summaryrefslogtreecommitdiff
path: root/534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce')
-rw-r--r--534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce37
1 files changed, 37 insertions, 0 deletions
diff --git a/534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce b/534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce
new file mode 100644
index 000000000..276c4b2f0
--- /dev/null
+++ b/534/CH6/EX6.4/6_4_Convection_Coeff_Plate.sce
@@ -0,0 +1,37 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.4 Page 362 \n'); //Example 6.4
+// Convection Mass Transfer coefficient
+
+//Operating Conditions
+v = 1; //[m/s] Velocity of water
+L = 0.6; //[m] Plate length
+Tw1 = 300; //[K]
+Tw2 = 350; //[K]
+//Coefficients [W/m^1.5 . K]
+Clam1 = 395;
+Cturb1 = 2330;
+Clam2 = 477;
+Cturb2 = 3600;
+
+//Water Properties at T = 300K
+p1 = 997; //[kg/m^3] Density
+u1 = 855*10^-6; //[N.s/m^2] Viscosity
+//Water Properties at T = 350K
+p2 = 974; //[kg/m^3] Density
+u2 = 365*10^-6; //[N.s/m^2] Viscosity
+
+
+Rec = 5*10^5; //Transititon Reynolds Number
+xc1 = Rec*u1/(p1*v); //[m]Transition length at 300K
+xc2 = Rec*u2/(p2*v); //[m]Transition length at 350K
+
+//Integrating eqn 6.14
+//At 300 K
+h1 = [Clam1*xc1^.5/.5 + Cturb1*(L^.8-xc1^.8)/.8]/L;
+
+//At 350 K
+h2 = [Clam2*xc2^.5/.5 + Cturb2*(L^.8-xc2^.8)/.8]/L;
+
+printf("\n\n Average Convection Coefficient over the entire plate for the two temperatures at 300K = %.2f W/m^2.K and at 350K = %.2f W/m^2.K", h1,h2);
+//END \ No newline at end of file