summaryrefslogtreecommitdiff
path: root/534/CH8/EX8.4/8_4_Solar_Energy.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH8/EX8.4/8_4_Solar_Energy.sce')
-rw-r--r--534/CH8/EX8.4/8_4_Solar_Energy.sce35
1 files changed, 35 insertions, 0 deletions
diff --git a/534/CH8/EX8.4/8_4_Solar_Energy.sce b/534/CH8/EX8.4/8_4_Solar_Energy.sce
new file mode 100644
index 000000000..2dae80a47
--- /dev/null
+++ b/534/CH8/EX8.4/8_4_Solar_Energy.sce
@@ -0,0 +1,35 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.4 Page 506 \n'); //Example 8.4
+// Length of tube for required heating
+// Surface temperature Ts at outlet section
+
+//Operating Conditions
+m = .01; //[kg/s] mass flow rate of water
+Ti = 20+273; //[K] Inlet temp
+To = 80+273; //[K] Outlet temperature
+D = .06; //[m] Diameter
+q = 2000; //[W/m^2] Heat flux to fluid
+
+//Table A.4 Air Properties T = 323 K
+cp = 4178; //[J/kg.K] specific heat
+//Table A.4 Air Properties T = 353 K
+k = .670; //[W/m] Thermal Conductivity
+u = 352*10^-6; //[N.s/m^2] Viscosity
+Pr = 2.2; //Prandtl Number
+cp = 4178; //[J/kg.K] specific heat
+
+L = m*cp*(To-Ti)/(%pi*D*q);
+
+//Using equation 8.6
+Re = m*4/(%pi*D*u);
+printf("\n (a) Length of tube for required heating = %.2f m\n\n (b)As Reynolds Number is %i. The flow is laminar.",L,Re);
+
+Nu = 4.364; //Nusselt Number
+h = Nu*k/D; //[W/m^2.K] Heat convection Coefficient
+
+Ts = q/h+To; //[K]
+
+printf("\n Surface Temperature at tube outlet = %i degC",Ts-273);
+
+//END \ No newline at end of file