diff options
Diffstat (limited to '377/CH4')
-rw-r--r-- | 377/CH4/EX4.1/4_1.sce | 5 | ||||
-rw-r--r-- | 377/CH4/EX4.10/4_10.sce | 6 | ||||
-rw-r--r-- | 377/CH4/EX4.11/4_11.sce | 12 | ||||
-rw-r--r-- | 377/CH4/EX4.2/4_2.sce | 6 | ||||
-rw-r--r-- | 377/CH4/EX4.3/4_3.sce | 9 | ||||
-rw-r--r-- | 377/CH4/EX4.4/4_4.sce | 7 | ||||
-rw-r--r-- | 377/CH4/EX4.5/4_5.sce | 7 | ||||
-rw-r--r-- | 377/CH4/EX4.6/4_6.sce | 10 | ||||
-rw-r--r-- | 377/CH4/EX4.7/4_7.sce | 16 | ||||
-rw-r--r-- | 377/CH4/EX4.8/4_8.sce | 8 | ||||
-rw-r--r-- | 377/CH4/EX4.9/4_9.sce | 28 |
11 files changed, 114 insertions, 0 deletions
diff --git a/377/CH4/EX4.1/4_1.sce b/377/CH4/EX4.1/4_1.sce new file mode 100644 index 000000000..b15d48ced --- /dev/null +++ b/377/CH4/EX4.1/4_1.sce @@ -0,0 +1,5 @@ +printf('K(ph)=2*pi/λph\n=ħ*ω/ħ*ν\n=Eg/ħ*ν'); //k-vector of a photon
+Eg=(1.5)*(1.6)*(10^-19);
+b=(1.05)*(10^-26); //say (ħ*ν)=b
+a=(Eg)/(b);
+printf('\nthe k-vector of photon for GaAs will be %f',a);
\ No newline at end of file diff --git a/377/CH4/EX4.10/4_10.sce b/377/CH4/EX4.10/4_10.sce new file mode 100644 index 000000000..570dcc96e --- /dev/null +++ b/377/CH4/EX4.10/4_10.sce @@ -0,0 +1,6 @@ +disp("∆Ed=13.64*(me/mo)*(1/(Єr^2)) eV");
+disp("me = (0.015)*m0");
+a=0.015;
+c=18; //say Єr=c
+d=13.64*(a)*(1/(c^2));
+printf('the value of the ∆Ed = %f eV',d);
\ No newline at end of file diff --git a/377/CH4/EX4.11/4_11.sce b/377/CH4/EX4.11/4_11.sce new file mode 100644 index 000000000..f2b2bb098 --- /dev/null +++ b/377/CH4/EX4.11/4_11.sce @@ -0,0 +1,12 @@ +disp("Ei=((Ec+Ev)/2)+((3*K*T/4)*log(mh/me))");
+disp("me=(0.328)m0 & mh=(0.55)mo");
+b=1.12; //say b=(Ec+Ev)=1.12eV
+c=0.0259; //say c=(K*T)=0.0259
+d=1.6768; //say d=(mh/me)
+a=((b)/2)+(((3*c)/4)*log(d));
+printf('\n The value of Ei = %f eV',a);
+disp("Ef=Ei+((K*T)*log(Nd/ni))");
+e=10^17; //say e=Nd
+f=10^10; //say f=ni
+g=a+((c)*log(e/f));
+printf('\nThus, the Fermi level is located at %f eV above the valence band',g);
\ No newline at end of file diff --git a/377/CH4/EX4.2/4_2.sce b/377/CH4/EX4.2/4_2.sce new file mode 100644 index 000000000..b98952147 --- /dev/null +++ b/377/CH4/EX4.2/4_2.sce @@ -0,0 +1,6 @@ +disp("E=(ħ*k*ħ*k)/(2*me)");
+m0=9.1*10^-31;
+E=0.8*10^-19;
+me=0.067*m0;
+b=(sqrt(2*me*E))*(10^25);
+printf('the value of ħ*k =%f *(10^-26)',b);
\ No newline at end of file diff --git a/377/CH4/EX4.3/4_3.sce b/377/CH4/EX4.3/4_3.sce new file mode 100644 index 000000000..f4392f007 --- /dev/null +++ b/377/CH4/EX4.3/4_3.sce @@ -0,0 +1,9 @@ +disp("Ef=K*T*log(n/Nc)"); // Ef measured from the conduction band edge
+a=0.026; //say (K*T)=a
+n=10^17;
+Nc=4.45*(10^17);
+b=(a)*log((n)/(Nc)); //say Ef=b
+printf('the value of Ef = %f eV',b);
+disp("Ef=K*T*[(log(n/Nc))+((n)/(sqrt(8)*(Nc)))]");//using Joyce-Dixon approximation
+c=(a)*[(log((n)/(Nc)))+((n)/(sqrt(8)*(Nc)))];
+printf('the value of Ef using Joyce-Dixon approximation method is %f eV',c);
\ No newline at end of file diff --git a/377/CH4/EX4.4/4_4.sce b/377/CH4/EX4.4/4_4.sce new file mode 100644 index 000000000..f89a95c83 --- /dev/null +++ b/377/CH4/EX4.4/4_4.sce @@ -0,0 +1,7 @@ +Ega=0.36;
+Egb=0.72;
+T=300;
+K=8.617*10^-5;
+disp("ni=sqrt(Nc*Nv)*exp(Eg/2*K*T)");
+b = exp(-(Ega-Egb)/(2*K*T));
+printf('value of (niA/niB)= %f',b);
\ No newline at end of file diff --git a/377/CH4/EX4.5/4_5.sce b/377/CH4/EX4.5/4_5.sce new file mode 100644 index 000000000..af4f5ec0b --- /dev/null +++ b/377/CH4/EX4.5/4_5.sce @@ -0,0 +1,7 @@ +disp("∆Ed = 13.64*(me/mo)*(1/(Єr^2))");
+disp("me = 0.43m0");
+d=11.7; //say d=Єr
+a=((d)^2);
+c=(0.43); //since me* = 0.43m0 and assumed (me*/m0)=c;
+b=(13.64)*((c)/(a)); //say (∆Ed)=b
+printf('\n∆Ed value is %f eV',b);
\ No newline at end of file diff --git a/377/CH4/EX4.6/4_6.sce b/377/CH4/EX4.6/4_6.sce new file mode 100644 index 000000000..2f4f87eaa --- /dev/null +++ b/377/CH4/EX4.6/4_6.sce @@ -0,0 +1,10 @@ +disp("Nd = f*(Ec-Ed) = (exp(((Ec-Ed-Ef)/(K)*(T))+1))^-1");
+disp("Ef=Ec-45 & Ed=45meV");
+disp("(Ec-Ed-Ef)=(Ec-45-(Ec-200)) = 155 meV = 2.48*10^-20 J");
+a= (2.48)*(10^-20); //say (Ec-Ed-Ef)=a
+K=(1.38)*(10^-23);
+T=300;
+b=(exp(((a)/(K*T)))+1)^(-1);
+printf('the value of Nd = %f',b);
+d=b*100; //'d' is the percentage value of Nd
+printf('\nSo the percentage of donor states that are occupied are %f percent',d);
\ No newline at end of file diff --git a/377/CH4/EX4.7/4_7.sce b/377/CH4/EX4.7/4_7.sce new file mode 100644 index 000000000..31fc0a947 --- /dev/null +++ b/377/CH4/EX4.7/4_7.sce @@ -0,0 +1,16 @@ +disp("g(E)=(8*pi*sqrt(2))*((m0/(ħ^2))^(3/2))*sqrt(E)");
+a=9.1*(10^-31); //say m0=a
+b=6.626*(10^-34); //say ħ=b
+E=5*1.6*(10^-19);
+pi=3.14;
+f=0.026*1.6*(10^-19);
+c=(8*pi*sqrt(2))*((a/(b^2))^(3/2))*sqrt(E); //say gcentre=c
+printf('\nthe value of gcentre in (m^-3)*(J^-1) is %f (m^-3)*(J^-1)',c);
+d=(c)*(10^-6)*(1.6*(10^-19));
+printf('\nthe value of gcentre in (cm^-3)*(eV^-1) is %f (cm^-3)*(eV^-1)',d);
+e=(8*pi*sqrt(2))*((a/(b^2))^(3/2))*sqrt(f); //say f=K*T=0.026eV & e=g at K*T
+printf('\nthe value of g at K*T in (m^-3)*(J^-1) is %f (m^-3)*(J^-1)',e);
+g=(e)*(10^-6)*(1.6*(10^-19));
+printf('\nthe value of g at K*T in (cm^-3)*(eV^-1) is %f (cm^-3)*(eV^-1)',g);
+h=g*0.026;
+printf('\nthe volume density of states is %f (cm^-3)',h);
\ No newline at end of file diff --git a/377/CH4/EX4.8/4_8.sce b/377/CH4/EX4.8/4_8.sce new file mode 100644 index 000000000..b38382745 --- /dev/null +++ b/377/CH4/EX4.8/4_8.sce @@ -0,0 +1,8 @@ +disp("(E-Ef)=3*K*T");
+T=300;
+K=1.38*(10^-23);
+a=3*K*T;
+b=K*T;
+c=1/(1+exp(a/b)); //say probability,f(E)=c
+d=c*100;
+printf('the probablity that an energy level 3*K*T above the fermi level Ef is occupied by an electron at T=300k is %f percent',d);
\ No newline at end of file diff --git a/377/CH4/EX4.9/4_9.sce b/377/CH4/EX4.9/4_9.sce new file mode 100644 index 000000000..3edfad6f7 --- /dev/null +++ b/377/CH4/EX4.9/4_9.sce @@ -0,0 +1,28 @@ +disp("Nc=2((2*pi*me*K*T)/(h^2))^(3/2)");
+disp("Nv=2((2*pi*mh*K*T)/(h^2))^(3/2)");
+c=1.08*9.1*(10^-31); //say effective mass of electrons=me=c
+d=0.56*9.1*(10^-31); //say effective mass of holes=mh=d
+pi=3.14;
+K=1.38*(10^-23);
+T=300;
+h=6.63*(10^-34);
+a=2*(((2*pi*c*K*T)/(h^2))^(3/2)); //value in (m^-3)
+b=2*(((2*pi*d*K*T)/(h^2))^(3/2)); //value in (m^-3)
+e=a*(10^-6); //value in (cm^-3)
+f=b*(10^-6); //value in (cm^-3)
+printf('\nthe value of Nc = %f (cm^-3)',e);
+printf('\nthe value of Nv = %f (cm^-3)',f);
+disp("ni=sqrt(NcNv)*exp((-Eg)/(2*K*T))");
+g=1.10; //say g=Eg
+K1=8.62*(10^-5);
+l=(sqrt(e*f))*exp((-g)/(2*K1*T)); //say K1 is in eV/K;
+printf('\nthe value of ni = %f (cm^-3)',l);
+disp("σ = [e*n*μ(e) + e*p*μ(h)] = e*ni*(μ(e)+ μ(h))");
+n=1.6*(10^-19); //say e(in formula)=n
+p=1350; //say μ(e)(in formula)=p
+q=450; //say μ(h)(in formula)=q
+m=n*l*(p+q);
+printf('\n the value of Conductivity,σ = %f (ohm^-1)(cm^-1)',m);
+disp("ρ=1/σ");
+r=(1/m);
+printf('\n the value of Resistivity,ρ = %f (ohm)(cm)',r);
\ No newline at end of file |