summaryrefslogtreecommitdiff
path: root/534/CH6
diff options
context:
space:
mode:
Diffstat (limited to '534/CH6')
-rw-r--r--534/CH6/EX6.1/6_1_Theoretical_Problem.sce8
-rw-r--r--534/CH6/EX6.2/6_2_Napthalene_Sublimation.sce19
-rw-r--r--534/CH6/EX6.3/6_3_Convection_Coefficient.sce18
-rw-r--r--534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce37
-rw-r--r--534/CH6/EX6.5/6_5_Heat_flux_Plate.sce24
-rw-r--r--534/CH6/EX6.6/6_6_Molar_flux_Plate.sce36
-rw-r--r--534/CH6/EX6.7/6_7_Evaporative_Cooling.sce26
7 files changed, 168 insertions, 0 deletions
diff --git a/534/CH6/EX6.1/6_1_Theoretical_Problem.sce b/534/CH6/EX6.1/6_1_Theoretical_Problem.sce
new file mode 100644
index 000000000..03c38fd2a
--- /dev/null
+++ b/534/CH6/EX6.1/6_1_Theoretical_Problem.sce
@@ -0,0 +1,8 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.1 Page 355 \n')// Example 6.1
+//Theoretical Problem
+
+printf('\n The given example is theoretical and does not involve any numerical computation')
+
+//End
diff --git a/534/CH6/EX6.2/6_2_Napthalene_Sublimation.sce b/534/CH6/EX6.2/6_2_Napthalene_Sublimation.sce
new file mode 100644
index 000000000..e8bcdb3d4
--- /dev/null
+++ b/534/CH6/EX6.2/6_2_Napthalene_Sublimation.sce
@@ -0,0 +1,19 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.2 Page 356 \n'); //Example 6.2
+// Napthalene Sublimation rate per unit length
+
+//Operating Conditions
+
+h = .05; //[W/m^2.K] Heat Convection coefficient
+D = .02; //[m] Diameter of cylinder
+Cas = 5*10^-6; //[kmol/m^3] Surface molar Conc
+Casurr = 0; //[kmol/m^3] Surrounding molar Conc
+Ma = 128; //[Kg/kmol] Molecular weight
+
+//From Eqn 6.15
+Na = h*(%pi*D)*(Cas-Casurr);
+na = Ma*Na;
+
+printf("\n\n Mass sublimation Rate is = %.2e kg/s.m ", na);
+//END \ No newline at end of file
diff --git a/534/CH6/EX6.3/6_3_Convection_Coefficient.sce b/534/CH6/EX6.3/6_3_Convection_Coefficient.sce
new file mode 100644
index 000000000..92f162cc5
--- /dev/null
+++ b/534/CH6/EX6.3/6_3_Convection_Coefficient.sce
@@ -0,0 +1,18 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.3 Page 357 \n'); //Example 6.3
+// Convection Mass Transfer coefficient
+
+//Operating Conditions
+
+Dab = .288*10^-4; //[m^2/s] Table A.8 water vapor-air (319K)
+pas = .1; //[atm] Partial pressure at surface
+pasurr = .02; //[atm] Partial pressure at infinity
+y0 = .003; //[m] Tangent at y = 0 intercepts y axis at 3 mm
+
+//From Measured Vapor Pressure Distribution
+delp = (0 - pas)/(y0 - 0); //[atm/m]
+hmx = -Dab*delp/(pas - pasurr); //[m/s]
+
+printf("\n\n Convection Mass Transfer coefficient at prescribed location = %.4f m/s", hmx);
+//END \ No newline at end of file
diff --git a/534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce b/534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce
new file mode 100644
index 000000000..276c4b2f0
--- /dev/null
+++ b/534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce
@@ -0,0 +1,37 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.4 Page 362 \n'); //Example 6.4
+// Convection Mass Transfer coefficient
+
+//Operating Conditions
+v = 1; //[m/s] Velocity of water
+L = 0.6; //[m] Plate length
+Tw1 = 300; //[K]
+Tw2 = 350; //[K]
+//Coefficients [W/m^1.5 . K]
+Clam1 = 395;
+Cturb1 = 2330;
+Clam2 = 477;
+Cturb2 = 3600;
+
+//Water Properties at T = 300K
+p1 = 997; //[kg/m^3] Density
+u1 = 855*10^-6; //[N.s/m^2] Viscosity
+//Water Properties at T = 350K
+p2 = 974; //[kg/m^3] Density
+u2 = 365*10^-6; //[N.s/m^2] Viscosity
+
+
+Rec = 5*10^5; //Transititon Reynolds Number
+xc1 = Rec*u1/(p1*v); //[m]Transition length at 300K
+xc2 = Rec*u2/(p2*v); //[m]Transition length at 350K
+
+//Integrating eqn 6.14
+//At 300 K
+h1 = [Clam1*xc1^.5/.5 + Cturb1*(L^.8-xc1^.8)/.8]/L;
+
+//At 350 K
+h2 = [Clam2*xc2^.5/.5 + Cturb2*(L^.8-xc2^.8)/.8]/L;
+
+printf("\n\n Average Convection Coefficient over the entire plate for the two temperatures at 300K = %.2f W/m^2.K and at 350K = %.2f W/m^2.K", h1,h2);
+//END \ No newline at end of file
diff --git a/534/CH6/EX6.5/6_5_Heat_flux_Plate.sce b/534/CH6/EX6.5/6_5_Heat_flux_Plate.sce
new file mode 100644
index 000000000..4474214ba
--- /dev/null
+++ b/534/CH6/EX6.5/6_5_Heat_flux_Plate.sce
@@ -0,0 +1,24 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.5 Page 372 \n'); //Example 6.5
+// Heat Flux to blade when surface temp is reduced
+// Heat flux to a larger turbine blade
+
+//Operating Conditions
+v = 160; //[m/s] Velocity of air
+L = 0.04; //[m] Blade length
+Tsurr = 1150+273; //[K]
+Ts = 800+273; //[K] Surface Temp
+q = 95000; //[W/m^2] Original heat flux
+
+//Case 1
+Ts1 = 700+273; //[K] Surface Temp
+q1 = q*(Tsurr-Ts1)/(Tsurr-Ts);
+
+//Case 2
+L2 = .08; //[m] Length
+q2 = q*L/L2; //[W/m^2] Heat flux
+
+
+printf("\n\n (a) Heat Flux to blade when surface temp is reduced = %i KW/m^2 \n (b) Heat flux to a larger turbine blade = %.2f KW/m^2", q1/1000,q2/1000);
+//END \ No newline at end of file
diff --git a/534/CH6/EX6.6/6_6_Molar_flux_Plate.sce b/534/CH6/EX6.6/6_6_Molar_flux_Plate.sce
new file mode 100644
index 000000000..8557b8d8f
--- /dev/null
+++ b/534/CH6/EX6.6/6_6_Molar_flux_Plate.sce
@@ -0,0 +1,36 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.6 Page 379 \n'); //Example 6.6
+// Water vapor conc and flux associated with the same location on larger surface of the same shape
+
+//Operating Conditions
+v = 100; //[m/s] Velocity of air
+Tsurr = 20+273; //[K] Surrounding Air Temperature
+L1 = 1; //[m] solid length
+Ts = 80+273; //[K] Surface Temp
+qx = 10000; //[W/m^2] heat flux at a point x
+Txy = 60+273; //[K] Temp in boundary layer above the point
+
+//Table A.4 Air Properties at T = 323K
+v = 18.2*10^-6; //[m^2/s] Viscosity
+k = 28*10^-3; //[W/m.K] Conductivity
+Pr = 0.7; //Prandttl Number
+//Table A.6 Saturated Water Vapor at T = 323K
+pasat = 0.082; //[kg/m^3]
+Ma = 18; //[kg/kmol] Molecular mass of water vapor
+//Table A.8 Water Vapor-air at T = 323K
+Dab = .26*10^-4; //[m^2/s]
+
+//Case 1
+Casurr = 0;
+Cas = pasat/Ma; //[kmol/m^3] Molar conc of saturated water vapor at surface
+Caxy = Cas + (Casurr - Cas)*(Txy - Ts)/(Tsurr - Ts);
+
+//Case 2
+L2 = 2;
+hm = L1/L2*Dab/k*qx/(Ts-Tsurr);
+Na = hm * (Cas - Casurr);
+
+
+printf("\n (a) Water vapor Concentration above the point = %.4f Kmol/m^3 \n (b) Molar flux to a larger surface = %.2e Kmol/s.m^2", Caxy,Na);
+//END \ No newline at end of file
diff --git a/534/CH6/EX6.7/6_7_Evaporative_Cooling.sce b/534/CH6/EX6.7/6_7_Evaporative_Cooling.sce
new file mode 100644
index 000000000..d9ce18e61
--- /dev/null
+++ b/534/CH6/EX6.7/6_7_Evaporative_Cooling.sce
@@ -0,0 +1,26 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.7 Page 383 \n'); //Example 6.7
+// Steady State Temperature of Beverage
+
+//Operating Conditions
+Tsurr = 40+273; //[K] Surrounding Air Temperature
+//Volatile Wetting Agent A
+hfg = 100; //[kJ/kg]
+Ma = 200; //[kg/kmol] Molecular mass
+pasat = 5000; //[N/m^2] Saturate pressure
+Dab = .2*10^-4; //[m^2/s] Diffusion coefficient
+
+//Table A.4 Air Properties at T = 300K
+p = 1.16; //[kg/m^3] Density
+cp = 1.007; //[kJ/kg.K] Specific Heat
+alpha = 22.5*10^-6; //[m^2/s]
+R = 8.314; //[kJ/kmol] Universal Gas Constt
+
+//Applying Eqn 6.65 and setting pasurr = 0
+// Ts^2 - Tsurr*Ts + B = 0 , where the coefficient B is
+B = Ma*hfg*pasat*10^-3/[R*p*cp*(alpha/Dab)^(2/3)];
+Ts = [Tsurr + sqrt(Tsurr^2 - 4*B)]/2;
+
+printf("\n Steady State Surface Temperature of Beverage = %.1f degC", Ts-273);
+//END \ No newline at end of file