blob: 2dae80a474dfb313eaa6604ab49ac4461f483c5c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.4 Page 506 \n'); //Example 8.4
// Length of tube for required heating
// Surface temperature Ts at outlet section
//Operating Conditions
m = .01; //[kg/s] mass flow rate of water
Ti = 20+273; //[K] Inlet temp
To = 80+273; //[K] Outlet temperature
D = .06; //[m] Diameter
q = 2000; //[W/m^2] Heat flux to fluid
//Table A.4 Air Properties T = 323 K
cp = 4178; //[J/kg.K] specific heat
//Table A.4 Air Properties T = 353 K
k = .670; //[W/m] Thermal Conductivity
u = 352*10^-6; //[N.s/m^2] Viscosity
Pr = 2.2; //Prandtl Number
cp = 4178; //[J/kg.K] specific heat
L = m*cp*(To-Ti)/(%pi*D*q);
//Using equation 8.6
Re = m*4/(%pi*D*u);
printf("\n (a) Length of tube for required heating = %.2f m\n\n (b)As Reynolds Number is %i. The flow is laminar.",L,Re);
Nu = 4.364; //Nusselt Number
h = Nu*k/D; //[W/m^2.K] Heat convection Coefficient
Ts = q/h+To; //[K]
printf("\n Surface Temperature at tube outlet = %i degC",Ts-273);
//END
|