blob: b5e05b0a50f1c6b270de0a7d11dbebc9d93b8820 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
//Book - Power system: Analysisi & Design 5th Edition
//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
//Chapter-3 ;Example 3.3
//Scilab Version - 6.0.0; OS - Windows
clc;
clear;
Sb=20 //Base input power in kVA
Vb1=480 //Base voltage across winding 1 in Volts
Vb2=120 //Base voltage across winding 2 in Volts
f=60 //frequency in Hertz
Zeq2=0.0525*exp(%i*78.13*%pi/180) //Equivalent impedance of the transformer referred to 120 Volt winding
Zb2=((Vb2^2)/(Sb*1000)) //Base impedance on the 120 Volts side of the transformer
Zeq2pu=Zeq2/Zb2 //Per unit leakage impdeandce referred to winding 2
Zeq1=((Vb1/Vb2)^2)*Zeq2 //leakage impdeandce referred to winding 1
Zb1=((Vb1^2)/(Sb*1000)) //Base impedance on the 480 Volts side of the transformer
Zeq1pu=Zeq1/Zb1 //Per unit leakage impdeandce referred to winding 1
printf('The magnitude of per unit leakage impdandce referred to winding 2 is %.4f pu and its angle is %.4f degree\n',abs(Zeq2pu),atand(imag(Zeq2pu),real(Zeq2pu)));
printf('The magnitude of per unit leakage impedance referred to winding 1 is %.4f pu and its angle is %.4f degree\n',abs(Zeq1pu),atand(imag(Zeq1pu),real(Zeq1pu)));
|