diff options
Diffstat (limited to '3772/CH7')
-rw-r--r-- | 3772/CH7/EX7.1/Ex7_1.sce | 40 | ||||
-rw-r--r-- | 3772/CH7/EX7.10/Ex7_10.sce | 38 | ||||
-rw-r--r-- | 3772/CH7/EX7.11/Ex7_11.sce | 31 | ||||
-rw-r--r-- | 3772/CH7/EX7.12/Ex7_12.sce | 29 | ||||
-rw-r--r-- | 3772/CH7/EX7.13/Ex7_13.sce | 35 | ||||
-rw-r--r-- | 3772/CH7/EX7.14/Ex7_14.sce | 29 | ||||
-rw-r--r-- | 3772/CH7/EX7.2/Ex7_2.sce | 45 | ||||
-rw-r--r-- | 3772/CH7/EX7.7/Ex7_7.sce | 41 | ||||
-rw-r--r-- | 3772/CH7/EX7.8/Ex7_8.sce | 40 | ||||
-rw-r--r-- | 3772/CH7/EX7.9/Ex7_9.sce | 33 |
10 files changed, 361 insertions, 0 deletions
diff --git a/3772/CH7/EX7.1/Ex7_1.sce b/3772/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..5bdf512b4 --- /dev/null +++ b/3772/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,40 @@ +// Problem no 7.1,Page no.183 + +clc;clear; +close; + +G=84 //Gpa //Modulus of Rigidity +N=110 //no. of revolution +//d*D**-1=0.6 //Ratio of inner diameter to outer diameter +sigma_s=63 //MPa //shear stress +L=3 //m //Length of shaft +P=590 //KW //Power + +//Calculation + +//P=2*%pi*N*T_mean*60000**-1 //KW //Power +T_mean=P*60000*(2*%pi*N)**-1 //N*m //Mean Torque + +//I_p=p*32**-1*(D**4-d**4) + +//After substituting value of d in above equation we get +//I_p=0.0272*%pi*D**4 //m**4 //Polar moment of Inertia + +T_max=1.2*T_mean //N*m //Max torque + +//Using Relation +//T_max*T_p**-1=sigma_s*R**-1=G*theta*L**-1 + +//After substituting values and simplifying we get + +D=(5.7085*10**-3)**0.3333 //m //Diameter of shaft + +theta=1.4*%pi*180**-1 //radians + +//theta=((T_max*L)*(G*10**9*I_p)) //radians + +//After substituting values and simplifying we get +D_1=(1.0513*10**-3)**0.25 + +//Result +printf("The Minimum external diameter is %.2f",D_1);printf(" m") diff --git a/3772/CH7/EX7.10/Ex7_10.sce b/3772/CH7/EX7.10/Ex7_10.sce new file mode 100644 index 000000000..feae8886b --- /dev/null +++ b/3772/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,38 @@ +// Problem no 7.10,Page no.190 + +clc;clear; +close; + +sigma_s=90 //MPa //shear stress of steel +sigma_d=60 //MPa //shear stress of duralumin +G_d=28 //GPa //modulus of rigidity of duralumin +G_s=84 //GPa //modulus of rigidity of steel +L=1 //m //Length of shaft + +//Calculations + +//theta*L**-1=sigma_s*(G_s*R_s)**-1=sigma_d*(G_d*R_d)**-1 + +//After substituting and simplifying,we get, +//D=2*d + +//T_s=%pi*16**-1*d**3*sigma_s //N*m //torque of steel +//T_d=%pi*16*(((D**4-d**4)*D**4)**-1)*sigma_d //N*m //torque of duralumin + +//After substituting and simplifying above two equations,we get, + +//T_s=17.6714*10**6*d**3 //N*m +//T_d=88.3572*d**3 //N*m + +//T=T_s+T_d //Total torque + +//T=106.02875*10**6*d**3 + +d=(700*(106.02875*10**6)**-1)**0.333 //m +D=2*d //m +R_s=d*2**-1 //m + +theta=(sigma_s*10**6*L*(G_s*10**9*R_s)**-1)*180*%pi**-1 //degree //Angle of twist + +//Result +printf("The Angle of Twist is %.2f",theta);printf(" Degree") diff --git a/3772/CH7/EX7.11/Ex7_11.sce b/3772/CH7/EX7.11/Ex7_11.sce new file mode 100644 index 000000000..f37f78e53 --- /dev/null +++ b/3772/CH7/EX7.11/Ex7_11.sce @@ -0,0 +1,31 @@ +// Problem no 7.11,Page no.191 + +clc;clear; +close; + +P=4415 //KW //Power transmitted +N=110 //r.p.m +sigma_s=75 //MPs //shear stress +G=85 //GPa + +//Calculations + +//D=2*d + +T=P*60000*(2*%pi*N)**-1 //N*m //Torque Transmitted + +//T=%pi*16**-1*(D**4-d**4)*D**-1*sigma_s //N*m + +//After substituting and simplifying above equations,we get, + +D=(T*16*%pi**-1*(sigma_s*10**6)**-1)**(1*3**-1) +d=D*2**-1 +X=5*(sigma_s*10**6)**2*(16*G*10**9)**-1 + +//U*V**-1 //Energy stored +//X=U*V**-1 //Energy stored //Notations has been changed + +//Result +printf("Diameter of shaft is:D %.2f",D);printf(" cm") +printf("\n :d %.2f",d);printf(" cm") +printf("\n Energy stored per cubic meter is %.2f",X);printf(" N/m**2") diff --git a/3772/CH7/EX7.12/Ex7_12.sce b/3772/CH7/EX7.12/Ex7_12.sce new file mode 100644 index 000000000..f00e51879 --- /dev/null +++ b/3772/CH7/EX7.12/Ex7_12.sce @@ -0,0 +1,29 @@ +// Problem no 7.12,Page no.192 + +clc;clear; +close; + +P=3680 //KW //Power transmitted +N=110 //r.p.m +X=20000 //N*m //Energy stored +G=85 //GPa + +//Calculations + + +//U*V**-1=X //Strain Energy per unit volume //Notification has been changed +//X=sigma_s**2*(4*G)**-1*((D**2+d**2)*(D**2)**-1) + +T=P*60000*(2*%pi*N)**-1 //N*m //Torque transmitted by shaft +sigma_s=(20000*3*G*10**9)**(1*2**-1) //MPa //shear stress of shaft + +//T=%pi*16**-1*((D**4-d**4)*D**-1)*sigma_s + +//After substituting and simplifying above equations,we get, + +d=((T*16*3**0.5)*(%pi*8*sigma_s)**-1)**(1*3**-1) +D=3**0.5*d + +//Result +printf("Diameter of shaft is D= %.2f",D);printf(" m") +printf("\n d= %.2f",d);printf(" m") diff --git a/3772/CH7/EX7.13/Ex7_13.sce b/3772/CH7/EX7.13/Ex7_13.sce new file mode 100644 index 000000000..63597c75e --- /dev/null +++ b/3772/CH7/EX7.13/Ex7_13.sce @@ -0,0 +1,35 @@ +// Problem no 7.13,Page no.193 + +clc;clear; +close; + +D=8 //cm //Diameter of bronze +d=5 //cm //diameter of steel shaft +R_b=4 //cm //Radius of bronze +R_s=2.5 //cm //Radius of steel shaft +sigma_b=40 //MPa //shear stress of bronze +sigma_s=65 //MPa //shear stress of steel shaft +N=500 //r.p.m +G_s=85 //GPa //Modulus of rigidity of steel +G_b=45 //GPa //Modulus of rigidity of bronze + +//Calculations + +I_p_s=%pi*32**-1*(5*10**-2)**4 //m**4 //Polar M.I of Steel shaft +I_p_b=%pi*32**-1*((8*10**-2)**4-(5*10**-2)**4) //m**4 //Polar M.I of Bronze shaft + +//T*(G_b*I_p_b)**-1=T_s*(G_s*I_s)**-1 + +//After substituting and simplifying above equations,we get + +//T_b=2.94*T_s + +T_b=I_p_b*sigma_b*10**6*(R_b*10**-2)**-1 //N*m //Torque carried by bronze +T_s=I_p_s*sigma_s*10**6*(R_s*10**-2)**-1 //N*m //Torque carried by steel shaft +T_s_1=T_b*2.94**-1 //N*m + +T=T_b+T_s_1 //N*m //Total Torque +P=(2*%pi*N*T*(60000)**-1) //KW //Power transmitted + +//Result +printf("Power transmitted by compound shaft is %.2f",P);printf(" KW") diff --git a/3772/CH7/EX7.14/Ex7_14.sce b/3772/CH7/EX7.14/Ex7_14.sce new file mode 100644 index 000000000..c66b07bb5 --- /dev/null +++ b/3772/CH7/EX7.14/Ex7_14.sce @@ -0,0 +1,29 @@ +// Problem no 7.14,Page no.194 + +clc;clear; +close; + +d=10 //cm //Diameter of shaft +r=5 //cm //radius of shaft +P=100 //KW //Power +N=120 //r.p.m +n=6 +L_k=14 //cm //Length of key +B_k=2.5 //cm //width of key +n=6 +d_b=2 //cm //Diameter of bolt +D_b=30 //cm //Diameter of bolt circle +R_b=15 //cm //radius + +//Calculations + +T=(P*60000*(2*%pi*N)**-1)*10**2 //N*m //Torque +I_p=%pi*32**-1*d**4 //Polar M.I of shaft +sigma_s=T*r*(I_p)**-1 //N/cm**2 +sigma_k=T*(L_k*B_k*r)**-1 //N/cm**2 +sigma_b=T*4*(n*%pi*d_b**2*R_b)**-1 //N/cm**2 + +//Result +printf("shear stress in shaft %.2f",sigma_s);printf(" N/cm**2") +printf("\n Key %.2f",sigma_k);printf(" N/cm**2") +printf("\n bolts %.2f",sigma_b);printf(" N/cm**2") diff --git a/3772/CH7/EX7.2/Ex7_2.sce b/3772/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..93e2e4e89 --- /dev/null +++ b/3772/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,45 @@ +// Problem no 7.2,Page no.184 + +clc;clear; +close; + +P=295 //KW //Power +N=100 //R.p.m +sigma_s=80 //MPa //shear stress + + +//Calculations + +T_mean=((P*60000)*(2*%pi*N)**-1) //N*m + +//T_max=T_mean=(%pi*D**3*sigma_s)*16**-1 +D=((T_mean*16)*(%pi*sigma_s*10**6)**-1)**0.333 //m //Diameter of solid shaft + +//For hollow shaft +//I_p_h=%pi*32**-1*(D_1**4-d_1**4) (equation 1) + +//Now d_1=0.6*D_1 +//substituting above value in equation 1,we get, + +//I_p_h=0.0272*%pi*D_1**4 + +//For solid shaft +//I_p_s=%pi*32**-1*D**4 + +//T and sigma_s being the same then I_p*R**-1 will be the same for the two shafts +//Using relation I_p_h*R_1**-1=I_p_s*R**-1 + +//Substituting values and simplifying we get + +D_1=(D**3*0.8704**-1)**0.3333333 //m //External diameter of hollow shaft +d_1=0.6*D_1 //cm //Internal diameter of hollow shaft + +A_s=%pi*4**-1*(D*10**2)**2 //cm**2 //Area of solid shaft +A_h=%pi*4**-1*(((D_1*10**2)**2)-((d_1*10**2)**2)) + +W=(A_s-A_h)*A_s**-1*100 //Percentage //Percentage saving in weight + + +//Result +printf("Diameter of solid shaft is %.5f m",D) +printf("\n Percentage saving in weight is %.2f",W);printf(" %%") diff --git a/3772/CH7/EX7.7/Ex7_7.sce b/3772/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..0df607ecb --- /dev/null +++ b/3772/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,41 @@ +// Problem no 7.7,Page no.188 + +clc;clear; +close; + +P_C=45 //KW Power aplled at C +P_B=15 //KW Power taken off at B +P_BA=30 //KW //Power transmitted across BA +G=85 //GPa + +//Calculations (Part-1) + +//For BC +P_1=45 //KW //Power across BC +N_1=200 //r.p.m +d_1=0.075 //m //diameter of shaft BC +L_BC=2 //m //Length of shaft BC + + +T_BC=60000*P_1*(2*%pi*N_1)**-1 //N*m //Torque transmitted across BC +sigma_s_BC=16*T_BC*((%pi*(d_1)**3)**-1)*10**-6 //N/m**2 //max shear stress in BC +I_p_BC=%pi*32**-1*d_1**4 //m**4 //Polar M.I of BC +theta_1=T_BC*L_BC*(G*10**9*I_p_BC)**-1 //Radian //Max angle of twist theta_1 in BC of B relative to C + +//For AB +P_2=30 //KW //Power across AB +N_2=200 //r.p.m +d_2=0.05 //m //diameter of shaft AB +L_BC=4 //m //Length of shaft AB + + +T_AB=60000*P_2*(2*%pi*N_2)**-1 //N*m //Torque transmitted across AB +sigma_s_AB=16*T_AB*(%pi*(d_2)**3)**-1*10**-6 //MN/m**2 //max shear stress in AB +I_p_AB=%pi*32**-1*d_2**4 //m**4 //Polar M.I of AB +theta_2=T_AB*L_BC*(G*10**9*I_p_AB)**-1 //Radian //Max angle of twist theta_1 in AB of A relative to B +C=(theta_1+theta_2)*180*%pi**-1 //radian //Angle of Twist of gear + + +//Result +printf("Angle of Twist of gear is %.2f",C);printf(" Degree") +printf("\n The maximum shear stress developed in the shaft AB is %.2f MN/m^2",sigma_s_AB) diff --git a/3772/CH7/EX7.8/Ex7_8.sce b/3772/CH7/EX7.8/Ex7_8.sce new file mode 100644 index 000000000..9a99c8d41 --- /dev/null +++ b/3772/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,40 @@ +// Problem no 7.8,Page no.189 + +clc;clear; +close; + +L_BC=1.8 //m //Length of BC +L_AB=1.2 //m //Length of AB +sigma_s=70 //MPa //shear stress +d_1=0.05 //m //diameter of BC +d_2=0.1 //m //diameter of AB +r_BC=0.025 //cm //Radius of BC + +//Calculations + +I_p_BC=%pi*32**-1*d_1**4 //m**4 //Polar M.I of BC +I_p_AB=%pi*32**-1*d_2**4 //m**4 //Polar M.I od AB + +//For BC +//theta_1=T*L_BC*(G*10**9*I_p_BC)**-1 //Angle of Twist of C relative to B +//After substituting and simplifying value, we get + +//theta_1=3.4923*10**-5*T + +//For AB +//theta_2=T*L_AB*(G*10**9*I_p_AB)**-1 //Angle of Twist of B relative to A +//After substituting and simplifying value, we get + +//theta_2=1.45513*T + +//sigma_s=T*R*(I_P)**-1 //The max shear stress in BC + +//After substituting and simplifying value in above equation, we get + +T=sigma_s*10**6*I_p_BC*r_BC**-1 +theta_1=3.4923*10**-5*T +theta_2=1.45513*10**-6*T +theta_c=theta_1-theta_2 //radian //total angle of twist + +//Result +printf("Total angle of Twist is %.3f radian",theta_c) diff --git a/3772/CH7/EX7.9/Ex7_9.sce b/3772/CH7/EX7.9/Ex7_9.sce new file mode 100644 index 000000000..cbf84dc44 --- /dev/null +++ b/3772/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,33 @@ +// Problem no 7.9,Page no.190 + +clc;clear; +close; + +D=0.05 //m //Diameter of shaft +sigma_s_a=55 //MPa //shear stress of alloy +sigma_s_s=80 //MPa //shear stress of steel +P=185 //KW //Power + +//Calculations + +//For alloy shaft, +//theta*L**-1=T*(G_A*I_p_A)**-1 + +//For steel shaft, +//theta*L*-1=I*(G_S*I_p_S)**-1 + +//After substituting and simplifying we get +d=(246.2*10**-8)**0.25 //m //Internal diameter of steel shaft + +T_1=%pi*16**-1*D**3*sigma_s_s*10**6 //N*m //For alloy shaft max torque +T_2=%pi*16**-1*((D**4-d**4)*D**-1)*sigma_s_s*10**6 //N*m //For steel shaft max torque + +//Permissible torque,T_2 + +//P=2*%pi*N*T_2*(60000)**-1 + +//After substituting we get +N=P*60000*(2*%pi*T_2)**-1 //r.p.m //Speed + +//Result +printf("The speed at which the shafts to be driven is %.f rpm",N) |