blob: 1b26cb7d0229182cff9e03cd11911e0e24e70f33 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
// EXAMPLE : 1.31 :
// Page number 710-711
clear ; clc ; close ; // Clear the work space and console
// Given data
N_1 = 1000.0 // Speed of dc shunt motor(rpm)
N_2 = 400.0 // Speed of dc shunt motor(rpm)
R = 14.0 // Resistance connected across armature(ohm)
E_1 = 210.0 // EMF induced in armature at 1000 rpm(V)
J = 17.0 // Moment of inertia(kg-m^2)
T_F = 1.0 // Frictional torque(kg-m)
// Calculations
g = 9.81
output = E_1**2/R // Motor output(W)
T_E = output*60/(2*%pi*N_1*g) // Electric braking torque(kg-m)
w_1 = 2*%pi*N_1/60 // ω_1(rad/sec)
k = T_E/w_1
t = J/(g*k)*log(N_1/N_2) // Time taken for dc shunt motor to fall in speed with constant excitation(sec)
kw = T_E*N_2/N_1 // kω
t_F = J/(g*k)*log((1+T_E)/(1+kw)) // Time for the same fall if frictional torque exists(sec)
// Results
disp("PART IV - EXAMPLE : 1.31 : SOLUTION :-")
printf("\nTime taken for dc shunt motor to fall in speed with constant excitation, t = %.1f sec", t)
printf("\nTime for the same fall if frictional torque exists, t = %.1f sec", t_F)
|