clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 4.3 Page 224 \n'); //Example 4.2 // Temperature Distribution and Heat rate per unit length Ts = 500; //[K] Temp of surface Tsurr = 300; //[K] Temp of surrounding Air h = 10; //[W/m^2.K] Heat Convection soefficient //Support Column delx = .25; //[m] dely = .25; //[m] k = 1; //[W/m.K] From Table A.3, Fireclay Brick at T = 478K //Applying Eqn 4.42 and 4.48 A = [-4 1 1 0 0 0 0 0; 2 -4 0 1 0 0 0 0; 1 0 -4 1 1 0 0 0; 0 1 2 -4 0 1 0 0; 0 0 1 0 -4 1 1 0; 0 0 0 1 2 -4 0 1; 0 0 0 0 2 0 -9 1; 0 0 0 0 0 2 2 -9 ]; C = [-1000; -500; -500; 0; -500; 0; -2000; -1500 ]; T = inv(A)*C; printf("\n Temp Distribution = "); printf("\n %.2f K ", T); q = 2*h*[(delx/2)*(Ts-Tsurr)+delx*(T(7)-Tsurr)+delx*(T(8)-Tsurr)/2]; printf("\n\n Heat rate from column to the airstream %.1f W/m ", q); //END