blob: 064caa7f9b6e03793e3e8677f3a43a00601fe80a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 4.3 Page 224 \n'); //Example 4.2
// Temperature Distribution and Heat rate per unit length
Ts = 500; //[K] Temp of surface
Tsurr = 300; //[K] Temp of surrounding Air
h = 10; //[W/m^2.K] Heat Convection soefficient
//Support Column
delx = .25; //[m]
dely = .25; //[m]
k = 1; //[W/m.K] From Table A.3, Fireclay Brick at T = 478K
//Applying Eqn 4.42 and 4.48
A = [-4 1 1 0 0 0 0 0;
2 -4 0 1 0 0 0 0;
1 0 -4 1 1 0 0 0;
0 1 2 -4 0 1 0 0;
0 0 1 0 -4 1 1 0;
0 0 0 1 2 -4 0 1;
0 0 0 0 2 0 -9 1;
0 0 0 0 0 2 2 -9 ];
C = [-1000; -500; -500; 0; -500; 0; -2000; -1500 ];
T = inv(A)*C;
printf("\n Temp Distribution = ");
printf("\n %.2f K ", T);
q = 2*h*[(delx/2)*(Ts-Tsurr)+delx*(T(7)-Tsurr)+delx*(T(8)-Tsurr)/2];
printf("\n\n Heat rate from column to the airstream %.1f W/m ", q);
//END
|