diff options
Diffstat (limited to '3472/CH39/EX39.31/Example39_31.sce')
-rw-r--r-- | 3472/CH39/EX39.31/Example39_31.sce | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/3472/CH39/EX39.31/Example39_31.sce b/3472/CH39/EX39.31/Example39_31.sce new file mode 100644 index 000000000..1b26cb7d0 --- /dev/null +++ b/3472/CH39/EX39.31/Example39_31.sce @@ -0,0 +1,34 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
+
+// EXAMPLE : 1.31 :
+// Page number 710-711
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+N_1 = 1000.0 // Speed of dc shunt motor(rpm)
+N_2 = 400.0 // Speed of dc shunt motor(rpm)
+R = 14.0 // Resistance connected across armature(ohm)
+E_1 = 210.0 // EMF induced in armature at 1000 rpm(V)
+J = 17.0 // Moment of inertia(kg-m^2)
+T_F = 1.0 // Frictional torque(kg-m)
+
+// Calculations
+g = 9.81
+output = E_1**2/R // Motor output(W)
+T_E = output*60/(2*%pi*N_1*g) // Electric braking torque(kg-m)
+w_1 = 2*%pi*N_1/60 // ω_1(rad/sec)
+k = T_E/w_1
+t = J/(g*k)*log(N_1/N_2) // Time taken for dc shunt motor to fall in speed with constant excitation(sec)
+kw = T_E*N_2/N_1 // kω
+t_F = J/(g*k)*log((1+T_E)/(1+kw)) // Time for the same fall if frictional torque exists(sec)
+
+// Results
+disp("PART IV - EXAMPLE : 1.31 : SOLUTION :-")
+printf("\nTime taken for dc shunt motor to fall in speed with constant excitation, t = %.1f sec", t)
+printf("\nTime for the same fall if frictional torque exists, t = %.1f sec", t_F)
|