summaryrefslogtreecommitdiff
path: root/3811/CH11
diff options
context:
space:
mode:
Diffstat (limited to '3811/CH11')
-rw-r--r--3811/CH11/EX11.1/Ex11_1.jpgbin0 -> 9864 bytes
-rw-r--r--3811/CH11/EX11.1/Ex11_1.sce18
-rw-r--r--3811/CH11/EX11.10/Ex11_10.jpgbin0 -> 12141 bytes
-rw-r--r--3811/CH11/EX11.10/Ex11_10.sce31
-rw-r--r--3811/CH11/EX11.3/Ex11_3.jpgbin0 -> 18113 bytes
-rw-r--r--3811/CH11/EX11.3/Ex11_3.sce17
-rw-r--r--3811/CH11/EX11.4/Ex11_4.jpgbin0 -> 14403 bytes
-rw-r--r--3811/CH11/EX11.4/Ex11_4.sce18
-rw-r--r--3811/CH11/EX11.5/Ex11_5.jpgbin0 -> 18865 bytes
-rw-r--r--3811/CH11/EX11.5/Ex11_5.sce18
-rw-r--r--3811/CH11/EX11.6/Ex11_6.jpgbin0 -> 16058 bytes
-rw-r--r--3811/CH11/EX11.6/Ex11_6.sce22
-rw-r--r--3811/CH11/EX11.7/Ex11_7.jpgbin0 -> 11861 bytes
-rw-r--r--3811/CH11/EX11.7/Ex11_7.sce24
-rw-r--r--3811/CH11/EX11.8/Ex11_8.jpgbin0 -> 14730 bytes
-rw-r--r--3811/CH11/EX11.8/Ex11_8.sce27
-rw-r--r--3811/CH11/EX11.9/Ex11_9.jpgbin0 -> 15467 bytes
-rw-r--r--3811/CH11/EX11.9/Ex11_9.sce24
18 files changed, 199 insertions, 0 deletions
diff --git a/3811/CH11/EX11.1/Ex11_1.jpg b/3811/CH11/EX11.1/Ex11_1.jpg
new file mode 100644
index 000000000..8b9f3caa0
--- /dev/null
+++ b/3811/CH11/EX11.1/Ex11_1.jpg
Binary files differ
diff --git a/3811/CH11/EX11.1/Ex11_1.sce b/3811/CH11/EX11.1/Ex11_1.sce
new file mode 100644
index 000000000..d0a29f77a
--- /dev/null
+++ b/3811/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,18 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Kphi=3; //constant in Vsec
+Ra=1; //resistance in ohm
+La=10; //inductance in mH
+V=600; //rated voltage of the motor in volt
+Vt=150; //starting voltage in volt
+Tl=20; //constant torque in Nm
+m=6; //total moment of inertia in Nm sec^2
+omegaf=(Vt/Kphi)-((Ra*Tl)/Kphi^(2));
+nf=(omegaf*60)/(2*%pi);
+mprintf("\nThe motor speed after 5 sec is %d rpm",nf)
+//The plot obtained in the book is using a simulation software using specific design that is avaliable in the software.In scilab or xcos there is no option to simulate DC shunt motor
diff --git a/3811/CH11/EX11.10/Ex11_10.jpg b/3811/CH11/EX11.10/Ex11_10.jpg
new file mode 100644
index 000000000..4887220e0
--- /dev/null
+++ b/3811/CH11/EX11.10/Ex11_10.jpg
Binary files differ
diff --git a/3811/CH11/EX11.10/Ex11_10.sce b/3811/CH11/EX11.10/Ex11_10.sce
new file mode 100644
index 000000000..0942497ff
--- /dev/null
+++ b/3811/CH11/EX11.10/Ex11_10.sce
@@ -0,0 +1,31 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.10
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+K=1.196;
+Tl=60;//load torque in Nm
+rps=ns/60;
+omegas=(2*%pi*rps);
+Tmax1=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+Tmax=fix(Tmax1)
+tau=(J*omegas)/Tmax;
+smax=R2/sqrt(R1^(2)+X1^(2));
+TR=Tl/Tmax;
+A=2*(smax^(2)-((K*smax)/TR));
+Q=A^(2)-(4*smax^(2));
+B=1+A+smax^(2);
+mB=abs(B);
+D1=(-2/sqrt(Q))*(atanh(abs(2+A)/sqrt(Q)));
+D=abs(D1);
+tst=(tau/TR)*(1-(((0.5*A)-smax^(2))*(abs(A*D)+log10(mB))));
+mprintf("\nThe starting time of the induction machine is %f sec",tst)
diff --git a/3811/CH11/EX11.3/Ex11_3.jpg b/3811/CH11/EX11.3/Ex11_3.jpg
new file mode 100644
index 000000000..be0943773
--- /dev/null
+++ b/3811/CH11/EX11.3/Ex11_3.jpg
Binary files differ
diff --git a/3811/CH11/EX11.3/Ex11_3.sce b/3811/CH11/EX11.3/Ex11_3.sce
new file mode 100644
index 000000000..77c19215a
--- /dev/null
+++ b/3811/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,17 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.3
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+Ra=2;//armature resistance in ohm
+Tst1=2;//limited starting time in sec
+Kphi=3;//field constant in V sec
+Jm=1;//motor moment of inertia in Nm
+Jl=5;//load moment of inertia in Nm
+tau=((Jl+Jm)*Ra)/Kphi^(2);
+Tst=3*tau;//starting time of the motor based on given data in sec
+Jeq=(Tst1*(Kphi^(2)))/(3*Ra);
+gr=sqrt((Jeq-Jm)/Jl);//gear ratio n1/n2
+mprintf("To achieve the desired starting current the gear ratio n1/n2 must be between %f",gr)
diff --git a/3811/CH11/EX11.4/Ex11_4.jpg b/3811/CH11/EX11.4/Ex11_4.jpg
new file mode 100644
index 000000000..54abe358f
--- /dev/null
+++ b/3811/CH11/EX11.4/Ex11_4.jpg
Binary files differ
diff --git a/3811/CH11/EX11.4/Ex11_4.sce b/3811/CH11/EX11.4/Ex11_4.sce
new file mode 100644
index 000000000..1cdf12506
--- /dev/null
+++ b/3811/CH11/EX11.4/Ex11_4.sce
@@ -0,0 +1,18 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.4
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+Ra=1;//armature resistance in ohm
+Kphi=3;//field constant in V sec
+Vt=500;//terminal voltage in volt
+Vf=600;//increased motor voltage in volt
+Td=20;//constant torque of thmotor in Nm
+J=6;//total moment of inertia of the drive in Nm
+omega0=(Vt/Kphi)-((Ra*Td)/Kphi^(2));//initial speed in rad/sec
+omegaf=(Vf/Kphi)-((Ra*Td)/Kphi^(2));//final speed in rad/sec
+tau=(J*Ra)/Kphi^(2);
+t=-(tau*log((0.05*omegaf)/(omegaf-omega0)));//obtained from the equation of omega=omega(f)(1-e^-t/tau)+omega(0)e^-t/tau
+mprintf("The time required to change the motor speed is %f sec",t)
diff --git a/3811/CH11/EX11.5/Ex11_5.jpg b/3811/CH11/EX11.5/Ex11_5.jpg
new file mode 100644
index 000000000..c4da99bb7
--- /dev/null
+++ b/3811/CH11/EX11.5/Ex11_5.jpg
Binary files differ
diff --git a/3811/CH11/EX11.5/Ex11_5.sce b/3811/CH11/EX11.5/Ex11_5.sce
new file mode 100644
index 000000000..661bbf416
--- /dev/null
+++ b/3811/CH11/EX11.5/Ex11_5.sce
@@ -0,0 +1,18 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.5
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+Ra=1;//armature resistance in ohm
+Kphi=3;//field constant in V sec
+Vt=500;//terminal voltage in volt
+Td=20;//constant torque of the motor in Nm
+J=6;//total moment of inertia of the drive in Nm
+omegaf=0;
+Vb=(omegaf+((Ra*Td)/Kphi^(2)))*Kphi;
+mprintf("\nThe terminal voltage that stop the motor and keep it at holding is %f V",Vb)
+tau=(J*Ra)/Kphi^(2);
+t=3*tau;//the motor reaches the holding state when speed is 5% of initial speed
+mprintf("\nThe traveling time during the braking is %d sec",t)
diff --git a/3811/CH11/EX11.6/Ex11_6.jpg b/3811/CH11/EX11.6/Ex11_6.jpg
new file mode 100644
index 000000000..01369ed14
--- /dev/null
+++ b/3811/CH11/EX11.6/Ex11_6.jpg
Binary files differ
diff --git a/3811/CH11/EX11.6/Ex11_6.sce b/3811/CH11/EX11.6/Ex11_6.sce
new file mode 100644
index 000000000..321bd541b
--- /dev/null
+++ b/3811/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,22 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.6
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+K=1.196;
+rps=ns/60;
+omegas=(2*%pi*rps);
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+tau=(J*omegas)/Tmax;
+smax=R2/sqrt(R1^(2)+X1^(2));
+tst=(tau/K)*((0.25/smax)+(1.95*smax)+smax);
+mprintf("The starting time of the motor at no load and full voltage and frequency is %f sec",tst)
diff --git a/3811/CH11/EX11.7/Ex11_7.jpg b/3811/CH11/EX11.7/Ex11_7.jpg
new file mode 100644
index 000000000..f4197da3c
--- /dev/null
+++ b/3811/CH11/EX11.7/Ex11_7.jpg
Binary files differ
diff --git a/3811/CH11/EX11.7/Ex11_7.sce b/3811/CH11/EX11.7/Ex11_7.sce
new file mode 100644
index 000000000..cc907d097
--- /dev/null
+++ b/3811/CH11/EX11.7/Ex11_7.sce
@@ -0,0 +1,24 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.7
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+Radd=1;//starting resistance inserted in the rotor circuit in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+rps=ns/60;
+omegas=(2*%pi*rps);
+smax=(R2+Radd)/sqrt(R1^(2)+X1^(2));
+K=1.392;
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+tau=(J*omegas)/Tmax;
+tst=(tau/K)*((0.25/smax)+(1.95*smax)+smax);
+mprintf("The starting time of the induction machine is %f sec",tst)
+
diff --git a/3811/CH11/EX11.8/Ex11_8.jpg b/3811/CH11/EX11.8/Ex11_8.jpg
new file mode 100644
index 000000000..8ed0d1e62
--- /dev/null
+++ b/3811/CH11/EX11.8/Ex11_8.jpg
Binary files differ
diff --git a/3811/CH11/EX11.8/Ex11_8.sce b/3811/CH11/EX11.8/Ex11_8.sce
new file mode 100644
index 000000000..036beb4fd
--- /dev/null
+++ b/3811/CH11/EX11.8/Ex11_8.sce
@@ -0,0 +1,27 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.8
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+tbr=15;//time taken to stop the motor in sec
+s1=2;
+s2=1;
+rps=ns/60;
+omegas=(2*%pi*rps);
+smax=R2/sqrt(R1^(2)+X1^(2));
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+tau=(2*tbr)/(((s1^(2)-s2^(2))/(2*smax))+(smax*log(s1/s2))+(2*smax*(s1-s2)));
+Tmax1=(J*omegas)/tau;
+Vbr=sqrt(Tmax1/Tmax)*V;
+mprintf("The magnitude of motor voltage during braking is %f volt",Vbr)
+//The answer provided in the textbook is wrong
+
diff --git a/3811/CH11/EX11.9/Ex11_9.jpg b/3811/CH11/EX11.9/Ex11_9.jpg
new file mode 100644
index 000000000..5a7ef1820
--- /dev/null
+++ b/3811/CH11/EX11.9/Ex11_9.jpg
Binary files differ
diff --git a/3811/CH11/EX11.9/Ex11_9.sce b/3811/CH11/EX11.9/Ex11_9.sce
new file mode 100644
index 000000000..3a1d44358
--- /dev/null
+++ b/3811/CH11/EX11.9/Ex11_9.sce
@@ -0,0 +1,24 @@
+//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.9
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+Xeq=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+K=1.196;
+rps=ns/60;
+omegas=(2*%pi*rps);
+s1=2;
+s2=1;
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+Xeq^(2))));
+tau=(J*omegas)/Tmax;
+smax=sqrt((s2^2-s1^2)/(((-log(s1/s2))-(2*(s1-s2)))*2));//the equation is obtained by differentiating tbr with respect to smax
+Radd=(smax*sqrt(R1^2+Xeq^2))-R2;//equation to find the Radd
+mprintf("\nThe value of braking resistance to minimize the braking time is %f ohm",Radd)