summaryrefslogtreecommitdiff
path: root/3772/CH7
diff options
context:
space:
mode:
Diffstat (limited to '3772/CH7')
-rw-r--r--3772/CH7/EX7.1/Ex7_1.sce40
-rw-r--r--3772/CH7/EX7.10/Ex7_10.sce38
-rw-r--r--3772/CH7/EX7.11/Ex7_11.sce31
-rw-r--r--3772/CH7/EX7.12/Ex7_12.sce29
-rw-r--r--3772/CH7/EX7.13/Ex7_13.sce35
-rw-r--r--3772/CH7/EX7.14/Ex7_14.sce29
-rw-r--r--3772/CH7/EX7.2/Ex7_2.sce45
-rw-r--r--3772/CH7/EX7.7/Ex7_7.sce41
-rw-r--r--3772/CH7/EX7.8/Ex7_8.sce40
-rw-r--r--3772/CH7/EX7.9/Ex7_9.sce33
10 files changed, 361 insertions, 0 deletions
diff --git a/3772/CH7/EX7.1/Ex7_1.sce b/3772/CH7/EX7.1/Ex7_1.sce
new file mode 100644
index 000000000..5bdf512b4
--- /dev/null
+++ b/3772/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,40 @@
+// Problem no 7.1,Page no.183
+
+clc;clear;
+close;
+
+G=84 //Gpa //Modulus of Rigidity
+N=110 //no. of revolution
+//d*D**-1=0.6 //Ratio of inner diameter to outer diameter
+sigma_s=63 //MPa //shear stress
+L=3 //m //Length of shaft
+P=590 //KW //Power
+
+//Calculation
+
+//P=2*%pi*N*T_mean*60000**-1 //KW //Power
+T_mean=P*60000*(2*%pi*N)**-1 //N*m //Mean Torque
+
+//I_p=p*32**-1*(D**4-d**4)
+
+//After substituting value of d in above equation we get
+//I_p=0.0272*%pi*D**4 //m**4 //Polar moment of Inertia
+
+T_max=1.2*T_mean //N*m //Max torque
+
+//Using Relation
+//T_max*T_p**-1=sigma_s*R**-1=G*theta*L**-1
+
+//After substituting values and simplifying we get
+
+D=(5.7085*10**-3)**0.3333 //m //Diameter of shaft
+
+theta=1.4*%pi*180**-1 //radians
+
+//theta=((T_max*L)*(G*10**9*I_p)) //radians
+
+//After substituting values and simplifying we get
+D_1=(1.0513*10**-3)**0.25
+
+//Result
+printf("The Minimum external diameter is %.2f",D_1);printf(" m")
diff --git a/3772/CH7/EX7.10/Ex7_10.sce b/3772/CH7/EX7.10/Ex7_10.sce
new file mode 100644
index 000000000..feae8886b
--- /dev/null
+++ b/3772/CH7/EX7.10/Ex7_10.sce
@@ -0,0 +1,38 @@
+// Problem no 7.10,Page no.190
+
+clc;clear;
+close;
+
+sigma_s=90 //MPa //shear stress of steel
+sigma_d=60 //MPa //shear stress of duralumin
+G_d=28 //GPa //modulus of rigidity of duralumin
+G_s=84 //GPa //modulus of rigidity of steel
+L=1 //m //Length of shaft
+
+//Calculations
+
+//theta*L**-1=sigma_s*(G_s*R_s)**-1=sigma_d*(G_d*R_d)**-1
+
+//After substituting and simplifying,we get,
+//D=2*d
+
+//T_s=%pi*16**-1*d**3*sigma_s //N*m //torque of steel
+//T_d=%pi*16*(((D**4-d**4)*D**4)**-1)*sigma_d //N*m //torque of duralumin
+
+//After substituting and simplifying above two equations,we get,
+
+//T_s=17.6714*10**6*d**3 //N*m
+//T_d=88.3572*d**3 //N*m
+
+//T=T_s+T_d //Total torque
+
+//T=106.02875*10**6*d**3
+
+d=(700*(106.02875*10**6)**-1)**0.333 //m
+D=2*d //m
+R_s=d*2**-1 //m
+
+theta=(sigma_s*10**6*L*(G_s*10**9*R_s)**-1)*180*%pi**-1 //degree //Angle of twist
+
+//Result
+printf("The Angle of Twist is %.2f",theta);printf(" Degree")
diff --git a/3772/CH7/EX7.11/Ex7_11.sce b/3772/CH7/EX7.11/Ex7_11.sce
new file mode 100644
index 000000000..f37f78e53
--- /dev/null
+++ b/3772/CH7/EX7.11/Ex7_11.sce
@@ -0,0 +1,31 @@
+// Problem no 7.11,Page no.191
+
+clc;clear;
+close;
+
+P=4415 //KW //Power transmitted
+N=110 //r.p.m
+sigma_s=75 //MPs //shear stress
+G=85 //GPa
+
+//Calculations
+
+//D=2*d
+
+T=P*60000*(2*%pi*N)**-1 //N*m //Torque Transmitted
+
+//T=%pi*16**-1*(D**4-d**4)*D**-1*sigma_s //N*m
+
+//After substituting and simplifying above equations,we get,
+
+D=(T*16*%pi**-1*(sigma_s*10**6)**-1)**(1*3**-1)
+d=D*2**-1
+X=5*(sigma_s*10**6)**2*(16*G*10**9)**-1
+
+//U*V**-1 //Energy stored
+//X=U*V**-1 //Energy stored //Notations has been changed
+
+//Result
+printf("Diameter of shaft is:D %.2f",D);printf(" cm")
+printf("\n :d %.2f",d);printf(" cm")
+printf("\n Energy stored per cubic meter is %.2f",X);printf(" N/m**2")
diff --git a/3772/CH7/EX7.12/Ex7_12.sce b/3772/CH7/EX7.12/Ex7_12.sce
new file mode 100644
index 000000000..f00e51879
--- /dev/null
+++ b/3772/CH7/EX7.12/Ex7_12.sce
@@ -0,0 +1,29 @@
+// Problem no 7.12,Page no.192
+
+clc;clear;
+close;
+
+P=3680 //KW //Power transmitted
+N=110 //r.p.m
+X=20000 //N*m //Energy stored
+G=85 //GPa
+
+//Calculations
+
+
+//U*V**-1=X //Strain Energy per unit volume //Notification has been changed
+//X=sigma_s**2*(4*G)**-1*((D**2+d**2)*(D**2)**-1)
+
+T=P*60000*(2*%pi*N)**-1 //N*m //Torque transmitted by shaft
+sigma_s=(20000*3*G*10**9)**(1*2**-1) //MPa //shear stress of shaft
+
+//T=%pi*16**-1*((D**4-d**4)*D**-1)*sigma_s
+
+//After substituting and simplifying above equations,we get,
+
+d=((T*16*3**0.5)*(%pi*8*sigma_s)**-1)**(1*3**-1)
+D=3**0.5*d
+
+//Result
+printf("Diameter of shaft is D= %.2f",D);printf(" m")
+printf("\n d= %.2f",d);printf(" m")
diff --git a/3772/CH7/EX7.13/Ex7_13.sce b/3772/CH7/EX7.13/Ex7_13.sce
new file mode 100644
index 000000000..63597c75e
--- /dev/null
+++ b/3772/CH7/EX7.13/Ex7_13.sce
@@ -0,0 +1,35 @@
+// Problem no 7.13,Page no.193
+
+clc;clear;
+close;
+
+D=8 //cm //Diameter of bronze
+d=5 //cm //diameter of steel shaft
+R_b=4 //cm //Radius of bronze
+R_s=2.5 //cm //Radius of steel shaft
+sigma_b=40 //MPa //shear stress of bronze
+sigma_s=65 //MPa //shear stress of steel shaft
+N=500 //r.p.m
+G_s=85 //GPa //Modulus of rigidity of steel
+G_b=45 //GPa //Modulus of rigidity of bronze
+
+//Calculations
+
+I_p_s=%pi*32**-1*(5*10**-2)**4 //m**4 //Polar M.I of Steel shaft
+I_p_b=%pi*32**-1*((8*10**-2)**4-(5*10**-2)**4) //m**4 //Polar M.I of Bronze shaft
+
+//T*(G_b*I_p_b)**-1=T_s*(G_s*I_s)**-1
+
+//After substituting and simplifying above equations,we get
+
+//T_b=2.94*T_s
+
+T_b=I_p_b*sigma_b*10**6*(R_b*10**-2)**-1 //N*m //Torque carried by bronze
+T_s=I_p_s*sigma_s*10**6*(R_s*10**-2)**-1 //N*m //Torque carried by steel shaft
+T_s_1=T_b*2.94**-1 //N*m
+
+T=T_b+T_s_1 //N*m //Total Torque
+P=(2*%pi*N*T*(60000)**-1) //KW //Power transmitted
+
+//Result
+printf("Power transmitted by compound shaft is %.2f",P);printf(" KW")
diff --git a/3772/CH7/EX7.14/Ex7_14.sce b/3772/CH7/EX7.14/Ex7_14.sce
new file mode 100644
index 000000000..c66b07bb5
--- /dev/null
+++ b/3772/CH7/EX7.14/Ex7_14.sce
@@ -0,0 +1,29 @@
+// Problem no 7.14,Page no.194
+
+clc;clear;
+close;
+
+d=10 //cm //Diameter of shaft
+r=5 //cm //radius of shaft
+P=100 //KW //Power
+N=120 //r.p.m
+n=6
+L_k=14 //cm //Length of key
+B_k=2.5 //cm //width of key
+n=6
+d_b=2 //cm //Diameter of bolt
+D_b=30 //cm //Diameter of bolt circle
+R_b=15 //cm //radius
+
+//Calculations
+
+T=(P*60000*(2*%pi*N)**-1)*10**2 //N*m //Torque
+I_p=%pi*32**-1*d**4 //Polar M.I of shaft
+sigma_s=T*r*(I_p)**-1 //N/cm**2
+sigma_k=T*(L_k*B_k*r)**-1 //N/cm**2
+sigma_b=T*4*(n*%pi*d_b**2*R_b)**-1 //N/cm**2
+
+//Result
+printf("shear stress in shaft %.2f",sigma_s);printf(" N/cm**2")
+printf("\n Key %.2f",sigma_k);printf(" N/cm**2")
+printf("\n bolts %.2f",sigma_b);printf(" N/cm**2")
diff --git a/3772/CH7/EX7.2/Ex7_2.sce b/3772/CH7/EX7.2/Ex7_2.sce
new file mode 100644
index 000000000..93e2e4e89
--- /dev/null
+++ b/3772/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,45 @@
+// Problem no 7.2,Page no.184
+
+clc;clear;
+close;
+
+P=295 //KW //Power
+N=100 //R.p.m
+sigma_s=80 //MPa //shear stress
+
+
+//Calculations
+
+T_mean=((P*60000)*(2*%pi*N)**-1) //N*m
+
+//T_max=T_mean=(%pi*D**3*sigma_s)*16**-1
+D=((T_mean*16)*(%pi*sigma_s*10**6)**-1)**0.333 //m //Diameter of solid shaft
+
+//For hollow shaft
+//I_p_h=%pi*32**-1*(D_1**4-d_1**4) (equation 1)
+
+//Now d_1=0.6*D_1
+//substituting above value in equation 1,we get,
+
+//I_p_h=0.0272*%pi*D_1**4
+
+//For solid shaft
+//I_p_s=%pi*32**-1*D**4
+
+//T and sigma_s being the same then I_p*R**-1 will be the same for the two shafts
+//Using relation I_p_h*R_1**-1=I_p_s*R**-1
+
+//Substituting values and simplifying we get
+
+D_1=(D**3*0.8704**-1)**0.3333333 //m //External diameter of hollow shaft
+d_1=0.6*D_1 //cm //Internal diameter of hollow shaft
+
+A_s=%pi*4**-1*(D*10**2)**2 //cm**2 //Area of solid shaft
+A_h=%pi*4**-1*(((D_1*10**2)**2)-((d_1*10**2)**2))
+
+W=(A_s-A_h)*A_s**-1*100 //Percentage //Percentage saving in weight
+
+
+//Result
+printf("Diameter of solid shaft is %.5f m",D)
+printf("\n Percentage saving in weight is %.2f",W);printf(" %%")
diff --git a/3772/CH7/EX7.7/Ex7_7.sce b/3772/CH7/EX7.7/Ex7_7.sce
new file mode 100644
index 000000000..0df607ecb
--- /dev/null
+++ b/3772/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,41 @@
+// Problem no 7.7,Page no.188
+
+clc;clear;
+close;
+
+P_C=45 //KW Power aplled at C
+P_B=15 //KW Power taken off at B
+P_BA=30 //KW //Power transmitted across BA
+G=85 //GPa
+
+//Calculations (Part-1)
+
+//For BC
+P_1=45 //KW //Power across BC
+N_1=200 //r.p.m
+d_1=0.075 //m //diameter of shaft BC
+L_BC=2 //m //Length of shaft BC
+
+
+T_BC=60000*P_1*(2*%pi*N_1)**-1 //N*m //Torque transmitted across BC
+sigma_s_BC=16*T_BC*((%pi*(d_1)**3)**-1)*10**-6 //N/m**2 //max shear stress in BC
+I_p_BC=%pi*32**-1*d_1**4 //m**4 //Polar M.I of BC
+theta_1=T_BC*L_BC*(G*10**9*I_p_BC)**-1 //Radian //Max angle of twist theta_1 in BC of B relative to C
+
+//For AB
+P_2=30 //KW //Power across AB
+N_2=200 //r.p.m
+d_2=0.05 //m //diameter of shaft AB
+L_BC=4 //m //Length of shaft AB
+
+
+T_AB=60000*P_2*(2*%pi*N_2)**-1 //N*m //Torque transmitted across AB
+sigma_s_AB=16*T_AB*(%pi*(d_2)**3)**-1*10**-6 //MN/m**2 //max shear stress in AB
+I_p_AB=%pi*32**-1*d_2**4 //m**4 //Polar M.I of AB
+theta_2=T_AB*L_BC*(G*10**9*I_p_AB)**-1 //Radian //Max angle of twist theta_1 in AB of A relative to B
+C=(theta_1+theta_2)*180*%pi**-1 //radian //Angle of Twist of gear
+
+
+//Result
+printf("Angle of Twist of gear is %.2f",C);printf(" Degree")
+printf("\n The maximum shear stress developed in the shaft AB is %.2f MN/m^2",sigma_s_AB)
diff --git a/3772/CH7/EX7.8/Ex7_8.sce b/3772/CH7/EX7.8/Ex7_8.sce
new file mode 100644
index 000000000..9a99c8d41
--- /dev/null
+++ b/3772/CH7/EX7.8/Ex7_8.sce
@@ -0,0 +1,40 @@
+// Problem no 7.8,Page no.189
+
+clc;clear;
+close;
+
+L_BC=1.8 //m //Length of BC
+L_AB=1.2 //m //Length of AB
+sigma_s=70 //MPa //shear stress
+d_1=0.05 //m //diameter of BC
+d_2=0.1 //m //diameter of AB
+r_BC=0.025 //cm //Radius of BC
+
+//Calculations
+
+I_p_BC=%pi*32**-1*d_1**4 //m**4 //Polar M.I of BC
+I_p_AB=%pi*32**-1*d_2**4 //m**4 //Polar M.I od AB
+
+//For BC
+//theta_1=T*L_BC*(G*10**9*I_p_BC)**-1 //Angle of Twist of C relative to B
+//After substituting and simplifying value, we get
+
+//theta_1=3.4923*10**-5*T
+
+//For AB
+//theta_2=T*L_AB*(G*10**9*I_p_AB)**-1 //Angle of Twist of B relative to A
+//After substituting and simplifying value, we get
+
+//theta_2=1.45513*T
+
+//sigma_s=T*R*(I_P)**-1 //The max shear stress in BC
+
+//After substituting and simplifying value in above equation, we get
+
+T=sigma_s*10**6*I_p_BC*r_BC**-1
+theta_1=3.4923*10**-5*T
+theta_2=1.45513*10**-6*T
+theta_c=theta_1-theta_2 //radian //total angle of twist
+
+//Result
+printf("Total angle of Twist is %.3f radian",theta_c)
diff --git a/3772/CH7/EX7.9/Ex7_9.sce b/3772/CH7/EX7.9/Ex7_9.sce
new file mode 100644
index 000000000..cbf84dc44
--- /dev/null
+++ b/3772/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,33 @@
+// Problem no 7.9,Page no.190
+
+clc;clear;
+close;
+
+D=0.05 //m //Diameter of shaft
+sigma_s_a=55 //MPa //shear stress of alloy
+sigma_s_s=80 //MPa //shear stress of steel
+P=185 //KW //Power
+
+//Calculations
+
+//For alloy shaft,
+//theta*L**-1=T*(G_A*I_p_A)**-1
+
+//For steel shaft,
+//theta*L*-1=I*(G_S*I_p_S)**-1
+
+//After substituting and simplifying we get
+d=(246.2*10**-8)**0.25 //m //Internal diameter of steel shaft
+
+T_1=%pi*16**-1*D**3*sigma_s_s*10**6 //N*m //For alloy shaft max torque
+T_2=%pi*16**-1*((D**4-d**4)*D**-1)*sigma_s_s*10**6 //N*m //For steel shaft max torque
+
+//Permissible torque,T_2
+
+//P=2*%pi*N*T_2*(60000)**-1
+
+//After substituting we get
+N=P*60000*(2*%pi*T_2)**-1 //r.p.m //Speed
+
+//Result
+printf("The speed at which the shafts to be driven is %.f rpm",N)