clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.4 Page 506 \n'); //Example 8.4 // Length of tube for required heating // Surface temperature Ts at outlet section //Operating Conditions m = .01; //[kg/s] mass flow rate of water Ti = 20+273; //[K] Inlet temp To = 80+273; //[K] Outlet temperature D = .06; //[m] Diameter q = 2000; //[W/m^2] Heat flux to fluid //Table A.4 Air Properties T = 323 K cp = 4178; //[J/kg.K] specific heat //Table A.4 Air Properties T = 353 K k = .670; //[W/m] Thermal Conductivity u = 352*10^-6; //[N.s/m^2] Viscosity Pr = 2.2; //Prandtl Number cp = 4178; //[J/kg.K] specific heat L = m*cp*(To-Ti)/(%pi*D*q); //Using equation 8.6 Re = m*4/(%pi*D*u); printf("\n (a) Length of tube for required heating = %.2f m\n\n (b)As Reynolds Number is %i. The flow is laminar.",L,Re); Nu = 4.364; //Nusselt Number h = Nu*k/D; //[W/m^2.K] Heat convection Coefficient Ts = q/h+To; //[K] printf("\n Surface Temperature at tube outlet = %i degC",Ts-273); //END