summaryrefslogtreecommitdiff
path: root/3864/CH10
diff options
context:
space:
mode:
Diffstat (limited to '3864/CH10')
-rw-r--r--3864/CH10/EX10.1/Ex10_1.sce61
-rw-r--r--3864/CH10/EX10.2/Ex10_2.sce50
-rw-r--r--3864/CH10/EX10.3/Ex10_3.sce67
3 files changed, 178 insertions, 0 deletions
diff --git a/3864/CH10/EX10.1/Ex10_1.sce b/3864/CH10/EX10.1/Ex10_1.sce
new file mode 100644
index 000000000..b17b14525
--- /dev/null
+++ b/3864/CH10/EX10.1/Ex10_1.sce
@@ -0,0 +1,61 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P_e=300 //N/mm**2 //Elastic Limit in tension
+FOS=3 //Factor of safety
+mu=0.3 //Poissons ratio
+P=12*10**3 //N Pull
+Q=6*10**3 //N //Shear force
+
+//Calculations
+
+//Let d be the diameter of the shaft
+
+//Direct stress
+//P_x=P*(%pi*4**-1*d**3)**-1
+//After substituting values and further simplifying we get
+//P_x=48*10**3
+
+//Now shear stress at the centre of bolt
+//q=4*3**-1*q_av
+//After substituting values and further simplifying we get
+//q=32*10**3*(%pi*d**2)**-1
+
+//Principal stresses are
+//P1=P_x*2**-1+((P_x*2**-1)**2+q**2)**0.5
+//After substituting values and further simplifying we get
+//p1=20371.833*(d**2)**-1
+
+//P2=P_x*2**-1-((P_x*2**-1)**2+q**2)**0.5
+//After substituting values and further simplifying we get
+//P2=-5092.984*(d**2)**-1
+
+//q_max=((P_x*2**-1)**2+q**2)**0.5
+
+//From Max Principal stress theory
+//Permissible stress in Tension
+P1=100 //N/mm**2
+d=(20371.833*P1**-1)**0.5
+
+//Max strain theory
+//e_max=P1*E**-1-mu*P2*E**-1
+//After substituting values and further simplifying we get
+//e_max=21899.728*(d**2*E)**-1
+
+//According to this theory,the design condition is
+//e_max=P_e*(E*FOS)**-1
+//After substituting values and further simplifying we get
+d2=(21899.728*3*300**-1)**0.5 //mm
+
+//Max shear stress theory
+//e_max=shear stress at elastic*(FOS)**-1
+//After substituting values and further simplifying we get
+d3=(12732.421*6*300**-1)**0.5 //mm
+
+//Result
+printf("\n Diameter of Bolt by:Max Principal stress theory %0.2f mm",d)
+printf("\n :Max strain theory %0.2f mm",d2)
+printf("\n :Max shear stress theory %0.2f mm",d3)
diff --git a/3864/CH10/EX10.2/Ex10_2.sce b/3864/CH10/EX10.2/Ex10_2.sce
new file mode 100644
index 000000000..81c9db7dd
--- /dev/null
+++ b/3864/CH10/EX10.2/Ex10_2.sce
@@ -0,0 +1,50 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+M=40*10**6 //N-mm //Bending moment
+T=10*10**6 //N-mm //TOrque
+mu=0.25 //Poissons ratio
+P_e=200 //N/mm**2 //Stress at Elastic Limit
+FOS=2
+
+//Calculations
+
+//Let d be the diameter of the shaft
+
+//Principal stresses are given by
+
+//P1=16*(%pi*d**3)**-1*(M+(M**2+T**2)**0.5)
+//After substituting values and further simplifying we get
+//P1=4.13706*10**8*(d**3)**-1 ............................(1)
+
+//P2=16*(%pi*d**3)**-1*(M-(M**2+T**2)**0.5)
+//After substituting values and further simplifying we get
+//P2=-6269718*(%pi*d**3)**-1 ..............................(2)
+
+//q_max=(P1-P2)*2**-1
+//After substituting values and further simplifying we get
+//q_max=2.09988*10**8*(d**3)**-1
+
+//Max Principal stress theory
+//P1=P_e*(FOS)**-1
+//After substituting values and further simplifying we get
+d=(4.13706*10**8*2*200**-1)**0.33333 //mm
+
+//Max shear stress theory
+//q_max=shear stress at elastic limit*(FOS)**-1
+//After substituting values and further simplifying we get
+d2=(2.09988*10**8*4*200**-1)**0.33333
+
+//Max strain energy theory
+//P_3=0
+//P1**2+P2**2-2*mu*P1*P2=P_e**2*(FOS)**-1
+//After substituting values and further simplifying we get
+d3=(8.62444*10**12)**0.166666
+
+//Result
+printf("\n Diameter of shaft according to:MAx Principal stress theory %0.2f mm",d)
+printf("\n :Max shear stress theory %0.2f mm",d2)
+printf("\n :Max strain energy theory %0.2f mm",d3)
diff --git a/3864/CH10/EX10.3/Ex10_3.sce b/3864/CH10/EX10.3/Ex10_3.sce
new file mode 100644
index 000000000..19a6c0323
--- /dev/null
+++ b/3864/CH10/EX10.3/Ex10_3.sce
@@ -0,0 +1,67 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+f_x=40 //N/mm**2 //Internal Fliud Pressure
+d1=200 //mm //Internal Diameter
+r1=d1*2**-1 //mm //Radius
+q=300 //N/mm**2 //Tensile stress
+
+//Calculations
+
+//From Lame's Equation we have,
+
+//Hoop Stress
+//f_x=b*(x**2)**-1+a ..........................(1)
+
+//Radial Pressure
+//p_x=b*(x**2)**-1-a .........................(2)
+
+//the boundary conditions are
+x=d1*2**-1 //mm
+//After sub values in equation 1 and further simplifying we get
+//40=b*100**-1-a ..........................(3)
+
+//Max Principal stress theory
+//q*(FOS)**-1=b*100**2+a ..................(4)
+//After sub values in above equation and further simplifying we get
+
+//From Equation 3 and 4 we get
+a=80*2**-1
+//Sub value of a in equation 3 we get
+b=(f_x+a)*100**2
+
+//At outer edge where x=r_0 pressure is zero
+r_0=(b*a**-1)**0.5 //mm
+
+//thickness
+t=r_0-r1 //mm
+
+//Max shear stress theory
+P1=b*(100**2)**-1+a //Max hoop stress
+P2=-40 //pressure at int radius (since P2 is compressive)
+
+//Max shear stress
+q_max=(P1-P2)*2**-1
+
+//According max shear theory the design condition is
+//q_max=P_e*2**-1*(FOS)**-1
+//After sub values in equation we get and further simplifying we get
+//80=b*(100**2)**-1+a
+//After sub values in equation 1 and 3 and further simplifying we get
+b2=120*100**2*2**-1
+
+//from equation(3)
+a2=120*2**-1-a
+
+//At outer radius r_0,radial pressure=0
+r_02=(b2*a2**-1)**0.5
+
+//thickness
+t2=r_02-r1
+
+//Result
+printf("\n Thickness of metal by:Max Principal stress theory %0.2f mm",t)
+printf("\n :Max shear stress thoery %0.2f mm",t2)