diff options
Diffstat (limited to '534/CH4/EX4.3/4_3_Column_Matrix.sce')
-rw-r--r-- | 534/CH4/EX4.3/4_3_Column_Matrix.sce | 33 |
1 files changed, 33 insertions, 0 deletions
diff --git a/534/CH4/EX4.3/4_3_Column_Matrix.sce b/534/CH4/EX4.3/4_3_Column_Matrix.sce new file mode 100644 index 000000000..064caa7f9 --- /dev/null +++ b/534/CH4/EX4.3/4_3_Column_Matrix.sce @@ -0,0 +1,33 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 4.3 Page 224 \n'); //Example 4.2
+// Temperature Distribution and Heat rate per unit length
+
+Ts = 500; //[K] Temp of surface
+Tsurr = 300; //[K] Temp of surrounding Air
+h = 10; //[W/m^2.K] Heat Convection soefficient
+//Support Column
+delx = .25; //[m]
+dely = .25; //[m]
+k = 1; //[W/m.K] From Table A.3, Fireclay Brick at T = 478K
+
+//Applying Eqn 4.42 and 4.48
+A = [-4 1 1 0 0 0 0 0;
+ 2 -4 0 1 0 0 0 0;
+ 1 0 -4 1 1 0 0 0;
+ 0 1 2 -4 0 1 0 0;
+ 0 0 1 0 -4 1 1 0;
+ 0 0 0 1 2 -4 0 1;
+ 0 0 0 0 2 0 -9 1;
+ 0 0 0 0 0 2 2 -9 ];
+
+C = [-1000; -500; -500; 0; -500; 0; -2000; -1500 ];
+
+T = inv(A)*C;
+
+printf("\n Temp Distribution = ");
+printf("\n %.2f K ", T);
+
+q = 2*h*[(delx/2)*(Ts-Tsurr)+delx*(T(7)-Tsurr)+delx*(T(8)-Tsurr)/2];
+printf("\n\n Heat rate from column to the airstream %.1f W/m ", q);
+//END
\ No newline at end of file |