//=========================================================================== //chapter 6 example 18 clc; clear all; //variable declraration Ts = 300; //number of turns in secondary winding Tp = 1; //number of turns in primary winding Is =5; //current in A Zs =(1.5)+(%i*1) //secondary impedance ‎Ω MMF = 100; Pi = 1.2; //iron loss in watts KN = 300; //turn ratio //calculations KT =Ts/Tp; //turn ratio Es = Is*Zs; //secondary voltage in volts Es1 = sqrt(((real(Es))^2)+((imag(Es))^2)); Im =MMF/Tp; //magnetising current in A E = Pi/Es1; //energy compnent of exciting current on secondary side in A Ie = KT*E; //energy compnent of exciting current on primary side in A I0 = Im+%i*Ie; //exciting current on primary side in A I01 =sqrt(((real(I0))^2)+((imag(I0))^2)); alpha = atan(Ie/Im); alpha1 = (alpha*180)/%pi; theta = atan(imag(Zs)/real(Zs)); theta1 = (theta*180)/%pi; KC = KT+((I01*sin(((theta1+alpha1)*%pi)/180))/Is); //actual current ratio e = ((KN-KC)/KC)*100; //percentage ratio error in % b = (I01*cos((((theta1+alpha1)*%pi)/180)))/(KT*Is); //phase angle in radians b1 = b*(180/%pi); //result mprintf("percentage ratio error =%3.2f percentage ",e); mprintf("\nphase angle = %3.2f °",b1);