blob: 5dac1f964d9ac692e20fe4a9852566e3f5ef9ab0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
//===========================================================================
//chapter 6 example 18
clc;
clear all;
//variable declraration
Ts = 300; //number of turns in secondary winding
Tp = 1; //number of turns in primary winding
Is =5; //current in A
Zs =(1.5)+(%i*1) //secondary impedance Ω
MMF = 100;
Pi = 1.2; //iron loss in watts
KN = 300; //turn ratio
//calculations
KT =Ts/Tp; //turn ratio
Es = Is*Zs; //secondary voltage in volts
Es1 = sqrt(((real(Es))^2)+((imag(Es))^2));
Im =MMF/Tp; //magnetising current in A
E = Pi/Es1; //energy compnent of exciting current on secondary side in A
Ie = KT*E; //energy compnent of exciting current on primary side in A
I0 = Im+%i*Ie; //exciting current on primary side in A
I01 =sqrt(((real(I0))^2)+((imag(I0))^2));
alpha = atan(Ie/Im);
alpha1 = (alpha*180)/%pi;
theta = atan(imag(Zs)/real(Zs));
theta1 = (theta*180)/%pi;
KC = KT+((I01*sin(((theta1+alpha1)*%pi)/180))/Is); //actual current ratio
e = ((KN-KC)/KC)*100; //percentage ratio error in %
b = (I01*cos((((theta1+alpha1)*%pi)/180)))/(KT*Is); //phase angle in radians
b1 = b*(180/%pi);
//result
mprintf("percentage ratio error =%3.2f percentage ",e);
mprintf("\nphase angle = %3.2f °",b1);
|