summaryrefslogtreecommitdiff
path: root/src/fortran/blas/zhemm.f
blob: d3912c0842f363605c0a5fc010469fa220bef23e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
      SUBROUTINE ZHEMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO
      INTEGER            M, N, LDA, LDB, LDC
      COMPLEX*16         ALPHA, BETA
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  ZHEMM  performs one of the matrix-matrix operations
*
*     C := alpha*A*B + beta*C,
*
*  or
*
*     C := alpha*B*A + beta*C,
*
*  where alpha and beta are scalars, A is an hermitian matrix and  B and
*  C are m by n matrices.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE  specifies whether  the  hermitian matrix  A
*           appears on the  left or right  in the  operation as follows:
*
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
*
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of  the  hermitian  matrix   A  is  to  be
*           referenced as follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
*                                  hermitian matrix is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
*                                  hermitian matrix is to be referenced.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies the number of rows of the matrix  C.
*           M  must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix C.
*           N  must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX*16      .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
*           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
*           the array  A  must contain the  hermitian matrix,  such that
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  hermitian matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  m by m  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  hermitian
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
*           the array  A  must contain the  hermitian matrix,  such that
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  hermitian matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  n by n  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  hermitian
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Note that the imaginary parts  of the diagonal elements need
*           not be set, they are assumed to be zero.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least max( 1, n ).
*           Unchanged on exit.
*
*  B      - COMPLEX*16       array of DIMENSION ( LDB, n ).
*           Before entry, the leading  m by n part of the array  B  must
*           contain the matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  BETA   - COMPLEX*16      .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - COMPLEX*16       array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n updated
*           matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX, DBLE
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, K, NROWA
      COMPLEX*16         TEMP1, TEMP2
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER        ( ONE  = ( 1.0D+0, 0.0D+0 ) )
      COMPLEX*16         ZERO
      PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Executable Statements ..
*
*     Set NROWA as the number of rows of A.
*
      IF( LSAME( SIDE, 'L' ) )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
*     Test the input parameters.
*
      INFO = 0
      IF(      ( .NOT.LSAME( SIDE, 'L' ) ).AND.
     $         ( .NOT.LSAME( SIDE, 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER              ).AND.
     $         ( .NOT.LSAME( UPLO, 'L' ) )      )THEN
         INFO = 2
      ELSE IF( M  .LT.0               )THEN
         INFO = 3
      ELSE IF( N  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 9
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
         INFO = 12
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'ZHEMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( BETA.EQ.ZERO )THEN
            DO 20, J = 1, N
               DO 10, I = 1, M
                  C( I, J ) = ZERO
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               DO 30, I = 1, M
                  C( I, J ) = BETA*C( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( SIDE, 'L' ) )THEN
*
*        Form  C := alpha*A*B + beta*C.
*
         IF( UPPER )THEN
            DO 70, J = 1, N
               DO 60, I = 1, M
                  TEMP1 = ALPHA*B( I, J )
                  TEMP2 = ZERO
                  DO 50, K = 1, I - 1
                     C( K, J ) = C( K, J ) + TEMP1*A( K, I )
                     TEMP2     = TEMP2     +
     $                           B( K, J )*DCONJG( A( K, I ) )
   50             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = TEMP1*DBLE( A( I, I ) ) +
     $                           ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J )         +
     $                           TEMP1*DBLE( A( I, I ) ) +
     $                           ALPHA*TEMP2
                  END IF
   60          CONTINUE
   70       CONTINUE
         ELSE
            DO 100, J = 1, N
               DO 90, I = M, 1, -1
                  TEMP1 = ALPHA*B( I, J )
                  TEMP2 = ZERO
                  DO 80, K = I + 1, M
                     C( K, J ) = C( K, J ) + TEMP1*A( K, I )
                     TEMP2     = TEMP2     +
     $                           B( K, J )*DCONJG( A( K, I ) )
   80             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = TEMP1*DBLE( A( I, I ) ) +
     $                           ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J )         +
     $                           TEMP1*DBLE( A( I, I ) ) +
     $                           ALPHA*TEMP2
                  END IF
   90          CONTINUE
  100       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*B*A + beta*C.
*
         DO 170, J = 1, N
            TEMP1 = ALPHA*DBLE( A( J, J ) )
            IF( BETA.EQ.ZERO )THEN
               DO 110, I = 1, M
                  C( I, J ) = TEMP1*B( I, J )
  110          CONTINUE
            ELSE
               DO 120, I = 1, M
                  C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
  120          CONTINUE
            END IF
            DO 140, K = 1, J - 1
               IF( UPPER )THEN
                  TEMP1 = ALPHA*A( K, J )
               ELSE
                  TEMP1 = ALPHA*DCONJG( A( J, K ) )
               END IF
               DO 130, I = 1, M
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  130          CONTINUE
  140       CONTINUE
            DO 160, K = J + 1, N
               IF( UPPER )THEN
                  TEMP1 = ALPHA*DCONJG( A( J, K ) )
               ELSE
                  TEMP1 = ALPHA*A( K, J )
               END IF
               DO 150, I = 1, M
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  150          CONTINUE
  160       CONTINUE
  170    CONTINUE
      END IF
*
      RETURN
*
*     End of ZHEMM .
*
      END