blob: 2afb0db706e1686b55a2685b6e88c0e66b8b0c77 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 5: ELECTRIC TRACTION-SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT
// EXAMPLE : 5.7 :
// Page number 782
clear ; clc ; close ; // Clear the work space and console
// Given data
W = 203.0 // Weight of motor-coach train(tonne)
no = 4.0 // Number of motors
T = 5130.0 // Shaft torque(N-m)
V_m = 42.0 // Maximum speed(kmph)
G = 100.0/250 // Gradient
gamma = 3.5 // Gear ratio
n = 0.93 // Gear efficiency
D = 91.5/100 // Wheel diameter(m)
r = 45.0 // Train resistance(N/tonne)
I = 10.0 // Rotational inertia(%)
// Calculations
W_e = W*(100+I)/100 // Accelerating weight of train(tonne)
F_t = n*4*T*2*gamma/D // Tractive effort(N)
alpha = (F_t-W*r-98.1*W*G)/(277.8*W_e) // Acceleration(km phps)
t_1 = V_m/alpha // Time taken by train to attain speed(sec)
// Results
disp("PART IV - EXAMPLE : 5.7 : SOLUTION :-")
printf("\nTime taken by train to attain speed, t_1 = %.1f sec", t_1)
|