diff options
Diffstat (limited to '3864/CH8')
-rw-r--r-- | 3864/CH8/EX8.1/Ex8_1.sce | 50 | ||||
-rw-r--r-- | 3864/CH8/EX8.11/Ex8_11.sce | 64 | ||||
-rw-r--r-- | 3864/CH8/EX8.12/Ex8_12.sce | 43 | ||||
-rw-r--r-- | 3864/CH8/EX8.13/Ex8_13.sce | 41 | ||||
-rw-r--r-- | 3864/CH8/EX8.14/Ex8_14.sce | 73 | ||||
-rw-r--r-- | 3864/CH8/EX8.16/Ex8_16.sce | 62 | ||||
-rw-r--r-- | 3864/CH8/EX8.17/Ex8_17.sce | 92 | ||||
-rw-r--r-- | 3864/CH8/EX8.2/Ex8_2.sce | 61 | ||||
-rw-r--r-- | 3864/CH8/EX8.3/Ex8_3.sce | 23 | ||||
-rw-r--r-- | 3864/CH8/EX8.4/Ex8_4.sce | 26 | ||||
-rw-r--r-- | 3864/CH8/EX8.5/Ex8_5.sce | 23 | ||||
-rw-r--r-- | 3864/CH8/EX8.6/Ex8_6.sce | 53 | ||||
-rw-r--r-- | 3864/CH8/EX8.7/Ex8_7.sce | 30 | ||||
-rw-r--r-- | 3864/CH8/EX8.8/Ex8_8.sce | 18 | ||||
-rw-r--r-- | 3864/CH8/EX8.9/Ex8_9.sce | 38 |
15 files changed, 697 insertions, 0 deletions
diff --git a/3864/CH8/EX8.1/Ex8_1.sce b/3864/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..a58d18d29 --- /dev/null +++ b/3864/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,50 @@ +clear +// +// + +//Initilization of Variables + +L=3000 //mm //Length +d1=1000 //mm //Internal diameter +t=15 //mm //Thickness +P=1.5 //N/mm**2 //Fluid Pressure +E=2*10**5 //n/mm**2 //Modulus of elasticity +mu=0.3 //Poissons ratio + +//Calculations + +//Hoop stress +f1=P*d1*(2*t)**-1 //N/mm**2 + +//Longitudinal Stress +f2=P*d1*(4*t)**-1 //N/mm**2 + +//Max shear stress +q_max=(f1-f2)*2**-1 //N/mm**2 + +//Diametrical Strain +//Let e1=dell_d*d**-1 .....................(1) +e1=(f1-mu*f2)*E**-1 + +//Sub values in equation 1 and further simplifying we get +dell_d=e1*d1 //mm + +//Longitudinal strain +//e2=dell_L*L**-1 ......................(2) +e2=(f2-mu*f1)*E**-1 + +//Sub values in equation 2 and further simplifying we get +dell_L=e2*L //mm + +//Change in Volume +//Let Z=dell_V*V**-1 ................(3) +Z=2*e1+e2 + +//Sub values in equation 3 and further simplifying we get +dell_V=Z*%pi*4**-1*d1**2*L + +//Result +printf("\n Max Intensity of shear stress %0.2f N/mm**2",q_max) +printf("\n Change in the Dimensions of the shell is:dell_d %0.2f mm",dell_d) +printf("\n :dell_L %0.2f mm",dell_L) +printf("\n :dell_V %0.2f mm**3",dell_V) diff --git a/3864/CH8/EX8.11/Ex8_11.sce b/3864/CH8/EX8.11/Ex8_11.sce new file mode 100644 index 000000000..f02a0b052 --- /dev/null +++ b/3864/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,64 @@ +clear +// +// +// + +//Initilization of Variables + +d_o=300 //mm //Outside diameter +d2=200 //mm //Internal Diameter +p=14 //N/mm**2 //internal Fluid pressure +t=50 //mm //Thickness +r_o=150 //mm //Outside Diameter +r2=100 //mm //Internal Diameter + +//Calculations + +//From Lame's Equation +//p_x=b*(x**2)**-1-a //N/mm**2 ...................(1) +//F_x=b*(x**2)**-1+a //N/mm**2 ...................(2) + +//At +p_x=14 //N/mm**2 + +//Sub value of p_x in equation 1 we get +//14=(100)**-1*b-a ............................(3) + +//At +p_x2=0 //N/mm**2 + +//Sub value in equation 1 we get +//0=b*(150**2)**-1-a ......................(4) + +//From Equations 3 and 4 we get +//14=b*(100**2)**-1-b*(100**2)**-1 +//After sub values and further simplifying we get +b=14*100**2*150**2*(150**2-100**2)**-1 + +//From equation 4 we get +a=b*(150**2)**-1 + +//Hoop Stress +//F_x=b*(x**2)**-1+a //N/mm**2 + +//At +x=100 //mm +F_x=b*(x**2)**-1+a //N/mm**2 + +//At +x2=125 //mm +F_x2=b*(x2**2)**-1+a //N/mm**2 + +//At +x3=150 //mm +F_x3=b*(x3**2)**-1+a //N/mm**2 + +//If thin Cyclindrical shell theory is used,hoop stress is uniform and is given by +F=p*d2*(2*t)**-1 //N/mm**2 + +//Percentage error in estimating max hoop tension +E=(F_x-F)*F_x**-1*100 //% + +//Result +printf("\n Max Hoop Stress Developed in the cross-section is %0.2f N/mm**2",F) +printf("\n Plot of Variation of hoop stress") diff --git a/3864/CH8/EX8.12/Ex8_12.sce b/3864/CH8/EX8.12/Ex8_12.sce new file mode 100644 index 000000000..0a29dbff5 --- /dev/null +++ b/3864/CH8/EX8.12/Ex8_12.sce @@ -0,0 +1,43 @@ +clear +// +// + +//Initilization of Variables + +d_o=300 //mm //Outside diameter +d2=200 //mm //Internal Diameter +p=12 //N/mm**2 //internal Fluid pressure +F_max=16 //N/mm**2 //Tensile stress +r_o=150 //mm //Outside Diameter +r2=100 //mm //Internal Diameter + +//Calculations + +//Let p_o be the External Pressure applied. +//From LLame's theorem +//p_x=b*(x**2)**-1-a ..............(1) +//F_x=b*(x**2)**-1+a ...........................(2) + +//Now At +x=100 //mm +p_x=12 //N/mm**2 +//sub in equation 1 we get +//12=b*(100**2)**-1-a . ..................(3) + +//The Max Hoop stress occurs at least value of x where +//16=b*(100**2)**-1+a .......................(4) + +//From Equations 1 and 2 we get +//28=b*(100**2)**-1+b*(100**2)**-1 +//After furhter Simplifying we get +b=28*100**2*2**-1 + +//sub in equation 1 we get +a=-(12-(b*(100**2)**-1)) + +//Thus At +x2=150 //mm +p_o=b*(x2**2)**-1-a + +//Result +printf("\n Minimum External applied is %0.2f N/mm**2",p_o) diff --git a/3864/CH8/EX8.13/Ex8_13.sce b/3864/CH8/EX8.13/Ex8_13.sce new file mode 100644 index 000000000..320b02e37 --- /dev/null +++ b/3864/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,41 @@ +clear +// +// + +//Initilization of Variables + +d1=160 //mm //Internal Diameter +r1=80 //mm //External Diameter +p1=40 //N/mm**2 //Internal Diameter +P_max=120 //N/mm**2 //Allowable stress + +//Calculations + +//From Lame's Equation we have +//p_x=b*(x**2)**-1-a ..........................(1) +//F_x=b*(x**2)**-1+a ...........................(2) + +//At +//Sub in equation 1 we get +//120=b*(80**2)**-1+a ........................(3) + +//The hoop tension at inner edge is max stress +//Hence +//120=b*(80**2)**-1+a .............................(4) + +//From Equation 3 and 4 we get +b=160*80**2*2**-1 + +//Sub in equation 3 we get +a=-(40-(b*(80**2)**-1)) + +//Let External radius be r_o.Since at External Surface is Zero,we get +//0=b*(r_o)**-1-a +//After Further simplifying we get +r_o=(b*a**-1)**0.5 + +//Thickness of Cyclinder +t=r_o-r1 //mm + +//Result +printf("\n Thickness Required is %0.2f mm",t) diff --git a/3864/CH8/EX8.14/Ex8_14.sce b/3864/CH8/EX8.14/Ex8_14.sce new file mode 100644 index 000000000..b923e1abc --- /dev/null +++ b/3864/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,73 @@ +clear +// +// + +//Initilization of Variables + +d_o=300 //mm //Outside diameter +d1=180 //mm //Internal Diameter +p=12 //N/mm**2 //internal Fluid pressure +p_o=6 //N/mm**2 //External Pressure +r_o=150 //mm //Outside Diameter +r=90 //mm //Internal Diameter + + +//Calculations + +//From Lame's Equation we have +//p_x=b*(x**2)**-1-a ..........................(1) +//F_x=b*(x**2)**-1+a ...........................(2) + +//At +x=90 //N/mm**2 +r1=90 //N/mm**2 +p=42 //N/mm**2 +//Sub in equation 1 we get +//42=b*(90**2)**-1-a ..............................(3) + +//At +p2=6 //N/mm**2 +//sub in equation 1 we get +//6=b*(150**2)**-1-a ..............................(4) + +//From equations 3 and 4 weget +//36=b*(90**2)**-1-b2(150**2)**-1 +//After further simplifying we get +b=36*90**2*150**2*(150**2-90**2)**-1 + +//Sub value of b in equation 4 we get +a=b*(150**2)**-1-p_o + +//At +F_x=b*(x**2)**-1+a //N/mm**2 + +//At +x2=150 //mm +r=150 //mm + +F_x2=b*(x2**2)**-1+a //N/mm**2 + +//Now if External pressure is doubled i.e p_o2=12 //N/mm**2 We have +p_o2=12 //N/mm**2 +//sub in equation 4 we get +//12=b2*(150**2)**-1-a2 ..........................(5) + +//Max Hoop stress is to be 70.5 //N/mm**2,which occurs at x=r1=90 //mm +//Sub in equation 4 we get +//70.5=b*(90**2)**-1+a2 ................................(6) + +//Adding equation 5 and 6 +//82.5=b2*(150**2)**-1+b*(90**2)**-1 +//After furhter simplifying we get +b2=82.5*150**2*90**2*(150**2+90**2)**-1 + +//Sub in equation 5 we get +a2=b2*(150**2)**-1-12 + +//If p_i is the internal pressure required then from Lame's theorem +p_i=b2*(r1**2)**-1-a2 + +//Result +printf("\n Stresses int the material are:F_x %0.2f N/mm**2",F_x) +printf("\n :F_x2 %0.2f N/mm**2",F_x2) +printf("\n Internal Pressure that can be maintained is %0.2f N/mm**2",p_i) diff --git a/3864/CH8/EX8.16/Ex8_16.sce b/3864/CH8/EX8.16/Ex8_16.sce new file mode 100644 index 000000000..17ed164c5 --- /dev/null +++ b/3864/CH8/EX8.16/Ex8_16.sce @@ -0,0 +1,62 @@ +clear +// +// + +//Initilization of Variables + +do=200 //mm //Inner Diameter +r_o=100 //mm //Inner radius +d1=300 //mm //outer diameter +r1=150 //mm //Outer radius +d2=250 //mm //Junction Diameter +r2=125 //mm //Junction radius +E=2*10**5 //N/mm**2 //Modulus of Elasticity +p=30 //N/mm**2 //radial pressure + +//Calculations + +//from Lame's Equation we get +//p_x=b*(x**2)**-1-a ..........................(1) +//F_x=b*(x**2)**-1+a ...........................(2) + +//Then from Boundary condition +//p_x=0 at x=100 //mm +//0=b1*(100**2)**-1-a1 .....................(3) + +//p_x2=30 //N/mm**2 at x2=125 //mm +//30=b1*(125**2)**-1-a1 ................................(4) + +//From equation 3 and 4 we get +b1=30*125**2*100**2*(100**2-125**2)**-1 + +//From Equation 3 we get +a1=b1*(100**2)**-1 + +//therefore Hoop stress in inner cyclinder at junction +F_2_1=b1*(125**2)**-1+a1 //N/mm**2 + +//Outer Cyclinder +//p_x=b*(x**2)**-1-a ..........................(5) +//F_x=b*(x**2)**-1+a ...........................(6) + +//Now at x=125 //mm +//p_x3=30 //N/mm**2 +//30=b2*(125**2)**-1-a2 ..................................(7) + +//At x=150 //mm +//p_x4=0 +//0=b2*(150**2)**-1-a2 ...................................(8) + +//From equations 7 and 8 +b2=30*150**2*125**2*(150**2-125**2)**-1 + +//From eqauation 8 we get +a2=b2*(150**2)**-1 + +//Hoop stress at junction +F_2_0=b2*(125**2)**-1+a2 //N/mm**2 + +rho_r=(F_2_0-F_2_1)*E**-1*r2 + +//Result +printf("\n Shrinkage Allowance is %0.3f mm",rho_r) diff --git a/3864/CH8/EX8.17/Ex8_17.sce b/3864/CH8/EX8.17/Ex8_17.sce new file mode 100644 index 000000000..3d7860c79 --- /dev/null +++ b/3864/CH8/EX8.17/Ex8_17.sce @@ -0,0 +1,92 @@ +clear +// +// + +//Initilization of Variables + +d_o=500 //mm //Outer Diameter +r_o=250 //mm //Outer Radius +d1=300 //mm //Inner Diameter +r1=150 //mm //Inner Radius +d2=400 //mm //Junction Diameter +E=2*10**5 //N/mm**2 //Modulus ofElasticity +alpha=12*10**-6 //Per degree celsius +dell_d=0.2 //mm +dell_r=0.1 //mm + +//Calculations + +//Let p be the radial pressure developed at junction +//Let Lame's Equation for internal cyclinder be +//p_x=b*(x**2)**-1-a ................................(1) +//F_x=b*(x**2)**-1+a ...............................(2) + +//At +x=150 //mm +p_x=0 +//Sub in equation 1 we get +//0=b*(150**2)**-1-a .........................(3) + +//At +x2=200 //mm +//p_x2=p +//p=b*(200**2)**-1-a ......................(4) + +//From Equation 3 and 4 +//p=b*(200**2)**-1-b(150**2)**-1 +//after further simplifying we get +//b=-51428.571*p + +//sub in equation 3 we get +//a1=-2.2857*p + +//therefore hoop stress at junction is +//F_2_1=-21428.571*p*(200**2)**-1-2.2857*p +//after Further simplifying we geet +//F_2_1=3.5714*p + +//Let Lame's Equation for cyclinder be +//p_x=b*(x**2)**-1-a .........................5 +//F_x=b*(x**2)**-1+a .............................6 + +//At +x=200 //mm +//p_x=p2 +//p2=b2*(20**2)**-1-a2 ...................7 + +//At +x2=200 //mm +p_x2=0 +//0=b2*(250**2)**-1-a2 ....................8 + +//from equation 7 and 8 we get +//p2=b2*(200**2)**-1-b2*(250**2)**-1 +//After further simplifying we get +//p2=b2*(250**2-200**2)*(200**2*250**2)**-1 +//b2=111111.11*p + +//from equation 7 +//a2=b2*(250**2)**-1 +//further simplifying we get +//a2=1.778*p + +//At the junctionhoop stress in outer cyclinder +//F_2_0=b2*(200**2)**-1+a2 +//After further simplifying we get +//F_2_0=4.5556*p + +//Considering circumferential strain,the compatibility condition +//rho_r*r2**-1=1*E**-1*(F_2_1+F_2_0) +//where F_2_1 is compressive and F_2_0 is tensile +//furter simplifying we get +p=0.1*200**-1*2*10**5*(3.5714+4.5556)**-1 + +//Let T be the rise in temperature required +//dell_d=d*alpha*T +//After sub values and further simplifying we get +d=250 //mm +T=dell_d*(d*alpha)**-1 //Per degree celsius + +//Result +printf("\n Radial Pressure Developed at junction %0.2f N/mm**2",p) +printf("\n Min Temperatureto outer cyclinder %0.2f Per degree Celsius",T) diff --git a/3864/CH8/EX8.2/Ex8_2.sce b/3864/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..ea64b7d60 --- /dev/null +++ b/3864/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,61 @@ +clear +// +// + +//Initilization of Variables + +L=2000 //mm //Length +d=200 //mm // diameter +t=10 //mm //Thickness +dell_V=25000 //mm**3 //Additional volume +E=2*10**5 //n/mm**2 //Modulus of elasticity +mu=0.3 //Poissons ratio + +//Calculations + +//Let p be the pressure developed + +//Circumferential Stress + +//f1=p*d*(2*t)**-1 //N/mm**2 +//After sub values and further simplifying +//f1=10*p + +//f1=p*d*(4*t)**-1 //N/mm**2 +//After sub values and further simplifying +//f1=5*p + +//Diameterical strain = Circumferential stress +//Let X=dell_d*d**-1 ................................(1) +//X=e1=(f1-mu*f2)*E**-1 +//After sub values and further simplifying +//e1=8.5*p*E**-1 + +//Longitudinal strain +//Let Y=dell_L*L**-1 ......................................(2) +//Y=e2=(f2-mu*f1)*E**-1 +//After sub values and further simplifying +//e2=2*p*E**-1 + +//Volumetric strain +//Let X=dell_V*V**-1 +//X=2*e1+e2 +//After sub values and further simplifying +//X=19*p*E**-1 +//After further simplifying we get +p=dell_V*(%pi*4**-1*d**2*L)**-1*E*19**-1 //N/mm**2 + +//Hoop Stress +f1=p*d*(2*t)**-1 + +//Sub value of X in equation 1 we get +dell_d=8.5*p*E**-1*d + +//Sub value of Y in equation 2 we get +dell_L=2*p*E**-1*L + +//Result +printf("\n Pressure Developed is %0.2f N/mm**2",p) +printf("\n Hoop stress Developed is %0.2f N/mm**2",f1) +printf("\n Change in diameter is %0.2f mm",dell_d) +printf("\n Change in Length is %0.2f mm",dell_L) diff --git a/3864/CH8/EX8.3/Ex8_3.sce b/3864/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..cf692919b --- /dev/null +++ b/3864/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,23 @@ +clear +// +// + +//Initilization of Variables + +d=750 //mm //Diameter of water supply pipes +h=50*10**3 //mm //Water head +sigma=20 //N/mm**2 //Permissible stress +rho=9810*10**-9 //N/mm**3 + +//Calculations + +//Pressure of water +P=rho*h //N/mm**2 + +//Stress +//sigma=p*d*(2*t)**-1 +//After further simplifying +t=P*d*(2*sigma)**-1 //mm + +//Result +printf("\n Thickness of seamless pipe is %0.3f mm",t) diff --git a/3864/CH8/EX8.4/Ex8_4.sce b/3864/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..536feaeea --- /dev/null +++ b/3864/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,26 @@ +clear +// +// + +//Initilization of Variables + +d=2500 //mm //Diameter of riveted boiler +P=1 //N/mm**2 //Pressure +rho1=0.7 //Percent efficiency +rho2=0.4 //Circumferential joints +sigma=150 //N/mm**2 //Permissible stress + +//Calculations + +//Equating Bursting force to longitudinal joint strength ,we get +//p*d*L=rho1*2*t*L*sigma +//After rearranging and further simplifying we get +t=P*d*(2*sigma*rho1)**-1 //mm + +//Considering Longitudinal force +//%pi*d**2*4**-1*P=rho2*%pi*d*t*sigma +//After rearranging and further simplifying we get +t2=P*d*(4*sigma*rho2)**-1 + +//Result +printf("\n Thickness of plate required is %0.2f mm",t) diff --git a/3864/CH8/EX8.5/Ex8_5.sce b/3864/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..8a11dcc63 --- /dev/null +++ b/3864/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,23 @@ +clear +// +// + +//Initilization of Variables + +//Boiler Dimensions +t=16 //mm //Thickness +p=2 //N/mm**2 //internal pressure +f=150 //N/mm**2 //Permissible stress +rho1=0.75 //Longitudinal joints +rho2=0.45 //circumferential joints + +//Calculations + +//Equating Bursting force to longitudinal joint strength ,we get +d1=rho1*2*t*f*p**-1 //mm + +//Considering circumferential strength +d2=4*rho2*t*f*p**-1 //mm + +//Result +printf("\n Largest diameter of Boiler is %0.2f mm",d1) diff --git a/3864/CH8/EX8.6/Ex8_6.sce b/3864/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..769bbd3c5 --- /dev/null +++ b/3864/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,53 @@ +clear +// +// + +//Initilization of Variables + +d=250 //mm //Diameter iron pipe +t=10 //mm //Thickness +d2=6 //mm //Diameter of steel +p=80 //N/mm**2 //stress +P=3 //N/mm**2 //Pressure +E_c=1*10**5 //N/mm**2 +mu=0.3 //Poissons ratio +E_s=2*10**5 //N/mm**2 +n=1 //No.of wires + +//Calculations + +L=6 //mm //Length of cyclinder + +//Force Exerted by steel wire at diameterical section +F=p*2*%pi*d2**2*1*4**-1 //N + +//Initial stress in cyclinder +f_c=F*(2*t*d2)**-1 //N/mm**2 + +//LEt due to fluid pressure alone stresses developed in steel wire be F_w and in cyclinder f1 and f2 +f2=P*d*(4*t)**-1 //N/mm**2 + +//Considering the equilibrium of half the cyclinder, 6mm long we get +//F_w*2*%pi*4**-1*d2**2*n+f1*2*t*d2=P*d*d2 +//After further simplifying we get +//F_w+2.122*f1=79.58 . ......................................(1) + +//Equating strain in wire to circumferential strain in cyclinder +//F_w=(f1-mu*f2)*E_s*E_c**-1 //N/mm**2 +//After further simplifying we get +//F_w=2*f1-11.25 ....................................(2) + +//Sub in equation in1 we get +f1=(79.58+11.25)*(4.122)**-1 //N/mm**2 +F_w=2*f1-11.25 //N/mm**2 + +//Final stresses +//1) In steel Wir +sigma=F_w+p //N/mm**2 + +//2) In Cyclinde +sigma2=f1-f_c + +//Result +printf("\n Final Stresses developed in:cyclinder is %0.2f N/mm**2",sigma) +printf("\n :Steel is %0.2f N/mm**2",sigma2) diff --git a/3864/CH8/EX8.7/Ex8_7.sce b/3864/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..134c16ad3 --- /dev/null +++ b/3864/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,30 @@ +clear +// +// + +//Initilization of Variables + +d=750 //mm //Diameter of shell +t=8 //mm //THickness +p=2.5 //N/mm**2 +E=2*10**5 //N/mm**2 +mu=0.25 //Poissons ratio + +//Calculations + +//Hoop stress +f1=p*d*(4*t)**-1 //N/mm**2 +f2=p*d*(4*t)**-1 //N/mm**2 + +//Change in Diameter +dell_d=d*p*d*(1-mu)*(4*t*E)**-1 //mm + +//Change in Volume +dell_V=3*p*d*(1-mu)*(4*t*E)**-1*%pi*6**-1*d**3 + +//Answer for Change in diameter is incorrect in book + +//Result +printf("\n Stress introduced is %0.2f N/mm**2",f1) +printf("\n Change in Diameter is %0.2f N/mm**2",dell_d) +printf("\n Change in Volume is %0.2f mm**3",dell_V) diff --git a/3864/CH8/EX8.8/Ex8_8.sce b/3864/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..4ae842bcf --- /dev/null +++ b/3864/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,18 @@ +clear +// +// + +//Initilization of Variables + +d=600 //mm //Diameter of sherical shell +t=10 //mm //Thickness +f=80 //N/mm**2 //Permissible stress +rho=0.75 //Efficiency joint + +//Calculations + +//Max Pressure +p=f*4*t*rho*d**-1 //N/mm**2 + +//Result +printf("\n Max Pressure is %0.2f N/mm**2",p) diff --git a/3864/CH8/EX8.9/Ex8_9.sce b/3864/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..884b6515e --- /dev/null +++ b/3864/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,38 @@ +clear +// +// + +//Initilization of Variables + +L=1000 //mm //Length of shell +d=200 //mm //Diameter +t=6 //mm //Thickness +p=1.5 //N/mm**2 //Internal Pressure +E=2*10**5 //N/mm**2 +mu=0.25 //Poissons Ratio + +//Calculations + +//Change in Volume of sphere +dell_V_s=3*p*d*(1-mu)*(4*t*E)**-1*%pi*6**-1*d**3 + +//Hoop stress +f1=p*d*(2*t)**-1 //N/mm**2 + +//Longitudinal stress +f2=p*d*(4*t)**-1 //N/mm**2 + +//Principal strain +e1=(f1-mu*f2)*E**-1 +e2=(f2-mu*f1)*E**-1 + +V_c=1000 //mm**3 + +//Change in Volume of cyclinder +dell_V_c=(2*e1+e2)*%pi*4**-1*d**2*L + +//Total Change in Diameter +dell_V=dell_V_s+dell_V_c //mm**3 + +//Result +printf("\n Change in Volume is %0.2f mm**3",dell_V) |