diff options
Diffstat (limited to '3872/CH3')
22 files changed, 410 insertions, 0 deletions
diff --git a/3872/CH3/EX3.1/Ex3_1.jpg b/3872/CH3/EX3.1/Ex3_1.jpg Binary files differnew file mode 100644 index 000000000..15f9d1395 --- /dev/null +++ b/3872/CH3/EX3.1/Ex3_1.jpg diff --git a/3872/CH3/EX3.1/Ex3_1.sce b/3872/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..bbb2f21ef --- /dev/null +++ b/3872/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,32 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.1
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sr=20 //rated input power in kVA
+E1rated=480 //Rated voltage across winding 1 in Volts
+E2rated=120 //Rated voltage across winding 2 in Volts
+F=60 //frequency in Hertz
+Sl=15 //Load power in kVA
+pf = 0.8 // power factor lagging
+E2=118 //Load voltage in Volts
+
+at=E1rated/E2rated // Calculation of turns ratio
+E1=at*E2 // voltage across winding 1 in Volts
+theta=acos(pf)
+S2=Sl*exp(%i*theta)*1000 //complex load power in VA
+I2=conj(S2)/conj(E2) // Load current in Ampere
+Z2=E2/I2 // Load impedance in Ohms
+Z2r=at^2*Z2 //Load impedance referred to the 480V in Ohms
+S1=S2 //since complex power entering winding 1 is equal to the complex power leaving winding 2
+P1=real(S1)
+Q1=imag(S1)
+
+printf('The voltage across the 480V winding is %d Volts\n',E1);
+printf('The magnitude of load impedance is %.4f Ohms and its angle is %.4f degree\n',abs(Z2),atand(imag(Z2),real(Z2)));
+printf('The magnitude of load impedance referred to the 480V winding is %.4f Ohms and its angle is %.4f degree\n',abs(Z2r),atand(imag(Z2r),real(Z2r)));
+printf('The real power supplied to the 480V winding is %d W\n',P1);
+printf('The reactive power supplied to the 480V winding is %d VAR\n',Q1);
diff --git a/3872/CH3/EX3.11/Ex3_11.jpg b/3872/CH3/EX3.11/Ex3_11.jpg Binary files differnew file mode 100644 index 000000000..7e5580fad --- /dev/null +++ b/3872/CH3/EX3.11/Ex3_11.jpg diff --git a/3872/CH3/EX3.11/Ex3_11.sce b/3872/CH3/EX3.11/Ex3_11.sce new file mode 100644 index 000000000..8bd926942 --- /dev/null +++ b/3872/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,36 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.11
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sr=20 //rated power of transformer in kVA
+E1=120 //voltage at 120 Volt winding
+E2=480 //voltage induced across the 480 Volt winding
+Zleak=0.0729*exp(%i*78.13*(%pi/180)) //per unit leakage impedance of two winding transformer
+
+EH=E1+E2 //Voltage at the high Voltage terminals
+I2=((Sr*1000)/E2) //rated current of 480 Volt winding in Ampere
+SH=EH*I2 //kVA rating of 480 Volt winding
+I1=(E2/E1)*I2 //Current induced in the 120 Volt winding
+Ix=I1+I2
+Sx=E1*Ix //auto transformer rated power
+ZbaseHold=((E2)^2)/(Sr*1000) //base impedance at high voltage terminal of normal transformer
+ZbaseHnew=((EH)^2)/(Sx) //base impedance at high voltage terminal of autotransformer
+Zpunew=(0.0729*exp(%i*78.13*(%pi/180)))*(ZbaseHold/ZbaseHnew) //per unit impedance of transformer
+
+printf('The Voltage at the high voltage terminals is %.4f Volts\n',EH);
+printf('The Voltage at the low voltage terminals is %.4f Volts\n',E1);
+printf('The auto transformer rated power is %.4f kVA\n',Sx/1000);
+printf('The magnitude of impedance of transformer in per unit is %.4f and its angle is %.4f degrees\n',abs(Zpunew),atand(imag(Zpunew),real(Zpunew)));
+
+
+
+
+
+
+
+
+
diff --git a/3872/CH3/EX3.12/Ex3_12.jpg b/3872/CH3/EX3.12/Ex3_12.jpg Binary files differnew file mode 100644 index 000000000..4adf9b286 --- /dev/null +++ b/3872/CH3/EX3.12/Ex3_12.jpg diff --git a/3872/CH3/EX3.12/Ex3_12.sce b/3872/CH3/EX3.12/Ex3_12.sce new file mode 100644 index 000000000..4d929c655 --- /dev/null +++ b/3872/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,45 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.12
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sr=1000 //rated power of transformer in kVA
+V1rated=13.8 //rated voltage of delta winding of transformer in kV
+V2rated=345 //rated voltage of wye winding of transformer in kV
+Zeq=%i*0.10 //per unit equivalent impedance
+Sb=500 //rated power of transformer in MVA
+VbXLL=13.8 //line to line X terminal base voltage in kV
+VbHLL=345 //line to line H terminal base voltage in kV
+
+
+at=(V1rated/V2rated) //ratio of transformer corresponding to rated tap
+b=(VbXLL/VbHLL)
+c=at/b
+Zpunew=Zeq*(Sb/Sr) //per unit equivalent impedance
+at10=(V1rated/(V2rated*0.9)) //ratio of transformer corresponding to 10 percentage tap
+b10=(V1rated/V2rated)
+c10=(at10/b10)
+Yeq=(1/Zpunew)
+Y12=c10*Yeq //admittance at node 12 in per unit
+Y11=(1-c10)*Yeq //admittance at node 11 in per unit
+Y22=(((abs(c10))^2)-c10)*Yeq //admittance at node 22 in per unit
+
+
+printf('The per unit equivalent impedance is %.4fi pu\n',imag(Zpunew));
+printf('The ratio of transformer corresponding to rated tap is %.4f\n',at);
+printf('The ratio of transformer corresponding to 10 percentage tap is %.4f\n',at10);
+printf('The admittance at node 12 is %.4fi per unit\n',imag(Y12));
+printf('The admittance at node 11 is %.4fi per unit\n',imag(Y11));
+printf('The admittance at node 22 is %.4fi per unit\n',imag(Y22));
+
+
+
+
+
+
+
+
+
diff --git a/3872/CH3/EX3.13/Ex3_13.jpg b/3872/CH3/EX3.13/Ex3_13.jpg Binary files differnew file mode 100644 index 000000000..e46d89c9f --- /dev/null +++ b/3872/CH3/EX3.13/Ex3_13.jpg diff --git a/3872/CH3/EX3.13/Ex3_13.sce b/3872/CH3/EX3.13/Ex3_13.sce new file mode 100644 index 000000000..2f81d801d --- /dev/null +++ b/3872/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,60 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.13
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+XL1=0.25 //Positive sequence series reactance at parallel line 1 in per unit
+XL2=0.20 //Positive sequence series reactance at parallel line 2 in per unit
+Cm=0.9524
+
+Y11L1m=(1/(%i*.25)) //The voltage magnitude regulating transformer admittance Y11L1m
+Y22L1m=(Cm^2)*Y11L1m //The voltage magnitude regulating transformer admittance Y22L1m
+Y12L1m=(-Cm)*Y11L1m //The voltage magnitude regulating transformer admittance Y12L1m
+Y21L1m=(-Cm)*Y11L1m //The voltage magnitude regulating transformer admittance Y21L1m
+Y11L2=(1/(%i*.20))
+Y22L2=(1/(%i*.20))
+Y12L2=-Y11L2
+Y21L2=-Y11L2
+Y11m=Y11L1m+Y11L2 //parallel admittance Y11m
+Y22m=Y22L1m+Y22L2 //parallel admittance Y11m
+Y12m=Y12L1m+Y12L2 //parallel admittance Y11m
+Y21m=Y12L1m+Y12L2 //parallel admittance Y11m
+Y11L1a=(1/(%i*.25)) //The phase angle regulating transformer admittance Y11L1a
+Ca=1.0*(exp(%i*(-3)*(%pi/180)))
+Y22L1a=((abs(Ca))^2)*(-%i*4.0) //The phase angle regulating transformer admittance Y22L1a
+Y12L1a= (-Ca)*(-%i*4.0) //The phase angle regulating transformer admittance Y12L1a
+Y21L1a= (-conj(Ca))*(-%i*4.0) //The phase angle regulating transformer admittance Y21L1a
+Y11a=Y11L1a+Y11L2 //parallel admittance Y11a
+Y22a=Y22L1a+Y22L2 //parallel admittance Y22a
+Y12a=Y12L1a+Y12L2 //parallel admittance Y12a
+Y21a=Y21L1a+Y21L2 //parallel admittance Y21a
+
+disp('CASE-a:')
+disp('The admittance parameters of the regulating transformer in series with line 1 are:')
+printf('Y11L1m = %.4fi per unit Y22L1m = %.4fi per unit\n',imag(Y11L1m),imag(Y22L1m));
+printf('Y12L1m = %.4fi per unit\ Y21L1m = %.4fi per unit\n',imag(Y12L1m),imag(Y21L1m));
+
+disp('The admittance parameters of the regulating transformer in series with line 2 are:')
+printf('Y11L2 = %.4fi per unit Y22L2 = %.4fi per unit\n',imag(Y11L2),imag(Y22L2));
+printf('Y12L2 = %.4fi per unit Y21L2 = %.4fi per unit\n',imag(Y12L2),imag(Y21L2));
+
+disp('The admittance parameters of combined admittances for line 1& 2 in parallel are:')
+printf('Y11m = %.4fi per unit Y22m = %.4fi per unit\n',imag(Y11m),imag(Y22m));
+printf('Y12m = %.4fi per unit Y21m = %.4fi per unit\n',imag(Y12m),imag(Y21m));
+
+disp('CASE-b:')
+disp('The admittance parameters of the regulating transformer in series with line 1 are:')
+printf('Y11L1a = %.4fi per unit Y22L1a = %.4fi per unit\n',imag(Y11L1a),imag(Y22L1a));
+printf('Y12L1a = %.4f+%.4fi per unit ',real(Y12L1a),imag(Y12L1a));
+printf('Y21L1a = %.4f+%.4fi per unit\n',real(Y21L1a),imag(Y21L1a));
+
+disp('The admittance parameters of combined admittances for line 1& 2 in parallel are:')
+printf('Y11a = %.4fi per unit Y22a = %.4fi per unit\n',imag(Y11a),imag(Y22a));
+printf('Y12a = %.4f+%.4fi per unit ',real(Y12a),imag(Y12a));
+printf('Y21a = %.4f+%.4fi per unit\n',real(Y21a),imag(Y21a));
+
+
+
diff --git a/3872/CH3/EX3.2/Ex3_2.jpg b/3872/CH3/EX3.2/Ex3_2.jpg Binary files differnew file mode 100644 index 000000000..31bc3db96 --- /dev/null +++ b/3872/CH3/EX3.2/Ex3_2.jpg diff --git a/3872/CH3/EX3.2/Ex3_2.sce b/3872/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..c1c78023e --- /dev/null +++ b/3872/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,36 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.2
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Srated=20 //rated input power in kVA
+E1rated=480 //Rated voltage across winding 1 in Volts
+E2rated=120 //Rated voltage across winding 2 in Volts
+F=60 //frequency in Hertz
+Sl=15 //Load power in kVA
+pf = 0.8 //power factor lagging
+E2=118 //Load voltage in Volts
+V1s=35 //Short circuit voltage in Volts
+P1=300 //Short circuit power in Watts
+I2=12 //Open circuit Winding 2 current in Amps
+P2=200 //Open circuit power in Watts
+
+I1rated=(Srated*1000)/E1rated //Rated current for winding 1
+Req1=P1/(I1rated)^2 //Equivalent resistance of winding 1 in Ohms
+Zeqm=abs(V1s/I1rated) //Magnitude of equivalent impedance of winding 1 in Ohms
+Xeq1=sqrt(Zeqm^2-Req1^2) //Equivalent reactance of winding 1 in Ohms
+Zeq1=Req1+%i*Xeq1 //Equivalent impedance of winding 1 in Ohms
+V1o=E1rated //Since winding 1 open circuit voltage is equal to winding 1 rated volgage
+Gc=P2/V1o^2
+Ymm=abs((E2rated/E1rated)*I2/V1o)
+Bm=sqrt(Ymm^2-Gc^2)
+Ym=Gc-%i*Bm //Shunt admittance in Siemens
+
+printf('The rated current for winding 1 is %.4f Ampere\n',I1rated);
+printf('The Equivalent resistance of winding 1 is %.4f Ohms\n',Req1);
+printf('The Equivalent reactance of winding 1 is %.4f Ohms\n',Xeq1);
+printf('The magnitude of Equivalent impedance of winding 1 is %.4f Ohms and its angle is %.4f degree\n',abs(Zeq1),atand(imag(Zeq1),real(Zeq1)));
+printf('The magnitude of Shunt admittance is %.4f Siemens and its angle is %.4f degree \n',abs(Ym),atand(imag(Ym),real(Ym)));
diff --git a/3872/CH3/EX3.3/Ex3_3.jpg b/3872/CH3/EX3.3/Ex3_3.jpg Binary files differnew file mode 100644 index 000000000..1ae1787b1 --- /dev/null +++ b/3872/CH3/EX3.3/Ex3_3.jpg diff --git a/3872/CH3/EX3.3/Ex3_3.sce b/3872/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..b5e05b0a5 --- /dev/null +++ b/3872/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,24 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.3
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sb=20 //Base input power in kVA
+Vb1=480 //Base voltage across winding 1 in Volts
+Vb2=120 //Base voltage across winding 2 in Volts
+f=60 //frequency in Hertz
+Zeq2=0.0525*exp(%i*78.13*%pi/180) //Equivalent impedance of the transformer referred to 120 Volt winding
+
+
+Zb2=((Vb2^2)/(Sb*1000)) //Base impedance on the 120 Volts side of the transformer
+Zeq2pu=Zeq2/Zb2 //Per unit leakage impdeandce referred to winding 2
+Zeq1=((Vb1/Vb2)^2)*Zeq2 //leakage impdeandce referred to winding 1
+Zb1=((Vb1^2)/(Sb*1000)) //Base impedance on the 480 Volts side of the transformer
+Zeq1pu=Zeq1/Zb1 //Per unit leakage impdeandce referred to winding 1
+
+printf('The magnitude of per unit leakage impdandce referred to winding 2 is %.4f pu and its angle is %.4f degree\n',abs(Zeq2pu),atand(imag(Zeq2pu),real(Zeq2pu)));
+printf('The magnitude of per unit leakage impedance referred to winding 1 is %.4f pu and its angle is %.4f degree\n',abs(Zeq1pu),atand(imag(Zeq1pu),real(Zeq1pu)));
+
diff --git a/3872/CH3/EX3.4/Ex3_4.jpg b/3872/CH3/EX3.4/Ex3_4.jpg Binary files differnew file mode 100644 index 000000000..97d43b769 --- /dev/null +++ b/3872/CH3/EX3.4/Ex3_4.jpg diff --git a/3872/CH3/EX3.4/Ex3_4.sce b/3872/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..4d87a97d8 --- /dev/null +++ b/3872/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,47 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.4
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sb=30 //Base input power in kVA
+Vg=220 //Actual value of source voltage
+Vb1=240 //Base voltage across primary of transformer 1 in Volts
+VT1p=240 //Rated voltage of primary of transformer 1 in Volts
+VT1s=480 //Rated voltage of secondary of transformer 1 in Volts
+VT2p=460 //Rated voltage of primary of transformer 2 in Volts
+VT2s=115 //Rated voltage of secondary of transformer 2 in Volts
+Xline=2 //Line reactance in Ohms
+Zload=.9+%i*.2 //Load impedance in Ohms
+XT1=0.1 //reactance of transformer 1 in per unit
+XT2=0.1 //reactance of transformer 2 in per unit
+Sb1=30 //MVA rating of transformer 1
+Sb2=20 //MVA rating of transformer 2
+Vspu=Vg/Vb1; //per unit source voltage
+
+Vb2=(VT1s/VT1p)*Vb1 //Base voltage across the secondary of transformer 1 in Volts
+Vb3=(VT2s/VT2p)*Vb2 //Base voltage across the secondary of transformer 2 in Volts
+Zb2=(Vb2^2)/(Sb*1000) //Base impedance of zone 2 in Ohms
+Zb3=(Vb3^2)/(Sb*1000) //Base impedance of zone 3 in Ohms
+Ib3=(Sb*1000)/Vb3 //Base current in zone 3 in Amperes
+XT1pu=0.1 //MVA rating of system is equal to kVA rating of transformer 1
+XT2pu=(XT2)*((VT2p/Vb2)^2)*(Sb/Sb2 ) //per unit leakage reactance of transformer 2
+Xlinepu=Xline/Zb2 //Per unit line reactance
+Zloadpu=Zload/Zb3 //per unit load impedance
+Iloadpu=Vspu/(%i*(XT1+Xlinepu+XT2pu)+Zloadpu) //per unit load current
+Iload=Iloadpu*Ib3 //Actual load current in Amperes
+
+
+printf('The per unit leakage reactance of transformer 2 is %.4f Ohms\n',XT2pu);
+printf('The Per unit line reactance is %.4f per unit\n',Xlinepu);
+printf('The per unit load impedance is %.4f+%.4fi Ohms\n',real(Zloadpu),imag(Zloadpu));
+printf('The magnitude of per unit load current is %.4f and its angle is %.4f degrees\n',abs(Iloadpu),(180/%pi)*atan(imag(Iloadpu),real(Iloadpu)));
+printf('The magnitude of actual load current is %.4f Amperes and its angle is %.4f degrees\n',abs(Iload),(180/%pi)*atan(imag(Iload),real(Iload)));
+printf('The per unit value of source voltage is %.4f pu',Vspu)
+
+
+
+
+
diff --git a/3872/CH3/EX3.5/Ex3_5.jpg b/3872/CH3/EX3.5/Ex3_5.jpg Binary files differnew file mode 100644 index 000000000..4deb837b4 --- /dev/null +++ b/3872/CH3/EX3.5/Ex3_5.jpg diff --git a/3872/CH3/EX3.5/Ex3_5.sce b/3872/CH3/EX3.5/Ex3_5.sce new file mode 100644 index 000000000..5c1e6408f --- /dev/null +++ b/3872/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,31 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.5
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Eab=480 //Line voltage of star connected voltage source in Volts
+ZL=10*exp(%i*40*%pi/180) // Load impedance in Ohms
+Zl=1*exp(%i*85*%pi/180) // Line impedance between source and load in Ohms
+Sb=10 //Base power in kVA
+VbLL=480 //line to line base voltage in Volts
+
+Zb =((VbLL)^2/(Sb*1000)) //Base impedance in Ohms
+Zlpu=Zl/Zb //per unit line impedance
+ZLpu=ZL/Zb //per unit load impedance
+VbLN=VbLL/(sqrt(3)) //line to neutral base voltage in Volts
+Eanpu=(277*exp(%i*(-30)*%pi/180))/277 //source voltage in per unit
+Iapu=Eanpu/(Zlpu+ZLpu) //per unit line current in phase a
+Ib=(Sb*1000)/(sqrt(3)*VbLL) //base current in Amperes
+Ia=Iapu*Ib //actual phase a line current in Amperes
+
+printf('The magnitude of per unit line current in phase a is %.4f and its angle is %.4f degree\n',abs(Iapu),atand(imag(Iapu),real(Iapu)));
+printf('The magnitude of actual line current in phase a is %.4f Amperes and its angle is %.4f degrees\n',abs(Ia),atand(imag(Ia),real(Ia)));
+
+
+
+
+
+
diff --git a/3872/CH3/EX3.7/Ex3_7.jpg b/3872/CH3/EX3.7/Ex3_7.jpg Binary files differnew file mode 100644 index 000000000..6a438e9af --- /dev/null +++ b/3872/CH3/EX3.7/Ex3_7.jpg diff --git a/3872/CH3/EX3.7/Ex3_7.sce b/3872/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..a64cf057e --- /dev/null +++ b/3872/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,42 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.7
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sr=400 //rated power of transformer in MVA
+VT1p=13.8 // rated voltage of transformer primary side in kV
+VT1s=199.2 // rated voltage of transformer secondary side in kV
+Xeq=0.10 // leakage reactance of transformer in Ohms
+Sa=1000 //High voltage side absorbs power in MVA
+pf=0.90 // lagging power factor
+VANH=199.2
+Sb=1200 //base power in MVA
+VbHLL=345 //Hihg volgage side lini to line base voltag in kV
+IbH=1200/(345*sqrt(3)) //high voltage side base current in Amperes
+
+VAN=1.0 //per unit load voltage
+Theta=acos(0.9)
+IA=((1000/(345*(sqrt(3))))/2.008)*(exp(%i*(-Theta))) //Per unit load current
+Van=VAN+(%i*Xeq)*IA // voltage at low voltage bus
+VbXLN1=13.8
+Van1L=Van*VbXLN1 //low voltage wye winding in kV
+Ean=(exp(%i*(-30)*(%pi/180)))*VAN //source voltage in per unit
+Ia=(exp(%i*(-30)*(%pi/180)))*IA //source current in per unit
+Van2=Ean+(%i*Xeq)*Ia
+VbXLN2=13.8/(sqrt(3))
+Van2L=Van2*VbXLN2 //low voltage delta winding in kV
+
+printf('The magnitude of voltage at low voltage bus(star) in per unit is %.4f and its angle is %.4f degrees\n',abs(Van),atand(imag(Van),real(Van)));
+printf('The magnitude of low voltage star winding in kV is %.4f kV and its angle is %.4f degrees\n',abs(Van1L),atand(imag(Van1L),real(Van1L)));
+printf('The magnitude of voltage at low voltage bus(delta) in per unit is %.4f and its angle is %.4f degrees\n',abs(Van2),atand(imag(Van2),real(Van2)));
+printf('The magnitude of low voltage delta winding in kV is %.4f kV and its angle is %.4f degrees\n',abs(Van2L),atand(imag(Van2L),real(Van2L)));
+
+
+
+
+
+
+
diff --git a/3872/CH3/EX3.8/Ex3_8.jpg b/3872/CH3/EX3.8/Ex3_8.jpg Binary files differnew file mode 100644 index 000000000..3bf70145c --- /dev/null +++ b/3872/CH3/EX3.8/Ex3_8.jpg diff --git a/3872/CH3/EX3.8/Ex3_8.sce b/3872/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..7645ebfa4 --- /dev/null +++ b/3872/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,24 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.8
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sr=200 //rated power of transformer in MVA
+VT1p=345 // rated voltage of transformer primary side in kV
+VT1s=34.5 // rated voltage of transformer secondary side in kV
+Xeq=0.08 // leakage reactance of transformer in ohms
+pf=0.8 //lagging power factor
+Irated=1.0 //rated current in Amperes
+Irated1=1.0*exp(%i*(-36.87)*(%pi/180)) //consider real and imaginary value of rated current
+VAN=1.0 //source voltage in Volts
+Vdrop=Irated*Xeq //per unit magnitudes of transformer voltage drop
+Van=VAN-(%i*Xeq)*Irated1 //per unit magnitudes of transformer voltage at low voltage terminals
+Isc=VAN/Xeq //per unit magnitudes of transformer fault current
+
+
+printf('The magnitude of transformer voltage drop in per unit is %.4f pu \n',Vdrop);
+printf('The magnitude of transformer voltage at low voltage terminal in per unit is %.4f and its angle is %.4f degrees\n',abs(Van),atand(imag(Van),real(Van)));
+printf('The magnitude of fault current in per unit is %.4f pu\n',Isc);
diff --git a/3872/CH3/EX3.9/Ex3_9.jpg b/3872/CH3/EX3.9/Ex3_9.jpg Binary files differnew file mode 100644 index 000000000..987a41507 --- /dev/null +++ b/3872/CH3/EX3.9/Ex3_9.jpg diff --git a/3872/CH3/EX3.9/Ex3_9.sce b/3872/CH3/EX3.9/Ex3_9.sce new file mode 100644 index 000000000..7b7513d17 --- /dev/null +++ b/3872/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,33 @@ +//Book - Power system: Analysisi & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
+//Chapter-3 ;Example 3.9
+//Scilab Version - 6.0.0; OS - Windows
+
+clc;
+clear;
+
+Sb=300 //rated power of transformer in MVA
+Vb1=13.8 // Terminal 1 base voltage in kV
+Vb2=199.2 // Terminal 2 base voltage in kV
+Vb3=19.92 // Terminal 3 base voltage in kV
+X12old=0.10 //given per unit leakage reactance terminal 1 and 2
+X13old=0.16 //given per unit leakage reactance terminal 1 and 3
+X23old=0.14 //given per unit leakage reactance terminal 2 and 3
+Sb12=300 //rated power corresponding to leakage reactance X12 in MVA
+Sb13=50 //rated power corresponding to leakage reactance X13 in MVA
+Sb23=50 //rated power corresponding to leakage reactance X23 in MVA
+
+X12new=X12old*(Sb/Sb12) //new per unit leakage reactance terminal 1 and 2
+X13new=X13old*(Sb/Sb13) //new per unit leakage reactance terminal 1 and 3
+X23new=X23old*(Sb/Sb23) //new per unit leakage reactance terminal 2 and 3
+X1=(1/2)*(X12new+X13new-X23new)
+X2=(1/2)*(X12new+X23new-X13new)
+X3=(1/2)*(X13new+X23new-X12new)
+
+printf('The new per unit leakage reactance terminal 1 and 2 is %.4f pu\n',X12new);
+printf('The new per unit leakage reactance terminal 1 and 3 is %.4f pu\n',X13new);
+printf('The new per unit leakage reactance terminal 2 and 3 is %.4f pu\n',X23new);
+printf('The per unit reactance of terminal 1 is %.4f pu\n',X1);
+printf('The per unit reactance of terminal 2 is %.4f pu\n',X2);
+printf('The per unit reactance of terminal 3 is %.4f pu\n',X3);
+
|