// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART IV : UTILIZATION AND TRACTION // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS // EXAMPLE : 1.31 : // Page number 710-711 clear ; clc ; close ; // Clear the work space and console // Given data N_1 = 1000.0 // Speed of dc shunt motor(rpm) N_2 = 400.0 // Speed of dc shunt motor(rpm) R = 14.0 // Resistance connected across armature(ohm) E_1 = 210.0 // EMF induced in armature at 1000 rpm(V) J = 17.0 // Moment of inertia(kg-m^2) T_F = 1.0 // Frictional torque(kg-m) // Calculations g = 9.81 output = E_1**2/R // Motor output(W) T_E = output*60/(2*%pi*N_1*g) // Electric braking torque(kg-m) w_1 = 2*%pi*N_1/60 // ω_1(rad/sec) k = T_E/w_1 t = J/(g*k)*log(N_1/N_2) // Time taken for dc shunt motor to fall in speed with constant excitation(sec) kw = T_E*N_2/N_1 // kω t_F = J/(g*k)*log((1+T_E)/(1+kw)) // Time for the same fall if frictional torque exists(sec) // Results disp("PART IV - EXAMPLE : 1.31 : SOLUTION :-") printf("\nTime taken for dc shunt motor to fall in speed with constant excitation, t = %.1f sec", t) printf("\nTime for the same fall if frictional torque exists, t = %.1f sec", t_F)