diff options
author | prashantsinalkar | 2018-02-03 11:01:52 +0530 |
---|---|---|
committer | prashantsinalkar | 2018-02-03 11:01:52 +0530 |
commit | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df (patch) | |
tree | 449d555969bfd7befe906877abab098c6e63a0e8 /3864/CH10 | |
parent | d1e070fe2d77c8e7f6ba4b0c57b1b42e26349059 (diff) | |
download | Scilab-TBC-Uploads-7bc77cb1ed33745c720952c92b3b2747c5cbf2df.tar.gz Scilab-TBC-Uploads-7bc77cb1ed33745c720952c92b3b2747c5cbf2df.tar.bz2 Scilab-TBC-Uploads-7bc77cb1ed33745c720952c92b3b2747c5cbf2df.zip |
Diffstat (limited to '3864/CH10')
-rw-r--r-- | 3864/CH10/EX10.1/Ex10_1.sce | 61 | ||||
-rw-r--r-- | 3864/CH10/EX10.2/Ex10_2.sce | 50 | ||||
-rw-r--r-- | 3864/CH10/EX10.3/Ex10_3.sce | 67 |
3 files changed, 178 insertions, 0 deletions
diff --git a/3864/CH10/EX10.1/Ex10_1.sce b/3864/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..b17b14525 --- /dev/null +++ b/3864/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,61 @@ +clear +// +// + +//Initilization of Variables + +P_e=300 //N/mm**2 //Elastic Limit in tension +FOS=3 //Factor of safety +mu=0.3 //Poissons ratio +P=12*10**3 //N Pull +Q=6*10**3 //N //Shear force + +//Calculations + +//Let d be the diameter of the shaft + +//Direct stress +//P_x=P*(%pi*4**-1*d**3)**-1 +//After substituting values and further simplifying we get +//P_x=48*10**3 + +//Now shear stress at the centre of bolt +//q=4*3**-1*q_av +//After substituting values and further simplifying we get +//q=32*10**3*(%pi*d**2)**-1 + +//Principal stresses are +//P1=P_x*2**-1+((P_x*2**-1)**2+q**2)**0.5 +//After substituting values and further simplifying we get +//p1=20371.833*(d**2)**-1 + +//P2=P_x*2**-1-((P_x*2**-1)**2+q**2)**0.5 +//After substituting values and further simplifying we get +//P2=-5092.984*(d**2)**-1 + +//q_max=((P_x*2**-1)**2+q**2)**0.5 + +//From Max Principal stress theory +//Permissible stress in Tension +P1=100 //N/mm**2 +d=(20371.833*P1**-1)**0.5 + +//Max strain theory +//e_max=P1*E**-1-mu*P2*E**-1 +//After substituting values and further simplifying we get +//e_max=21899.728*(d**2*E)**-1 + +//According to this theory,the design condition is +//e_max=P_e*(E*FOS)**-1 +//After substituting values and further simplifying we get +d2=(21899.728*3*300**-1)**0.5 //mm + +//Max shear stress theory +//e_max=shear stress at elastic*(FOS)**-1 +//After substituting values and further simplifying we get +d3=(12732.421*6*300**-1)**0.5 //mm + +//Result +printf("\n Diameter of Bolt by:Max Principal stress theory %0.2f mm",d) +printf("\n :Max strain theory %0.2f mm",d2) +printf("\n :Max shear stress theory %0.2f mm",d3) diff --git a/3864/CH10/EX10.2/Ex10_2.sce b/3864/CH10/EX10.2/Ex10_2.sce new file mode 100644 index 000000000..81c9db7dd --- /dev/null +++ b/3864/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,50 @@ +clear +// +// + +//Initilization of Variables + +M=40*10**6 //N-mm //Bending moment +T=10*10**6 //N-mm //TOrque +mu=0.25 //Poissons ratio +P_e=200 //N/mm**2 //Stress at Elastic Limit +FOS=2 + +//Calculations + +//Let d be the diameter of the shaft + +//Principal stresses are given by + +//P1=16*(%pi*d**3)**-1*(M+(M**2+T**2)**0.5) +//After substituting values and further simplifying we get +//P1=4.13706*10**8*(d**3)**-1 ............................(1) + +//P2=16*(%pi*d**3)**-1*(M-(M**2+T**2)**0.5) +//After substituting values and further simplifying we get +//P2=-6269718*(%pi*d**3)**-1 ..............................(2) + +//q_max=(P1-P2)*2**-1 +//After substituting values and further simplifying we get +//q_max=2.09988*10**8*(d**3)**-1 + +//Max Principal stress theory +//P1=P_e*(FOS)**-1 +//After substituting values and further simplifying we get +d=(4.13706*10**8*2*200**-1)**0.33333 //mm + +//Max shear stress theory +//q_max=shear stress at elastic limit*(FOS)**-1 +//After substituting values and further simplifying we get +d2=(2.09988*10**8*4*200**-1)**0.33333 + +//Max strain energy theory +//P_3=0 +//P1**2+P2**2-2*mu*P1*P2=P_e**2*(FOS)**-1 +//After substituting values and further simplifying we get +d3=(8.62444*10**12)**0.166666 + +//Result +printf("\n Diameter of shaft according to:MAx Principal stress theory %0.2f mm",d) +printf("\n :Max shear stress theory %0.2f mm",d2) +printf("\n :Max strain energy theory %0.2f mm",d3) diff --git a/3864/CH10/EX10.3/Ex10_3.sce b/3864/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..19a6c0323 --- /dev/null +++ b/3864/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,67 @@ +clear +// +// + +//Initilization of Variables + +f_x=40 //N/mm**2 //Internal Fliud Pressure +d1=200 //mm //Internal Diameter +r1=d1*2**-1 //mm //Radius +q=300 //N/mm**2 //Tensile stress + +//Calculations + +//From Lame's Equation we have, + +//Hoop Stress +//f_x=b*(x**2)**-1+a ..........................(1) + +//Radial Pressure +//p_x=b*(x**2)**-1-a .........................(2) + +//the boundary conditions are +x=d1*2**-1 //mm +//After sub values in equation 1 and further simplifying we get +//40=b*100**-1-a ..........................(3) + +//Max Principal stress theory +//q*(FOS)**-1=b*100**2+a ..................(4) +//After sub values in above equation and further simplifying we get + +//From Equation 3 and 4 we get +a=80*2**-1 +//Sub value of a in equation 3 we get +b=(f_x+a)*100**2 + +//At outer edge where x=r_0 pressure is zero +r_0=(b*a**-1)**0.5 //mm + +//thickness +t=r_0-r1 //mm + +//Max shear stress theory +P1=b*(100**2)**-1+a //Max hoop stress +P2=-40 //pressure at int radius (since P2 is compressive) + +//Max shear stress +q_max=(P1-P2)*2**-1 + +//According max shear theory the design condition is +//q_max=P_e*2**-1*(FOS)**-1 +//After sub values in equation we get and further simplifying we get +//80=b*(100**2)**-1+a +//After sub values in equation 1 and 3 and further simplifying we get +b2=120*100**2*2**-1 + +//from equation(3) +a2=120*2**-1-a + +//At outer radius r_0,radial pressure=0 +r_02=(b2*a2**-1)**0.5 + +//thickness +t2=r_02-r1 + +//Result +printf("\n Thickness of metal by:Max Principal stress theory %0.2f mm",t) +printf("\n :Max shear stress thoery %0.2f mm",t2) |