// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART IV : UTILIZATION AND TRACTION // CHAPTER 5: ELECTRIC TRACTION-SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT // EXAMPLE : 5.7 : // Page number 782 clear ; clc ; close ; // Clear the work space and console // Given data W = 203.0 // Weight of motor-coach train(tonne) no = 4.0 // Number of motors T = 5130.0 // Shaft torque(N-m) V_m = 42.0 // Maximum speed(kmph) G = 100.0/250 // Gradient gamma = 3.5 // Gear ratio n = 0.93 // Gear efficiency D = 91.5/100 // Wheel diameter(m) r = 45.0 // Train resistance(N/tonne) I = 10.0 // Rotational inertia(%) // Calculations W_e = W*(100+I)/100 // Accelerating weight of train(tonne) F_t = n*4*T*2*gamma/D // Tractive effort(N) alpha = (F_t-W*r-98.1*W*G)/(277.8*W_e) // Acceleration(km phps) t_1 = V_m/alpha // Time taken by train to attain speed(sec) // Results disp("PART IV - EXAMPLE : 5.7 : SOLUTION :-") printf("\nTime taken by train to attain speed, t_1 = %.1f sec", t_1)