA*A( J, L ) + DO 160, I = J, N + C( I, J ) = C( I, J ) + A( I, L )*TEMP1 + + $ B( I, L )*TEMP2 + 160 CONTINUE + END IF + 170 CONTINUE + 180 CONTINUE + END IF + ELSE +* +* Form C := alpha*A'*B + alpha*B'*A + C. +* + IF( UPPER )THEN + DO 210, J = 1, N + DO 200, I = 1, J + TEMP1 = ZERO + TEMP2 = ZERO + DO 190, L = 1, K + TEMP1 = TEMP1 + A( L, I )*B( L, J ) + TEMP2 = TEMP2 + B( L, I )*A( L, J ) + 190 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ ALPHA*TEMP1 + ALPHA*TEMP2 + END IF + 200 CONTINUE + 210 CONTINUE + ELSE + DO 240, J = 1, N + DO 230, I = J, N + TEMP1 = ZERO + TEMP2 = ZERO + DO 220, L = 1, K + TEMP1 = TEMP1 + A( L, I )*B( L, J ) + TEMP2 = TEMP2 + B( L, I )*A( L, J ) + 220 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2 + ELSE + C( I, J ) = BETA *C( I, J ) + + $ ALPHA*TEMP1 + ALPHA*TEMP2 + END IF + 230 CONTINUE + 240 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZSYR2K. +* + END diff --git a/src/fortran/blas/zsyrk.f b/src/fortran/blas/zsyrk.f new file mode 100644 index 0000000..77e2c20 --- /dev/null +++ b/src/fortran/blas/zsyrk.f @@ -0,0 +1,293 @@ + SUBROUTINE ZSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 UPLO, TRANS + INTEGER N, K, LDA, LDC + COMPLEX*16 ALPHA, BETA +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZSYRK performs one of the symmetric rank k operations +* +* C := alpha*A*A' + beta*C, +* +* or +* +* C := alpha*A'*A + beta*C, +* +* where alpha and beta are scalars, C is an n by n symmetric matrix +* and A is an n by k matrix in the first case and a k by n matrix +* in the second case. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array C is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of C +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of C +* is to be referenced. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. +* +* TRANS = 'T' or 't' C := alpha*A'*A + beta*C. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with TRANS = 'N' or 'n', K specifies the number +* of columns of the matrix A, and on entry with +* TRANS = 'T' or 't', K specifies the number of rows of the +* matrix A. K must be at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is +* k when TRANS = 'N' or 'n', and is n otherwise. +* Before entry with TRANS = 'N' or 'n', the leading n by k +* part of the array A must contain the matrix A, otherwise +* the leading k by n part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANS = 'N' or 'n' +* then LDA must be at least max( 1, n ), otherwise LDA must +* be at least max( 1, k ). +* Unchanged on exit. +* +* BETA - COMPLEX*16 . +* On entry, BETA specifies the scalar beta. +* Unchanged on exit. +* +* C - COMPLEX*16 array of DIMENSION ( LDC, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array C must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of C is not referenced. On exit, the +* upper triangular part of the array C is overwritten by the +* upper triangular part of the updated matrix. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array C must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of C is not referenced. On exit, the +* lower triangular part of the array C is overwritten by the +* lower triangular part of the updated matrix. +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, n ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, INFO, J, L, NROWA + COMPLEX*16 TEMP +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + IF( LSAME( TRANS, 'N' ) )THEN + NROWA = N + ELSE + NROWA = K + END IF + UPPER = LSAME( UPLO, 'U' ) +* + INFO = 0 + IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANS, 'T' ) ) )THEN + INFO = 2 + ELSE IF( N .LT.0 )THEN + INFO = 3 + ELSE IF( K .LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 7 + ELSE IF( LDC.LT.MAX( 1, N ) )THEN + INFO = 10 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZSYRK ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR. + $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + IF( UPPER )THEN + IF( BETA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, J + C( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40, J = 1, N + DO 30, I = 1, J + C( I, J ) = BETA*C( I, J ) + 30 CONTINUE + 40 CONTINUE + END IF + ELSE + IF( BETA.EQ.ZERO )THEN + DO 60, J = 1, N + DO 50, I = J, N + C( I, J ) = ZERO + 50 CONTINUE + 60 CONTINUE + ELSE + DO 80, J = 1, N + DO 70, I = J, N + C( I, J ) = BETA*C( I, J ) + 70 CONTINUE + 80 CONTINUE + END IF + END IF + RETURN + END IF +* +* Start the operations. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form C := alpha*A*A' + beta*C. +* + IF( UPPER )THEN + DO 130, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 90, I = 1, J + C( I, J ) = ZERO + 90 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 100, I = 1, J + C( I, J ) = BETA*C( I, J ) + 100 CONTINUE + END IF + DO 120, L = 1, K + IF( A( J, L ).NE.ZERO )THEN + TEMP = ALPHA*A( J, L ) + DO 110, I = 1, J + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 110 CONTINUE + END IF + 120 CONTINUE + 130 CONTINUE + ELSE + DO 180, J = 1, N + IF( BETA.EQ.ZERO )THEN + DO 140, I = J, N + C( I, J ) = ZERO + 140 CONTINUE + ELSE IF( BETA.NE.ONE )THEN + DO 150, I = J, N + C( I, J ) = BETA*C( I, J ) + 150 CONTINUE + END IF + DO 170, L = 1, K + IF( A( J, L ).NE.ZERO )THEN + TEMP = ALPHA*A( J, L ) + DO 160, I = J, N + C( I, J ) = C( I, J ) + TEMP*A( I, L ) + 160 CONTINUE + END IF + 170 CONTINUE + 180 CONTINUE + END IF + ELSE +* +* Form C := alpha*A'*A + beta*C. +* + IF( UPPER )THEN + DO 210, J = 1, N + DO 200, I = 1, J + TEMP = ZERO + DO 190, L = 1, K + TEMP = TEMP + A( L, I )*A( L, J ) + 190 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 200 CONTINUE + 210 CONTINUE + ELSE + DO 240, J = 1, N + DO 230, I = J, N + TEMP = ZERO + DO 220, L = 1, K + TEMP = TEMP + A( L, I )*A( L, J ) + 220 CONTINUE + IF( BETA.EQ.ZERO )THEN + C( I, J ) = ALPHA*TEMP + ELSE + C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) + END IF + 230 CONTINUE + 240 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZSYRK . +* + END diff --git a/src/fortran/blas/ztbmv.f b/src/fortran/blas/ztbmv.f new file mode 100644 index 0000000..1794408 --- /dev/null +++ b/src/fortran/blas/ztbmv.f @@ -0,0 +1,377 @@ + SUBROUTINE ZTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, K, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZTBMV performs one of the matrix-vector operations +* +* x := A*x, or x := A'*x, or x := conjg( A' )*x, +* +* where x is an n element vector and A is an n by n unit, or non-unit, +* upper or lower triangular band matrix, with ( k + 1 ) diagonals. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' x := A*x. +* +* TRANS = 'T' or 't' x := A'*x. +* +* TRANS = 'C' or 'c' x := conjg( A' )*x. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with UPLO = 'U' or 'u', K specifies the number of +* super-diagonals of the matrix A. +* On entry with UPLO = 'L' or 'l', K specifies the number of +* sub-diagonals of the matrix A. +* K must satisfy 0 .le. K. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) +* by n part of the array A must contain the upper triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row +* ( k + 1 ) of the array, the first super-diagonal starting at +* position 2 in row k, and so on. The top left k by k triangle +* of the array A is not referenced. +* The following program segment will transfer an upper +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = K + 1 - J +* DO 10, I = MAX( 1, J - K ), J +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) +* by n part of the array A must contain the lower triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row 1 of +* the array, the first sub-diagonal starting at position 1 in +* row 2, and so on. The bottom right k by k triangle of the +* array A is not referenced. +* The following program segment will transfer a lower +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = 1 - J +* DO 10, I = J, MIN( N, J + K ) +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Note that when DIAG = 'U' or 'u' the elements of the array A +* corresponding to the diagonal elements of the matrix are not +* referenced, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( k + 1 ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. On exit, X is overwritten with the +* tranformed vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L + LOGICAL NOCONJ, NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( K.LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.( K + 1 ) )THEN + INFO = 7 + ELSE IF( INCX.EQ.0 )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTBMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := A*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + L = KPLUS1 - J + DO 10, I = MAX( 1, J - K ), J - 1 + X( I ) = X( I ) + TEMP*A( L + I, J ) + 10 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( KPLUS1, J ) + END IF + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + L = KPLUS1 - J + DO 30, I = MAX( 1, J - K ), J - 1 + X( IX ) = X( IX ) + TEMP*A( L + I, J ) + IX = IX + INCX + 30 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( KPLUS1, J ) + END IF + JX = JX + INCX + IF( J.GT.K ) + $ KX = KX + INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + L = 1 - J + DO 50, I = MIN( N, J + K ), J + 1, -1 + X( I ) = X( I ) + TEMP*A( L + I, J ) + 50 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( 1, J ) + END IF + 60 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 80, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + L = 1 - J + DO 70, I = MIN( N, J + K ), J + 1, -1 + X( IX ) = X( IX ) + TEMP*A( L + I, J ) + IX = IX - INCX + 70 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( 1, J ) + END IF + JX = JX - INCX + IF( ( N - J ).GE.K ) + $ KX = KX - INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := A'*x or x := conjg( A' )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 110, J = N, 1, -1 + TEMP = X( J ) + L = KPLUS1 - J + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( KPLUS1, J ) + DO 90, I = J - 1, MAX( 1, J - K ), -1 + TEMP = TEMP + A( L + I, J )*X( I ) + 90 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( KPLUS1, J ) ) + DO 100, I = J - 1, MAX( 1, J - K ), -1 + TEMP = TEMP + DCONJG( A( L + I, J ) )*X( I ) + 100 CONTINUE + END IF + X( J ) = TEMP + 110 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 140, J = N, 1, -1 + TEMP = X( JX ) + KX = KX - INCX + IX = KX + L = KPLUS1 - J + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( KPLUS1, J ) + DO 120, I = J - 1, MAX( 1, J - K ), -1 + TEMP = TEMP + A( L + I, J )*X( IX ) + IX = IX - INCX + 120 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( KPLUS1, J ) ) + DO 130, I = J - 1, MAX( 1, J - K ), -1 + TEMP = TEMP + DCONJG( A( L + I, J ) )*X( IX ) + IX = IX - INCX + 130 CONTINUE + END IF + X( JX ) = TEMP + JX = JX - INCX + 140 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 170, J = 1, N + TEMP = X( J ) + L = 1 - J + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( 1, J ) + DO 150, I = J + 1, MIN( N, J + K ) + TEMP = TEMP + A( L + I, J )*X( I ) + 150 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( 1, J ) ) + DO 160, I = J + 1, MIN( N, J + K ) + TEMP = TEMP + DCONJG( A( L + I, J ) )*X( I ) + 160 CONTINUE + END IF + X( J ) = TEMP + 170 CONTINUE + ELSE + JX = KX + DO 200, J = 1, N + TEMP = X( JX ) + KX = KX + INCX + IX = KX + L = 1 - J + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( 1, J ) + DO 180, I = J + 1, MIN( N, J + K ) + TEMP = TEMP + A( L + I, J )*X( IX ) + IX = IX + INCX + 180 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( 1, J ) ) + DO 190, I = J + 1, MIN( N, J + K ) + TEMP = TEMP + DCONJG( A( L + I, J ) )*X( IX ) + IX = IX + INCX + 190 CONTINUE + END IF + X( JX ) = TEMP + JX = JX + INCX + 200 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTBMV . +* + END diff --git a/src/fortran/blas/ztbsv.f b/src/fortran/blas/ztbsv.f new file mode 100644 index 0000000..f3ded81 --- /dev/null +++ b/src/fortran/blas/ztbsv.f @@ -0,0 +1,381 @@ + SUBROUTINE ZTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, K, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZTBSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, or conjg( A' )*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular band matrix, with ( k + 1 ) +* diagonals. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' conjg( A' )*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with UPLO = 'U' or 'u', K specifies the number of +* super-diagonals of the matrix A. +* On entry with UPLO = 'L' or 'l', K specifies the number of +* sub-diagonals of the matrix A. +* K must satisfy 0 .le. K. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) +* by n part of the array A must contain the upper triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row +* ( k + 1 ) of the array, the first super-diagonal starting at +* position 2 in row k, and so on. The top left k by k triangle +* of the array A is not referenced. +* The following program segment will transfer an upper +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = K + 1 - J +* DO 10, I = MAX( 1, J - K ), J +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) +* by n part of the array A must contain the lower triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row 1 of +* the array, the first sub-diagonal starting at position 1 in +* row 2, and so on. The bottom right k by k triangle of the +* array A is not referenced. +* The following program segment will transfer a lower +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = 1 - J +* DO 10, I = J, MIN( N, J + K ) +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Note that when DIAG = 'U' or 'u' the elements of the array A +* corresponding to the diagonal elements of the matrix are not +* referenced, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( k + 1 ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L + LOGICAL NOCONJ, NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( K.LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.( K + 1 ) )THEN + INFO = 7 + ELSE IF( INCX.EQ.0 )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTBSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed by sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + L = KPLUS1 - J + IF( NOUNIT ) + $ X( J ) = X( J )/A( KPLUS1, J ) + TEMP = X( J ) + DO 10, I = J - 1, MAX( 1, J - K ), -1 + X( I ) = X( I ) - TEMP*A( L + I, J ) + 10 CONTINUE + END IF + 20 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 40, J = N, 1, -1 + KX = KX - INCX + IF( X( JX ).NE.ZERO )THEN + IX = KX + L = KPLUS1 - J + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( KPLUS1, J ) + TEMP = X( JX ) + DO 30, I = J - 1, MAX( 1, J - K ), -1 + X( IX ) = X( IX ) - TEMP*A( L + I, J ) + IX = IX - INCX + 30 CONTINUE + END IF + JX = JX - INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + L = 1 - J + IF( NOUNIT ) + $ X( J ) = X( J )/A( 1, J ) + TEMP = X( J ) + DO 50, I = J + 1, MIN( N, J + K ) + X( I ) = X( I ) - TEMP*A( L + I, J ) + 50 CONTINUE + END IF + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + KX = KX + INCX + IF( X( JX ).NE.ZERO )THEN + IX = KX + L = 1 - J + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( 1, J ) + TEMP = X( JX ) + DO 70, I = J + 1, MIN( N, J + K ) + X( IX ) = X( IX ) - TEMP*A( L + I, J ) + IX = IX + INCX + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A' )*x or x := inv( conjg( A') )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 110, J = 1, N + TEMP = X( J ) + L = KPLUS1 - J + IF( NOCONJ )THEN + DO 90, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - A( L + I, J )*X( I ) + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( KPLUS1, J ) + ELSE + DO 100, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - DCONJG( A( L + I, J ) )*X( I ) + 100 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( KPLUS1, J ) ) + END IF + X( J ) = TEMP + 110 CONTINUE + ELSE + JX = KX + DO 140, J = 1, N + TEMP = X( JX ) + IX = KX + L = KPLUS1 - J + IF( NOCONJ )THEN + DO 120, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - A( L + I, J )*X( IX ) + IX = IX + INCX + 120 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( KPLUS1, J ) + ELSE + DO 130, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - DCONJG( A( L + I, J ) )*X( IX ) + IX = IX + INCX + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( KPLUS1, J ) ) + END IF + X( JX ) = TEMP + JX = JX + INCX + IF( J.GT.K ) + $ KX = KX + INCX + 140 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 170, J = N, 1, -1 + TEMP = X( J ) + L = 1 - J + IF( NOCONJ )THEN + DO 150, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - A( L + I, J )*X( I ) + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( 1, J ) + ELSE + DO 160, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - DCONJG( A( L + I, J ) )*X( I ) + 160 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( 1, J ) ) + END IF + X( J ) = TEMP + 170 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 200, J = N, 1, -1 + TEMP = X( JX ) + IX = KX + L = 1 - J + IF( NOCONJ )THEN + DO 180, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - A( L + I, J )*X( IX ) + IX = IX - INCX + 180 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( 1, J ) + ELSE + DO 190, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - DCONJG( A( L + I, J ) )*X( IX ) + IX = IX - INCX + 190 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( 1, J ) ) + END IF + X( JX ) = TEMP + JX = JX - INCX + IF( ( N - J ).GE.K ) + $ KX = KX - INCX + 200 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTBSV . +* + END diff --git a/src/fortran/blas/ztpmv.f b/src/fortran/blas/ztpmv.f new file mode 100644 index 0000000..4fad3a8 --- /dev/null +++ b/src/fortran/blas/ztpmv.f @@ -0,0 +1,338 @@ + SUBROUTINE ZTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + COMPLEX*16 AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZTPMV performs one of the matrix-vector operations +* +* x := A*x, or x := A'*x, or x := conjg( A' )*x, +* +* where x is an n element vector and A is an n by n unit, or non-unit, +* upper or lower triangular matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' x := A*x. +* +* TRANS = 'T' or 't' x := A'*x. +* +* TRANS = 'C' or 'c' x := conjg( A' )*x. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* AP - COMPLEX*16 array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) +* respectively, and so on. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) +* respectively, and so on. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced, but are assumed to be unity. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. On exit, X is overwritten with the +* tranformed vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX + LOGICAL NOCONJ, NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( INCX.EQ.0 )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTPMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of AP are +* accessed sequentially with one pass through AP. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x:= A*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = 1 + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + K = KK + DO 10, I = 1, J - 1 + X( I ) = X( I ) + TEMP*AP( K ) + K = K + 1 + 10 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*AP( KK + J - 1 ) + END IF + KK = KK + J + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 30, K = KK, KK + J - 2 + X( IX ) = X( IX ) + TEMP*AP( K ) + IX = IX + INCX + 30 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*AP( KK + J - 1 ) + END IF + JX = JX + INCX + KK = KK + J + 40 CONTINUE + END IF + ELSE + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 60, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + K = KK + DO 50, I = N, J + 1, -1 + X( I ) = X( I ) + TEMP*AP( K ) + K = K - 1 + 50 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*AP( KK - N + J ) + END IF + KK = KK - ( N - J + 1 ) + 60 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 80, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1 + X( IX ) = X( IX ) + TEMP*AP( K ) + IX = IX - INCX + 70 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*AP( KK - N + J ) + END IF + JX = JX - INCX + KK = KK - ( N - J + 1 ) + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := A'*x or x := conjg( A' )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 110, J = N, 1, -1 + TEMP = X( J ) + K = KK - 1 + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + DO 90, I = J - 1, 1, -1 + TEMP = TEMP + AP( K )*X( I ) + K = K - 1 + 90 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( AP( KK ) ) + DO 100, I = J - 1, 1, -1 + TEMP = TEMP + DCONJG( AP( K ) )*X( I ) + K = K - 1 + 100 CONTINUE + END IF + X( J ) = TEMP + KK = KK - J + 110 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 140, J = N, 1, -1 + TEMP = X( JX ) + IX = JX + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + DO 120, K = KK - 1, KK - J + 1, -1 + IX = IX - INCX + TEMP = TEMP + AP( K )*X( IX ) + 120 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( AP( KK ) ) + DO 130, K = KK - 1, KK - J + 1, -1 + IX = IX - INCX + TEMP = TEMP + DCONJG( AP( K ) )*X( IX ) + 130 CONTINUE + END IF + X( JX ) = TEMP + JX = JX - INCX + KK = KK - J + 140 CONTINUE + END IF + ELSE + KK = 1 + IF( INCX.EQ.1 )THEN + DO 170, J = 1, N + TEMP = X( J ) + K = KK + 1 + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + DO 150, I = J + 1, N + TEMP = TEMP + AP( K )*X( I ) + K = K + 1 + 150 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( AP( KK ) ) + DO 160, I = J + 1, N + TEMP = TEMP + DCONJG( AP( K ) )*X( I ) + K = K + 1 + 160 CONTINUE + END IF + X( J ) = TEMP + KK = KK + ( N - J + 1 ) + 170 CONTINUE + ELSE + JX = KX + DO 200, J = 1, N + TEMP = X( JX ) + IX = JX + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*AP( KK ) + DO 180, K = KK + 1, KK + N - J + IX = IX + INCX + TEMP = TEMP + AP( K )*X( IX ) + 180 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( AP( KK ) ) + DO 190, K = KK + 1, KK + N - J + IX = IX + INCX + TEMP = TEMP + DCONJG( AP( K ) )*X( IX ) + 190 CONTINUE + END IF + X( JX ) = TEMP + JX = JX + INCX + KK = KK + ( N - J + 1 ) + 200 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTPMV . +* + END diff --git a/src/fortran/blas/ztpsv.f b/src/fortran/blas/ztpsv.f new file mode 100644 index 0000000..8649f47 --- /dev/null +++ b/src/fortran/blas/ztpsv.f @@ -0,0 +1,341 @@ + SUBROUTINE ZTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + COMPLEX*16 AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZTPSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, or conjg( A' )*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular matrix, supplied in packed form. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' conjg( A' )*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* AP - COMPLEX*16 array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) +* respectively, and so on. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) +* respectively, and so on. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced, but are assumed to be unity. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX + LOGICAL NOCONJ, NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( INCX.EQ.0 )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTPSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of AP are +* accessed sequentially with one pass through AP. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/AP( KK ) + TEMP = X( J ) + K = KK - 1 + DO 10, I = J - 1, 1, -1 + X( I ) = X( I ) - TEMP*AP( K ) + K = K - 1 + 10 CONTINUE + END IF + KK = KK - J + 20 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 40, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/AP( KK ) + TEMP = X( JX ) + IX = JX + DO 30, K = KK - 1, KK - J + 1, -1 + IX = IX - INCX + X( IX ) = X( IX ) - TEMP*AP( K ) + 30 CONTINUE + END IF + JX = JX - INCX + KK = KK - J + 40 CONTINUE + END IF + ELSE + KK = 1 + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/AP( KK ) + TEMP = X( J ) + K = KK + 1 + DO 50, I = J + 1, N + X( I ) = X( I ) - TEMP*AP( K ) + K = K + 1 + 50 CONTINUE + END IF + KK = KK + ( N - J + 1 ) + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/AP( KK ) + TEMP = X( JX ) + IX = JX + DO 70, K = KK + 1, KK + N - J + IX = IX + INCX + X( IX ) = X( IX ) - TEMP*AP( K ) + 70 CONTINUE + END IF + JX = JX + INCX + KK = KK + ( N - J + 1 ) + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = 1 + IF( INCX.EQ.1 )THEN + DO 110, J = 1, N + TEMP = X( J ) + K = KK + IF( NOCONJ )THEN + DO 90, I = 1, J - 1 + TEMP = TEMP - AP( K )*X( I ) + K = K + 1 + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK + J - 1 ) + ELSE + DO 100, I = 1, J - 1 + TEMP = TEMP - DCONJG( AP( K ) )*X( I ) + K = K + 1 + 100 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK + J - 1 ) ) + END IF + X( J ) = TEMP + KK = KK + J + 110 CONTINUE + ELSE + JX = KX + DO 140, J = 1, N + TEMP = X( JX ) + IX = KX + IF( NOCONJ )THEN + DO 120, K = KK, KK + J - 2 + TEMP = TEMP - AP( K )*X( IX ) + IX = IX + INCX + 120 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK + J - 1 ) + ELSE + DO 130, K = KK, KK + J - 2 + TEMP = TEMP - DCONJG( AP( K ) )*X( IX ) + IX = IX + INCX + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK + J - 1 ) ) + END IF + X( JX ) = TEMP + JX = JX + INCX + KK = KK + J + 140 CONTINUE + END IF + ELSE + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 170, J = N, 1, -1 + TEMP = X( J ) + K = KK + IF( NOCONJ )THEN + DO 150, I = N, J + 1, -1 + TEMP = TEMP - AP( K )*X( I ) + K = K - 1 + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK - N + J ) + ELSE + DO 160, I = N, J + 1, -1 + TEMP = TEMP - DCONJG( AP( K ) )*X( I ) + K = K - 1 + 160 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK - N + J ) ) + END IF + X( J ) = TEMP + KK = KK - ( N - J + 1 ) + 170 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 200, J = N, 1, -1 + TEMP = X( JX ) + IX = KX + IF( NOCONJ )THEN + DO 180, K = KK, KK - ( N - ( J + 1 ) ), -1 + TEMP = TEMP - AP( K )*X( IX ) + IX = IX - INCX + 180 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK - N + J ) + ELSE + DO 190, K = KK, KK - ( N - ( J + 1 ) ), -1 + TEMP = TEMP - DCONJG( AP( K ) )*X( IX ) + IX = IX - INCX + 190 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK - N + J ) ) + END IF + X( JX ) = TEMP + JX = JX - INCX + KK = KK - ( N - J + 1 ) + 200 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTPSV . +* + END diff --git a/src/fortran/blas/ztrmm.f b/src/fortran/blas/ztrmm.f new file mode 100644 index 0000000..30910d1 --- /dev/null +++ b/src/fortran/blas/ztrmm.f @@ -0,0 +1,392 @@ + SUBROUTINE ZTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, + $ B, LDB ) +* .. Scalar Arguments .. + CHARACTER*1 SIDE, UPLO, TRANSA, DIAG + INTEGER M, N, LDA, LDB + COMPLEX*16 ALPHA +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ) +* .. +* +* Purpose +* ======= +* +* ZTRMM performs one of the matrix-matrix operations +* +* B := alpha*op( A )*B, or B := alpha*B*op( A ) +* +* where alpha is a scalar, B is an m by n matrix, A is a unit, or +* non-unit, upper or lower triangular matrix and op( A ) is one of +* +* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). +* +* Parameters +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether op( A ) multiplies B from +* the left or right as follows: +* +* SIDE = 'L' or 'l' B := alpha*op( A )*B. +* +* SIDE = 'R' or 'r' B := alpha*B*op( A ). +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix A is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n' op( A ) = A. +* +* TRANSA = 'T' or 't' op( A ) = A'. +* +* TRANSA = 'C' or 'c' op( A ) = conjg( A' ). +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit triangular +* as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of B. M must be at +* least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of B. N must be +* at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. When alpha is +* zero then A is not referenced and B need not be set before +* entry. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m +* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. +* Before entry with UPLO = 'U' or 'u', the leading k by k +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading k by k +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' +* then LDA must be at least max( 1, n ). +* Unchanged on exit. +* +* B - COMPLEX*16 array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the matrix B, and on exit is overwritten by the +* transformed matrix. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX +* .. Local Scalars .. + LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER + INTEGER I, INFO, J, K, NROWA + COMPLEX*16 TEMP +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + LSIDE = LSAME( SIDE , 'L' ) + IF( LSIDE )THEN + NROWA = M + ELSE + NROWA = N + END IF + NOCONJ = LSAME( TRANSA, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) + UPPER = LSAME( UPLO , 'U' ) +* + INFO = 0 + IF( ( .NOT.LSIDE ).AND. + $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 2 + ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN + INFO = 3 + ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. + $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN + INFO = 4 + ELSE IF( M .LT.0 )THEN + INFO = 5 + ELSE IF( N .LT.0 )THEN + INFO = 6 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 9 + ELSE IF( LDB.LT.MAX( 1, M ) )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTRMM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + B( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + RETURN + END IF +* +* Start the operations. +* + IF( LSIDE )THEN + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*A*B. +* + IF( UPPER )THEN + DO 50, J = 1, N + DO 40, K = 1, M + IF( B( K, J ).NE.ZERO )THEN + TEMP = ALPHA*B( K, J ) + DO 30, I = 1, K - 1 + B( I, J ) = B( I, J ) + TEMP*A( I, K ) + 30 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP*A( K, K ) + B( K, J ) = TEMP + END IF + 40 CONTINUE + 50 CONTINUE + ELSE + DO 80, J = 1, N + DO 70 K = M, 1, -1 + IF( B( K, J ).NE.ZERO )THEN + TEMP = ALPHA*B( K, J ) + B( K, J ) = TEMP + IF( NOUNIT ) + $ B( K, J ) = B( K, J )*A( K, K ) + DO 60, I = K + 1, M + B( I, J ) = B( I, J ) + TEMP*A( I, K ) + 60 CONTINUE + END IF + 70 CONTINUE + 80 CONTINUE + END IF + ELSE +* +* Form B := alpha*A'*B or B := alpha*conjg( A' )*B. +* + IF( UPPER )THEN + DO 120, J = 1, N + DO 110, I = M, 1, -1 + TEMP = B( I, J ) + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( I, I ) + DO 90, K = 1, I - 1 + TEMP = TEMP + A( K, I )*B( K, J ) + 90 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( I, I ) ) + DO 100, K = 1, I - 1 + TEMP = TEMP + DCONJG( A( K, I ) )*B( K, J ) + 100 CONTINUE + END IF + B( I, J ) = ALPHA*TEMP + 110 CONTINUE + 120 CONTINUE + ELSE + DO 160, J = 1, N + DO 150, I = 1, M + TEMP = B( I, J ) + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( I, I ) + DO 130, K = I + 1, M + TEMP = TEMP + A( K, I )*B( K, J ) + 130 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( I, I ) ) + DO 140, K = I + 1, M + TEMP = TEMP + DCONJG( A( K, I ) )*B( K, J ) + 140 CONTINUE + END IF + B( I, J ) = ALPHA*TEMP + 150 CONTINUE + 160 CONTINUE + END IF + END IF + ELSE + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*B*A. +* + IF( UPPER )THEN + DO 200, J = N, 1, -1 + TEMP = ALPHA + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 170, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 170 CONTINUE + DO 190, K = 1, J - 1 + IF( A( K, J ).NE.ZERO )THEN + TEMP = ALPHA*A( K, J ) + DO 180, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 180 CONTINUE + END IF + 190 CONTINUE + 200 CONTINUE + ELSE + DO 240, J = 1, N + TEMP = ALPHA + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 210, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 210 CONTINUE + DO 230, K = J + 1, N + IF( A( K, J ).NE.ZERO )THEN + TEMP = ALPHA*A( K, J ) + DO 220, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 220 CONTINUE + END IF + 230 CONTINUE + 240 CONTINUE + END IF + ELSE +* +* Form B := alpha*B*A' or B := alpha*B*conjg( A' ). +* + IF( UPPER )THEN + DO 280, K = 1, N + DO 260, J = 1, K - 1 + IF( A( J, K ).NE.ZERO )THEN + IF( NOCONJ )THEN + TEMP = ALPHA*A( J, K ) + ELSE + TEMP = ALPHA*DCONJG( A( J, K ) ) + END IF + DO 250, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 250 CONTINUE + END IF + 260 CONTINUE + TEMP = ALPHA + IF( NOUNIT )THEN + IF( NOCONJ )THEN + TEMP = TEMP*A( K, K ) + ELSE + TEMP = TEMP*DCONJG( A( K, K ) ) + END IF + END IF + IF( TEMP.NE.ONE )THEN + DO 270, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 270 CONTINUE + END IF + 280 CONTINUE + ELSE + DO 320, K = N, 1, -1 + DO 300, J = K + 1, N + IF( A( J, K ).NE.ZERO )THEN + IF( NOCONJ )THEN + TEMP = ALPHA*A( J, K ) + ELSE + TEMP = ALPHA*DCONJG( A( J, K ) ) + END IF + DO 290, I = 1, M + B( I, J ) = B( I, J ) + TEMP*B( I, K ) + 290 CONTINUE + END IF + 300 CONTINUE + TEMP = ALPHA + IF( NOUNIT )THEN + IF( NOCONJ )THEN + TEMP = TEMP*A( K, K ) + ELSE + TEMP = TEMP*DCONJG( A( K, K ) ) + END IF + END IF + IF( TEMP.NE.ONE )THEN + DO 310, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 310 CONTINUE + END IF + 320 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTRMM . +* + END diff --git a/src/fortran/blas/ztrmv.f b/src/fortran/blas/ztrmv.f new file mode 100644 index 0000000..677e212 --- /dev/null +++ b/src/fortran/blas/ztrmv.f @@ -0,0 +1,321 @@ + SUBROUTINE ZTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZTRMV performs one of the matrix-vector operations +* +* x := A*x, or x := A'*x, or x := conjg( A' )*x, +* +* where x is an n element vector and A is an n by n unit, or non-unit, +* upper or lower triangular matrix. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the operation to be performed as +* follows: +* +* TRANS = 'N' or 'n' x := A*x. +* +* TRANS = 'T' or 't' x := A'*x. +* +* TRANS = 'C' or 'c' x := conjg( A' )*x. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. On exit, X is overwritten with the +* tranformed vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, KX + LOGICAL NOCONJ, NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTRMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := A*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + DO 10, I = 1, J - 1 + X( I ) = X( I ) + TEMP*A( I, J ) + 10 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( J, J ) + END IF + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 30, I = 1, J - 1 + X( IX ) = X( IX ) + TEMP*A( I, J ) + IX = IX + INCX + 30 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( J, J ) + END IF + JX = JX + INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + TEMP = X( J ) + DO 50, I = N, J + 1, -1 + X( I ) = X( I ) + TEMP*A( I, J ) + 50 CONTINUE + IF( NOUNIT ) + $ X( J ) = X( J )*A( J, J ) + END IF + 60 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 80, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + TEMP = X( JX ) + IX = KX + DO 70, I = N, J + 1, -1 + X( IX ) = X( IX ) + TEMP*A( I, J ) + IX = IX - INCX + 70 CONTINUE + IF( NOUNIT ) + $ X( JX ) = X( JX )*A( J, J ) + END IF + JX = JX - INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := A'*x or x := conjg( A' )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 110, J = N, 1, -1 + TEMP = X( J ) + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 90, I = J - 1, 1, -1 + TEMP = TEMP + A( I, J )*X( I ) + 90 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( J, J ) ) + DO 100, I = J - 1, 1, -1 + TEMP = TEMP + DCONJG( A( I, J ) )*X( I ) + 100 CONTINUE + END IF + X( J ) = TEMP + 110 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 140, J = N, 1, -1 + TEMP = X( JX ) + IX = JX + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 120, I = J - 1, 1, -1 + IX = IX - INCX + TEMP = TEMP + A( I, J )*X( IX ) + 120 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( J, J ) ) + DO 130, I = J - 1, 1, -1 + IX = IX - INCX + TEMP = TEMP + DCONJG( A( I, J ) )*X( IX ) + 130 CONTINUE + END IF + X( JX ) = TEMP + JX = JX - INCX + 140 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 170, J = 1, N + TEMP = X( J ) + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 150, I = J + 1, N + TEMP = TEMP + A( I, J )*X( I ) + 150 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( J, J ) ) + DO 160, I = J + 1, N + TEMP = TEMP + DCONJG( A( I, J ) )*X( I ) + 160 CONTINUE + END IF + X( J ) = TEMP + 170 CONTINUE + ELSE + JX = KX + DO 200, J = 1, N + TEMP = X( JX ) + IX = JX + IF( NOCONJ )THEN + IF( NOUNIT ) + $ TEMP = TEMP*A( J, J ) + DO 180, I = J + 1, N + IX = IX + INCX + TEMP = TEMP + A( I, J )*X( IX ) + 180 CONTINUE + ELSE + IF( NOUNIT ) + $ TEMP = TEMP*DCONJG( A( J, J ) ) + DO 190, I = J + 1, N + IX = IX + INCX + TEMP = TEMP + DCONJG( A( I, J ) )*X( IX ) + 190 CONTINUE + END IF + X( JX ) = TEMP + JX = JX + INCX + 200 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTRMV . +* + END diff --git a/src/fortran/blas/ztrsm.f b/src/fortran/blas/ztrsm.f new file mode 100644 index 0000000..e414ec6 --- /dev/null +++ b/src/fortran/blas/ztrsm.f @@ -0,0 +1,414 @@ + SUBROUTINE ZTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, + $ B, LDB ) +* .. Scalar Arguments .. + CHARACTER*1 SIDE, UPLO, TRANSA, DIAG + INTEGER M, N, LDA, LDB + COMPLEX*16 ALPHA +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ) +* .. +* +* Purpose +* ======= +* +* ZTRSM solves one of the matrix equations +* +* op( A )*X = alpha*B, or X*op( A ) = alpha*B, +* +* where alpha is a scalar, X and B are m by n matrices, A is a unit, or +* non-unit, upper or lower triangular matrix and op( A ) is one of +* +* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). +* +* The matrix X is overwritten on B. +* +* Parameters +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether op( A ) appears on the left +* or right of X as follows: +* +* SIDE = 'L' or 'l' op( A )*X = alpha*B. +* +* SIDE = 'R' or 'r' X*op( A ) = alpha*B. +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix A is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n' op( A ) = A. +* +* TRANSA = 'T' or 't' op( A ) = A'. +* +* TRANSA = 'C' or 'c' op( A ) = conjg( A' ). +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit triangular +* as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of B. M must be at +* least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of B. N must be +* at least zero. +* Unchanged on exit. +* +* ALPHA - COMPLEX*16 . +* On entry, ALPHA specifies the scalar alpha. When alpha is +* zero then A is not referenced and B need not be set before +* entry. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m +* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. +* Before entry with UPLO = 'U' or 'u', the leading k by k +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading k by k +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' +* then LDA must be at least max( 1, n ). +* Unchanged on exit. +* +* B - COMPLEX*16 array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the right-hand side matrix B, and on exit is +* overwritten by the solution matrix X. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX +* .. Local Scalars .. + LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER + INTEGER I, INFO, J, K, NROWA + COMPLEX*16 TEMP +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + LSIDE = LSAME( SIDE , 'L' ) + IF( LSIDE )THEN + NROWA = M + ELSE + NROWA = N + END IF + NOCONJ = LSAME( TRANSA, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) + UPPER = LSAME( UPLO , 'U' ) +* + INFO = 0 + IF( ( .NOT.LSIDE ).AND. + $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN + INFO = 1 + ELSE IF( ( .NOT.UPPER ).AND. + $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN + INFO = 2 + ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. + $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN + INFO = 3 + ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. + $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN + INFO = 4 + ELSE IF( M .LT.0 )THEN + INFO = 5 + ELSE IF( N .LT.0 )THEN + INFO = 6 + ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN + INFO = 9 + ELSE IF( LDB.LT.MAX( 1, M ) )THEN + INFO = 11 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTRSM ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* +* And when alpha.eq.zero. +* + IF( ALPHA.EQ.ZERO )THEN + DO 20, J = 1, N + DO 10, I = 1, M + B( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE + RETURN + END IF +* +* Start the operations. +* + IF( LSIDE )THEN + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*inv( A )*B. +* + IF( UPPER )THEN + DO 60, J = 1, N + IF( ALPHA.NE.ONE )THEN + DO 30, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 30 CONTINUE + END IF + DO 50, K = M, 1, -1 + IF( B( K, J ).NE.ZERO )THEN + IF( NOUNIT ) + $ B( K, J ) = B( K, J )/A( K, K ) + DO 40, I = 1, K - 1 + B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) + 40 CONTINUE + END IF + 50 CONTINUE + 60 CONTINUE + ELSE + DO 100, J = 1, N + IF( ALPHA.NE.ONE )THEN + DO 70, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 70 CONTINUE + END IF + DO 90 K = 1, M + IF( B( K, J ).NE.ZERO )THEN + IF( NOUNIT ) + $ B( K, J ) = B( K, J )/A( K, K ) + DO 80, I = K + 1, M + B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) + 80 CONTINUE + END IF + 90 CONTINUE + 100 CONTINUE + END IF + ELSE +* +* Form B := alpha*inv( A' )*B +* or B := alpha*inv( conjg( A' ) )*B. +* + IF( UPPER )THEN + DO 140, J = 1, N + DO 130, I = 1, M + TEMP = ALPHA*B( I, J ) + IF( NOCONJ )THEN + DO 110, K = 1, I - 1 + TEMP = TEMP - A( K, I )*B( K, J ) + 110 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( I, I ) + ELSE + DO 120, K = 1, I - 1 + TEMP = TEMP - DCONJG( A( K, I ) )*B( K, J ) + 120 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( I, I ) ) + END IF + B( I, J ) = TEMP + 130 CONTINUE + 140 CONTINUE + ELSE + DO 180, J = 1, N + DO 170, I = M, 1, -1 + TEMP = ALPHA*B( I, J ) + IF( NOCONJ )THEN + DO 150, K = I + 1, M + TEMP = TEMP - A( K, I )*B( K, J ) + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( I, I ) + ELSE + DO 160, K = I + 1, M + TEMP = TEMP - DCONJG( A( K, I ) )*B( K, J ) + 160 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( I, I ) ) + END IF + B( I, J ) = TEMP + 170 CONTINUE + 180 CONTINUE + END IF + END IF + ELSE + IF( LSAME( TRANSA, 'N' ) )THEN +* +* Form B := alpha*B*inv( A ). +* + IF( UPPER )THEN + DO 230, J = 1, N + IF( ALPHA.NE.ONE )THEN + DO 190, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 190 CONTINUE + END IF + DO 210, K = 1, J - 1 + IF( A( K, J ).NE.ZERO )THEN + DO 200, I = 1, M + B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) + 200 CONTINUE + END IF + 210 CONTINUE + IF( NOUNIT )THEN + TEMP = ONE/A( J, J ) + DO 220, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 220 CONTINUE + END IF + 230 CONTINUE + ELSE + DO 280, J = N, 1, -1 + IF( ALPHA.NE.ONE )THEN + DO 240, I = 1, M + B( I, J ) = ALPHA*B( I, J ) + 240 CONTINUE + END IF + DO 260, K = J + 1, N + IF( A( K, J ).NE.ZERO )THEN + DO 250, I = 1, M + B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) + 250 CONTINUE + END IF + 260 CONTINUE + IF( NOUNIT )THEN + TEMP = ONE/A( J, J ) + DO 270, I = 1, M + B( I, J ) = TEMP*B( I, J ) + 270 CONTINUE + END IF + 280 CONTINUE + END IF + ELSE +* +* Form B := alpha*B*inv( A' ) +* or B := alpha*B*inv( conjg( A' ) ). +* + IF( UPPER )THEN + DO 330, K = N, 1, -1 + IF( NOUNIT )THEN + IF( NOCONJ )THEN + TEMP = ONE/A( K, K ) + ELSE + TEMP = ONE/DCONJG( A( K, K ) ) + END IF + DO 290, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 290 CONTINUE + END IF + DO 310, J = 1, K - 1 + IF( A( J, K ).NE.ZERO )THEN + IF( NOCONJ )THEN + TEMP = A( J, K ) + ELSE + TEMP = DCONJG( A( J, K ) ) + END IF + DO 300, I = 1, M + B( I, J ) = B( I, J ) - TEMP*B( I, K ) + 300 CONTINUE + END IF + 310 CONTINUE + IF( ALPHA.NE.ONE )THEN + DO 320, I = 1, M + B( I, K ) = ALPHA*B( I, K ) + 320 CONTINUE + END IF + 330 CONTINUE + ELSE + DO 380, K = 1, N + IF( NOUNIT )THEN + IF( NOCONJ )THEN + TEMP = ONE/A( K, K ) + ELSE + TEMP = ONE/DCONJG( A( K, K ) ) + END IF + DO 340, I = 1, M + B( I, K ) = TEMP*B( I, K ) + 340 CONTINUE + END IF + DO 360, J = K + 1, N + IF( A( J, K ).NE.ZERO )THEN + IF( NOCONJ )THEN + TEMP = A( J, K ) + ELSE + TEMP = DCONJG( A( J, K ) ) + END IF + DO 350, I = 1, M + B( I, J ) = B( I, J ) - TEMP*B( I, K ) + 350 CONTINUE + END IF + 360 CONTINUE + IF( ALPHA.NE.ONE )THEN + DO 370, I = 1, M + B( I, K ) = ALPHA*B( I, K ) + 370 CONTINUE + END IF + 380 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTRSM . +* + END diff --git a/src/fortran/blas/ztrsv.f b/src/fortran/blas/ztrsv.f new file mode 100644 index 0000000..d0a57c4 --- /dev/null +++ b/src/fortran/blas/ztrsv.f @@ -0,0 +1,324 @@ + SUBROUTINE ZTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZTRSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, or conjg( A' )*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular matrix. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' conjg( A' )*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* A - COMPLEX*16 array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, n ). +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, KX + LOGICAL NOCONJ, NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( LDA.LT.MAX( 1, N ) )THEN + INFO = 6 + ELSE IF( INCX.EQ.0 )THEN + INFO = 8 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTRSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/A( J, J ) + TEMP = X( J ) + DO 10, I = J - 1, 1, -1 + X( I ) = X( I ) - TEMP*A( I, J ) + 10 CONTINUE + END IF + 20 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 40, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( J, J ) + TEMP = X( JX ) + IX = JX + DO 30, I = J - 1, 1, -1 + IX = IX - INCX + X( IX ) = X( IX ) - TEMP*A( I, J ) + 30 CONTINUE + END IF + JX = JX - INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/A( J, J ) + TEMP = X( J ) + DO 50, I = J + 1, N + X( I ) = X( I ) - TEMP*A( I, J ) + 50 CONTINUE + END IF + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( J, J ) + TEMP = X( JX ) + IX = JX + DO 70, I = J + 1, N + IX = IX + INCX + X( IX ) = X( IX ) - TEMP*A( I, J ) + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + IF( INCX.EQ.1 )THEN + DO 110, J = 1, N + TEMP = X( J ) + IF( NOCONJ )THEN + DO 90, I = 1, J - 1 + TEMP = TEMP - A( I, J )*X( I ) + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + ELSE + DO 100, I = 1, J - 1 + TEMP = TEMP - DCONJG( A( I, J ) )*X( I ) + 100 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( J, J ) ) + END IF + X( J ) = TEMP + 110 CONTINUE + ELSE + JX = KX + DO 140, J = 1, N + IX = KX + TEMP = X( JX ) + IF( NOCONJ )THEN + DO 120, I = 1, J - 1 + TEMP = TEMP - A( I, J )*X( IX ) + IX = IX + INCX + 120 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + ELSE + DO 130, I = 1, J - 1 + TEMP = TEMP - DCONJG( A( I, J ) )*X( IX ) + IX = IX + INCX + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( J, J ) ) + END IF + X( JX ) = TEMP + JX = JX + INCX + 140 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 170, J = N, 1, -1 + TEMP = X( J ) + IF( NOCONJ )THEN + DO 150, I = N, J + 1, -1 + TEMP = TEMP - A( I, J )*X( I ) + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + ELSE + DO 160, I = N, J + 1, -1 + TEMP = TEMP - DCONJG( A( I, J ) )*X( I ) + 160 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( J, J ) ) + END IF + X( J ) = TEMP + 170 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 200, J = N, 1, -1 + IX = KX + TEMP = X( JX ) + IF( NOCONJ )THEN + DO 180, I = N, J + 1, -1 + TEMP = TEMP - A( I, J )*X( IX ) + IX = IX - INCX + 180 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( J, J ) + ELSE + DO 190, I = N, J + 1, -1 + TEMP = TEMP - DCONJG( A( I, J ) )*X( IX ) + IX = IX - INCX + 190 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( A( J, J ) ) + END IF + X( JX ) = TEMP + JX = JX - INCX + 200 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTRSV . +* + END |