summaryrefslogtreecommitdiff
path: root/3733/CH34
diff options
context:
space:
mode:
Diffstat (limited to '3733/CH34')
-rw-r--r--3733/CH34/EX34.1/Ex34_1.sce15
-rw-r--r--3733/CH34/EX34.10/Ex34_10.sce28
-rw-r--r--3733/CH34/EX34.11/Ex34_11.sce20
-rw-r--r--3733/CH34/EX34.12/Ex34_12.sce28
-rw-r--r--3733/CH34/EX34.13/Ex34_13.sce40
-rw-r--r--3733/CH34/EX34.14/Ex34_14.sce34
-rw-r--r--3733/CH34/EX34.15/Ex34_15.sce22
-rw-r--r--3733/CH34/EX34.16/Ex34_16.sce32
-rw-r--r--3733/CH34/EX34.17/Ex34_17.sce29
-rw-r--r--3733/CH34/EX34.18/Ex34_18.sce45
-rw-r--r--3733/CH34/EX34.19/Ex34_19.sce35
-rw-r--r--3733/CH34/EX34.2/Ex34_2.sce12
-rw-r--r--3733/CH34/EX34.20/Ex34_20.sce21
-rw-r--r--3733/CH34/EX34.21/Ex34_21.sce22
-rw-r--r--3733/CH34/EX34.22/Ex34_22.sce23
-rw-r--r--3733/CH34/EX34.23/Ex34_23.sce26
-rw-r--r--3733/CH34/EX34.24/Ex34_24.sce34
-rw-r--r--3733/CH34/EX34.25/Ex34_25.sce29
-rw-r--r--3733/CH34/EX34.26/Ex34_26.sce31
-rw-r--r--3733/CH34/EX34.27/Ex34_27.sce27
-rw-r--r--3733/CH34/EX34.28/Ex34_28.sce37
-rw-r--r--3733/CH34/EX34.29/Ex34_29.sce32
-rw-r--r--3733/CH34/EX34.3/Ex34_3.sce27
-rw-r--r--3733/CH34/EX34.30/Ex34_30.sce26
-rw-r--r--3733/CH34/EX34.31/Ex34_31.sce28
-rw-r--r--3733/CH34/EX34.32/Ex34_32.sce33
-rw-r--r--3733/CH34/EX34.33/Ex34_33.sce24
-rw-r--r--3733/CH34/EX34.34/Ex34_34.sce37
-rw-r--r--3733/CH34/EX34.35/Ex34_35.sce24
-rw-r--r--3733/CH34/EX34.4/Ex34_4.sce19
-rw-r--r--3733/CH34/EX34.5/Ex34_5.sce29
-rw-r--r--3733/CH34/EX34.6/Ex34_6.sce25
-rw-r--r--3733/CH34/EX34.7/Ex34_7.sce26
-rw-r--r--3733/CH34/EX34.8/Ex34_8.sce45
-rw-r--r--3733/CH34/EX34.9/Ex34_9.sce21
35 files changed, 986 insertions, 0 deletions
diff --git a/3733/CH34/EX34.1/Ex34_1.sce b/3733/CH34/EX34.1/Ex34_1.sce
new file mode 100644
index 000000000..6b4d9db2f
--- /dev/null
+++ b/3733/CH34/EX34.1/Ex34_1.sce
@@ -0,0 +1,15 @@
+// Example 34_1
+clc;funcprot(0);
+//Given data
+P=120000;// The cost of the water softner plant in rupees
+S=(8/100)*P;// The salvage value of the plant in rupees
+r=8/100;//Interest on sinking fund
+n=12;//The life of the plant in years
+RMLc=8000;//Repair,maintainence and labour costs
+Cc=5000;// Chemical cost
+
+//Calculation
+A=(P-S)*(r/(((1+r)^n)-1));// Annual sinking fund payment for the plant in rupees
+Ac=A+RMLc+Cc;// Annual cost of the plant in rupees
+printf('\nAnnual cost of the plant=Rs.%0.0f',Ac);
+// The answer vary due to round off error
diff --git a/3733/CH34/EX34.10/Ex34_10.sce b/3733/CH34/EX34.10/Ex34_10.sce
new file mode 100644
index 000000000..ce35826c6
--- /dev/null
+++ b/3733/CH34/EX34.10/Ex34_10.sce
@@ -0,0 +1,28 @@
+// Example 34_10
+clc;funcprot(0);
+//Given data
+// dF_a/dP_a=0.065*P_a+25;
+// dF_b/dP_b=0.08*P_b+20;
+L=160;// Total load in MW
+
+// Calculation
+//(a)
+function[X]=power(y)
+ X(1)=(y(1)+y(2))-L;
+ X(2)=((0.065*y(1))+25)-((0.08*y(2))+20);
+endfunction
+y=[10 100];
+z=fsolve(y,power);
+P_a=z(1);// MW
+P_b=z(2);// MW
+//(b)
+L=160/2;//If the load is equally shared by both the units
+p_a1=P_a;
+p_a2=L;// Limits of integration
+Ic_A=integrate('((0.065*p_a)+25)','p_a',p_a1,p_a2);// Increase in cost for unit A in Rs/hr.
+p_b1=P_b;
+p_b2=L;// Limits of integration
+Ic_B=integrate('((0.08*p_b)+20)','p_b',p_b1,p_b2);// Increase in cost for unit B in Rs/hr.
+dC=Ic_A+Ic_B;
+printf('\n(a)P_a=%0.1f MW \n P_b=%0.1f MW \n(b)The loss in fuel cost per hour=Rs.%0.0f/hr',P_a,P_b,dC);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.11/Ex34_11.sce b/3733/CH34/EX34.11/Ex34_11.sce
new file mode 100644
index 000000000..e3286f3f4
--- /dev/null
+++ b/3733/CH34/EX34.11/Ex34_11.sce
@@ -0,0 +1,20 @@
+// Example 34_11
+clc;funcprot(0);
+//Given data
+L=30;// Total load in MW
+L_12=20;//Capacity of two steam turbines in MW
+// S_1=2000+10*L_1-0.0001*L_1^2
+// S_2=1000+7*L_1-0.00005*L_2^2
+
+//Calculation
+//L_1+L_2=L*10^3;
+// For the most loading,the required condition is (dS_1/dL_1=dS_2/dL_2)
+function[X]=Load(y)
+ X(1)=(y(1)+y(2))-(L*10^3);
+ X(2)=(10-(0.0002*y(1)))-(7-(0.0001*y(2)));
+endfunction
+y=[10 10];
+z=fsolve(y,Load);
+L_1=z(1)/1000;// MW
+L_2=z(2)/1000;// MW
+printf('\nL_1=%0.0f MW \nL_2=%0.0f MW',L_1,L_2);
diff --git a/3733/CH34/EX34.12/Ex34_12.sce b/3733/CH34/EX34.12/Ex34_12.sce
new file mode 100644
index 000000000..5f4b841d2
--- /dev/null
+++ b/3733/CH34/EX34.12/Ex34_12.sce
@@ -0,0 +1,28 @@
+// Example 34_12
+clc;funcprot(0);
+//Given data
+C_1=5000;//Cost of first unit in Rupees
+MD_1=100;// Maximum demand in kW
+C_2=14000;//Cost of second unit in Rupees
+MD_2=60;// Maximum demand in kW
+n=40000;// Useful life in hours
+C_e=80;//Energy charge per kW in Rupees/year
+C_kwh=5/100;//Energy charge per kW-hr in Rupees
+
+//Calculation
+//(a)First unit
+Cc=C_1/n;// Capital cost of unit per hour in Rupees
+C_MD=((MD_1*C_e)/8760);// Charge for maximum demand per hour in Rupees
+C_eh=MD_1*1*C_kwh;// Energy charge per hour in Rupees
+TC_1=Cc+C_MD+C_eh;// Total charges per hour for the operation of first unit in Rupees
+//(b)Second unit
+Cc=C_2/n;// Capital cost of unit per hour in Rupees
+C_MD=((MD_2*C_e)/8760);// Charge for maximum demand per hour in Rupees
+C_eh=MD_2*1*C_kwh;// Energy charge per hour in Rupee
+TC_2=Cc+C_MD+C_eh;// Total charges per hour for the operation of second unit in Rupees
+printf('\n(a)Total charges per hour for the operation of first unit=Rs.%0.3f\n(b)Total charges per hour for the operation of second unit=Rs.%0.3f',TC_1,TC_2);
+if(TC_1>TC_2)
+ printf('\n The second unit is more economical than first unit in this case.');
+else
+ printf('\n The first unit is more economical than second unit in this case.');
+ end
diff --git a/3733/CH34/EX34.13/Ex34_13.sce b/3733/CH34/EX34.13/Ex34_13.sce
new file mode 100644
index 000000000..7cf862e83
--- /dev/null
+++ b/3733/CH34/EX34.13/Ex34_13.sce
@@ -0,0 +1,40 @@
+// Example 34_13
+clc;funcprot(0);
+//Given data
+C_kw=500;// Charges in Rs./kW
+MD=800;// Maximum demand in kW
+Cc_1=8*10^5;// Capital cost of Public supply in Rupees
+F_l=30/100;// Load factor
+ID_1=10;// Interest and decpreciation charges on capital of public supply in %
+Cc_2=3*10^6;// Capital cost of private supply in Rupees
+ID_2=12;// Interest and decpreciation charges on capital of private supply in %
+Fc=0.35;// Fuel consumption in kg/kW-hr
+Cf=80;// Percentage per kg
+C_e=40;// Percentage per kW-hr
+C_ml=10;//The maintainence and labour charges in percentage per kW-hr
+
+//Calculation
+L_a=MD*F_l;// Average load in kW
+ERPY=240*8760;// Energy required per year in kW-hrs
+
+//(a)Public supply
+C_MD=C_kw*MD;//Charge for maximum demand per year in Rupees
+ID=(ID_1/100)*Cc_1;// Interest and decpreciation in Rupees
+C_ey=(C_e/100)*ERPY;// Energy cost per year in Rupees
+TC=C_MD+ID+C_ey;// Total cost in Rupees
+AEC_1=TC/ERPY;// Average energy cost in Rs./kWh
+
+//(b)Private supply
+Fc_y=(Fc*ERPY)/1000;// Fuel consumption per year in tons
+C_f=Fc_y*1000*(Cf/100);// Cost of fuel in Rupees
+MLC=(C_ml/100)*ERPY;// The maintainence and labour charges per year
+ID=(ID_2/100)*Cc_2;// Interest and decpreciation in Rupees
+TC=C_f+MLC+ID;// Total cost in Rupees
+AEC_2=TC/ERPY;// Average energy cost in Rs./kWh
+printf('\n(a)Public supply:Average energy cost=Rs.%0.2f/kWh \n(b)Private supply:Average energy cost=Rs.%0.2f/kWh',AEC_1,AEC_2);
+if(AEC_1>AEC_2)
+ printf('\n As the average energy cost for oil engine is less than the public supply,the oil engine generation is more preferable.');
+else(AEC_1<AEC_2)
+ printf('\nPublic supply is preferable');
+end
+
diff --git a/3733/CH34/EX34.14/Ex34_14.sce b/3733/CH34/EX34.14/Ex34_14.sce
new file mode 100644
index 000000000..b54dcada1
--- /dev/null
+++ b/3733/CH34/EX34.14/Ex34_14.sce
@@ -0,0 +1,34 @@
+// Example 34_14
+clc;funcprot(0);
+//Given data
+MD=80;// MW
+F_l=40/100;// Load factor
+E=120*10^6;// kW-hr
+MO=30;// Maximum output in MW
+CC_ss=18000;// Capital cost of steam station in Rs./kW of installed capacity
+CC_psp=12000;// Capital cost of pump storage plant in Rs./kW of installed capacity
+Oc_s=0.80;// Operating cost of steam plant in Rs./kW-hr
+Oc_psp=0.05;// Operating cost of pump storage plant in Rs./kW-hr
+ID_s=12/100;// Interest and depriciation
+
+// Calculation
+//(a)
+CC_s=MD*1000*CC_ss;// Capital cost of steam station in rupees
+ID=ID_s*CC_s;// Interest and depriciation in rupees
+L_a=MD*1000*F_l;// Average load in kW
+E_s=L_a*8760;// Energy supplied per year in kW-hrs
+IDc=(ID/E_s)*100;// Interest and depriciation charges per unit of energy in paise/kWh
+Tc_a=(Oc_s*100)+IDc;// Total cost per unit in paise/unit
+Tc_a=Tc_a/100;// Rs./kWh
+//(b)
+L=MD-MO;// The load supplied by the steam plant in MW
+CC_s=L*1000*CC_ss;// Capital cost of steam plant in rupees
+CC_psp=CC_psp*MO*1000;// Capital cost of pump storage plant in rupees
+Tc_cs=CC_s+CC_psp;// Total capital costof combined station in rupees
+IDc=ID_s*Tc_cs;// Interest and depriciation charges on capital investment in rupees
+Oc_psp=(Oc_psp*E);// Operating cost of pump storage plant in rupees
+e_s=E_s-E;// The energy units supplied by steam station in kW-hr
+Oc_s=Oc_s*e_s;// Operating cost of steam station in rupees
+Tcpy=IDc+Oc_psp+Oc_s;// Total cost per year in rupees
+Tc_b=Tcpy/E_s;// The cost per unit in Rs./kWh
+printf('\n(a)Total cost per unit=Rs.%0.3f/kWh \n(b)Total cost per unit=Rs.%0.2f/kWh',Tc_a,Tc_b);
diff --git a/3733/CH34/EX34.15/Ex34_15.sce b/3733/CH34/EX34.15/Ex34_15.sce
new file mode 100644
index 000000000..016c78f5c
--- /dev/null
+++ b/3733/CH34/EX34.15/Ex34_15.sce
@@ -0,0 +1,22 @@
+// Example 34_15
+clc;funcprot(0);
+//Given data
+CP=120*1000;// Capacity of the plant in kW
+Cc=12000;//Capital cost in per kW installed in rupees
+Swrm=600000;// Salaries,wages,repairs and maintainence per year in rupees
+MD=80;// MW
+F_l=40/100;// Load factor
+Fc=400;// Fuel cost per tonne in rupees
+F_c=1.2;// kg/kW-hr
+
+//Calculation
+Ci=CP*Cc;// Capital investment in rupees
+ID=(10/100)*Ci;// Interest and Depriciation in rupees
+L_a=MD*10^6*F_l;//Average Load in MW
+L_a=L_a/1000;// kW
+E_t=L_a*8760;// kW-hr
+F_c=F_c*E_t;// Fuel consumption in kg
+Fc=(Fc/1000)*F_c;// Fuel cost in rupees
+TAC=ID+Fc+Swrm;
+C_g=TAC/E_t;//The cost of generation in rupees per kWh.
+printf('\nThe cost of generation=Rs.%0.3f kWh',C_g);
diff --git a/3733/CH34/EX34.16/Ex34_16.sce b/3733/CH34/EX34.16/Ex34_16.sce
new file mode 100644
index 000000000..9dfc487f1
--- /dev/null
+++ b/3733/CH34/EX34.16/Ex34_16.sce
@@ -0,0 +1,32 @@
+// Example 34_16
+clc;funcprot(0);
+//Given data
+CC_kw=15000;// Capital cost/kW installed
+TP=2200;// Total power of the diesel power plant in kW
+AOC=600000;//Annual operating costs in rupees
+FC=100000;// Fixed cost in rupees
+VC=200000;// Variable cost in rupees
+AMC=FC+VC;// Annual maintainence costs in rupees
+Cf=0.8;// Cost of fuel per kg in rupees
+Clo=40;// Cost of lubricating oil per kg in rupees
+CV=40000;// kJ/kg
+cf=0.5;// Consumption of fuel in kg/kWh
+clo=1/400;// Consumption of lubricant oil in kg/kWh
+MD=1600;// Maximum demand in kW
+F_l=45/100;//Load factor
+
+//Calculation
+CC=ceil (TP*CC_kw);// Capital costof the plant in rupees/ year;
+I=ceil(CC*(15/100));// Interest on capital
+AE=ceil(MD*F_l*8760);// Annual energy generated in kWh/year
+F_c=ceil(cf*AE);// kg/year
+Fc=ceil(F_c*Cf);// Cost of fuel in rupees per year
+Lc=ceil(clo*AE);// Lubrication consumption in kg /year
+CLO=ceil(Clo*Lc);//Cost of lubricant oil Rs/year
+TFC=ceil(I+FC);// Total fixed cost in kg/year
+TRC=ceil(Fc+Lc+VC+AOC);// Total running cost in Rs/year
+Tc=ceil(TFC+TRC);// Total cost in Rs/year
+Gc=(Tc/AE);// Generation cost in Rs/kWh.
+printf('\nThe annual energy generated=%0.1e kWh/year \nThe cost of generation=Rs.%0.2f/kWh',AE,Gc);
+// The answer provided in the textbook is wrong
+
diff --git a/3733/CH34/EX34.17/Ex34_17.sce b/3733/CH34/EX34.17/Ex34_17.sce
new file mode 100644
index 000000000..680935ffa
--- /dev/null
+++ b/3733/CH34/EX34.17/Ex34_17.sce
@@ -0,0 +1,29 @@
+// Example 34_17
+clc;funcprot(0);
+//Given data
+L=120;// Steam power station capacity in MW
+Ac=1000;// Annual cost towards the interest and depriciation in Rs./kW
+MD=100;// Peak demand in MW
+OC=1200*10^4;// Operating costs in Rs./ year
+Mc_f=200*10^4;// Maintainence costs (fixed) in Rs./ year
+Mc_v=400*10^4;/// Maintainence costs (vaiable) in Rs./ year
+Mic=100*10^4;// Miscellaneous costs in Rs./ year
+C_c=320;// Cost of coal used in Rs./ton
+CV=25000;// Calorific value in kJ/kg
+n_o=20;// Over all efficiency of the plant in %
+F_l=80/100;// Load factor
+
+
+//Calculation
+E_g=MD*10^3*F_l*8760;// Energy generated in kWh/year
+SC=(0.8+3.5*F_l);//Steam consumption per kW load in kg
+//1 kW load generates 0.8 kWh energy as load factor is 0.8.
+SC_kW=SC/F_l;// Steam consumption per kWh in kg
+// If W_c is the weight of the coal in tons used per year,
+W_c=(E_g*3600)/(10^3*CV*(n_o/100));// tons/year
+CC=W_c*C_c;// Cost of coal in Rs./year
+Tfc=(Ac*L*10^3)+Mc_f;//Total fixed costs in Rs./year
+Tvc=OC+Mc_v+Mic+CC;//Total variable costs in Rupees
+Tac=Tfc+Tvc;// Total annual cost in Rupees
+Gc=Tac/E_g;//Generation cost in Rs./kWh
+printf('\n(a)Coal cost per year=Rs%0.3e/year \n(b)Over all cost of generation=Rs%0.2f/kWh',CC,Gc);
diff --git a/3733/CH34/EX34.18/Ex34_18.sce b/3733/CH34/EX34.18/Ex34_18.sce
new file mode 100644
index 000000000..6e52126e5
--- /dev/null
+++ b/3733/CH34/EX34.18/Ex34_18.sce
@@ -0,0 +1,45 @@
+// Example 34_18
+clc;funcprot(0);
+//Given data
+MD=80;// Maximum demand in MW
+F_l=35/100;// Load factor
+E_s=120*10^6;// Energy supplied by steam plant in kWh/year
+MD_s=50;// Maximum load in MW
+CC_s=18000;// Capital cost of steam plant in Rs./ kW installed
+CC_h=30000;// Capital cost of hydro plant in Rs./ kW installed
+CC_n=25000;// Capital cost of nuclear plant in Rs./ kW installed
+OC_s=0.5;// Operating cost of steam plant in Rs./ kWh
+OC_h=0.1;// Operating cost in hydro plant Rs./ kWh
+T_h=0.05;// Transmission cost of hydro plant in Rs./ kWh
+ID_s=(12/100)*CC_s;// Interest and decpreciation for steam plant
+ID_h=(10/100)*CC_h;// Interest and decpreciation for hydro plant
+Rc_n=0.25;// Running cost of nuclear plant in Rs./kWh
+ID_n=10;// Interest and decpreciation for nuclear plant in % per annum
+
+//Calculation
+E=MD*10^3*F_l*8760;// Energy required per year in kWh
+//(a)Steam plant
+ID_1=ID_s*MD*10^3;// Interest and decpreciation(fixed plant)in Rs./year
+OC_1=OC_s*E;// Operating cost Rs./year
+Tc_1=ID_1+OC_1;// Total cost in Rs./year
+Oc_kWh1=Tc_1/E;// Over all cost per kWh in Rs./kWh
+
+//(b(i))Hydel Plant
+ID_2=ID_h*(MD-MD_s)*10^3;// Interest and decpreciation(fixed cost)in Rs./year
+E_h=(E-E_s);// Energy supplied by the hydro plant in kWh/year
+OC_2=(E_h*OC_h)+T_h;// Operating or running cost including transmission in Rs./year
+//(b(ii)) Steam station
+L_t=E_s/8760;// Load taken in kW
+MD_m=L_t/F_l;// Maximum load (Minimum plant capacity) in kW
+ID_3=ID_s*MD_m;//Interest and decpreciation in Rs./year
+OC_3=E_s*OC_s;// Operating cost Rs./year
+Tc_2=ID_2+OC_2+ID_3+OC_3;// Total cost of both the plants in Rs./year
+Oc_kWh2=Tc_2/E;// Over all cost per kWh in Rs./kWh
+
+//(c)Nuclear plant
+ID_4=MD*10^3*CC_n*(ID_n/100);// Interest and decpreciation in Rs./year
+Rc=E*Rc_n;// Running cost in Rs./year
+Tc_3=(ID_4+Rc);// Total cost in Rs./year
+Oc_kWh3=Tc_3/E;// Over all cost per kWh in Rs./kWh
+printf('\n(a)The annual cost=Rs.%0.2e /year \n The over all cost=Rs.%0.2f/kWh \n(b)The annual cost=Rs.%0.2e /year \n The over all cost=Rs.%0.3f/kWh \n(c)The annual cost=Rs.%0.2e /year \n The over all cost=Rs.%0.2f/kWh',Tc_1,Oc_kWh1,Tc_2,Oc_kWh2,Tc_3,Oc_kWh3);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.19/Ex34_19.sce b/3733/CH34/EX34.19/Ex34_19.sce
new file mode 100644
index 000000000..b2802901f
--- /dev/null
+++ b/3733/CH34/EX34.19/Ex34_19.sce
@@ -0,0 +1,35 @@
+// Example 34_19
+clc;funcprot(0);
+//Given data
+//(i)A private diesel generating plant
+MD=900;// kW
+F_l=30;// Load factor in %
+Cc=90*10^5;// Capital cost in rupees
+Cf=800;// Fuel cost in Rs./ton
+Fc=0.3;//Fuel consumption in kg/kWh-generated
+Mc=2.5;// Cost of maintainence in paise/kWh-generated
+Oc=0.3;// Cost of lubricating oil,water,store,etc in paise/kWh-generated
+W=180000;// Wages in Rs./year
+ID_1=10;//Interest and decpreciation in % per year
+//(ii)Public supply
+MD_pub=1500;// Maximum demand per year in Rs./kW
+Mc_pub=80;// paise/kWh
+
+//Calculation
+//(i)Private plant
+ID=ID_1*Cc;//Interest and decpreciation in rupees
+Nu=MD*(F_l/100)*8760;//Number of units required per year in kWh/year
+Fr=(F_l/100)*(Nu);// Fuel required in kg/year
+CF=Fr*(Mc_pub/100);// Fuel cost in Rs./year
+Cmo=((0.3+2.5)/100)*Nu;//Cost of maintainence,oil and water in Rs./year
+Tc=ID+CF+Cmo+W;// Total cost of running the plant per year in rupees
+Ec_1=(Tc/Nu);//The energy cost in Rs./kWh
+//(ii)Public supply
+Tc=(MD_pub*MD)+((Mc_pub/100)*Nu);// Total cost in Rs./year
+Ec_2=Tc/Nu;// Energy cost in Rs./kWh
+if(Ec_1>Ec_2)
+ printf('\nThe public supply set is preferable as its cost is less than diesel set.');
+else
+ printf('\nThe private supply set is preferable as its cost is less than diesel set.');
+end
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.2/Ex34_2.sce b/3733/CH34/EX34.2/Ex34_2.sce
new file mode 100644
index 000000000..d21e0d829
--- /dev/null
+++ b/3733/CH34/EX34.2/Ex34_2.sce
@@ -0,0 +1,12 @@
+// Example 34_2
+clc;funcprot(0);
+//Given data
+P=12000;//The cost of a small preheater in rupees
+r=5/100;// Interest
+n=16;// Expected life in years
+A=425;//The cost of the equipment in rupees
+
+//Calculation
+S=round(P-((A)/(r/(((1+r)^n)-1))));// The salvage value of the preheater in rupees
+printf('\nThe salvage value of the preheater after 16 years of service,S=Rs.%0.0f',S);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.20/Ex34_20.sce b/3733/CH34/EX34.20/Ex34_20.sce
new file mode 100644
index 000000000..450db466b
--- /dev/null
+++ b/3733/CH34/EX34.20/Ex34_20.sce
@@ -0,0 +1,21 @@
+// Example 34_20
+clc;funcprot(0);
+//Given data
+P=120;// Plant capacity in MW
+CC=15000;// The Capital cost in Rs/kW
+Arc=20*10^6;// Annual running charges in rupees
+F_al=0.6;// The annual load factor
+F_ac=0.5;// Annual capacity factor
+
+//Calculation
+MD=(P*F_ac)/F_al;// Maximum demand in MW
+Rc=P-MD;// Reserve capacity in MW
+L_a=F_al*MD;// Average load in MW
+E_py=L_a*10^3*8760;//Energy produced/year in kWh
+E_a=E_py*0.95;// kWh
+TCC=CC*P*10^3;// Total capital cost of the plant in rupees
+ID=.10*TCC;// Interest and decpreciation in rupees
+p=.10*TCC;// Profit to be gained in rupees
+TC=ID+p+Arc;// Total charges to be recovered in rupees
+C_eg=(TC/E_a);// Cost of energy generated in Rs./kWh
+printf('\n(a)The reserve capacity=%0.0f MW \n(b)Cost of energy generated=Rs.%0.2f/kWh',Rc,C_eg);
diff --git a/3733/CH34/EX34.21/Ex34_21.sce b/3733/CH34/EX34.21/Ex34_21.sce
new file mode 100644
index 000000000..095e4d252
--- /dev/null
+++ b/3733/CH34/EX34.21/Ex34_21.sce
@@ -0,0 +1,22 @@
+// Example 34_21
+clc;funcprot(0);
+//Given data
+P=142.5;// Plant capacity in MW
+CC=130*10^7;// The Capital cost in rupees
+Ac_o=18.8*10^7;// Annual cost of coal,oil,tax and salaries in rupees
+R_i=5;// Rate of interest in % of capital
+R_d=5;// Rate of depreciation in % of capital
+U_e=6;// Unit of energy used in % of the total units supplied
+F_l=0.6;// The annual load factor
+F_c=0.5;// Annual capacity factor
+
+//Calculation
+MD=(P*F_c)/F_l;// Maximum demand in MW
+Rc=P-MD;// Reserve capacity in MW
+E_s=MD*10^3*F_l*8760;// Yearly energy supplied by the plant in kWh
+E_g=(1+(U_e/100))*E_s;// Yearly energy generated in kWh
+ID=((R_i+R_d)/100)*CC;//Interest and decpreciation in Rs./year
+TC=(ID+Ac_o);// Total cost in Rs./year
+Oc=(TC/E_g);// Overall cost of generation in Rs./kWh
+printf('\nReserve capacity=%0.2f MW \nOverall cost of generation=Rs.%0.3f/kWh',Rc,Oc);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.22/Ex34_22.sce b/3733/CH34/EX34.22/Ex34_22.sce
new file mode 100644
index 000000000..febdb5174
--- /dev/null
+++ b/3733/CH34/EX34.22/Ex34_22.sce
@@ -0,0 +1,23 @@
+// Example 34_22
+clc;funcprot(0);
+//Given data
+N=50000;// Number of domestic customers
+Fc=2.5*10^7;// Fixed charges in rupees
+Ec=2*10^7;// Energy charges in rupees
+Cc=0.5*10^7;// Customer charges in rupees
+p=20*10^5;// Profit in rupees
+MD=5000;// kW
+F_d=4;// Diversity factor
+F_l=0.3;// Load factor
+
+//Calculation
+FC=Fc+((25/100)*p);// Fixed cost in rupees
+EC=Ec+((50/100)*p);// Energy cost in rupees
+CC=Cc+((25/100)*p);// Customer charges in rupees
+MD_i=MD*F_d;// kW
+E=MD*F_l*8760;// kW-hrs
+Fc_kW=FC/(MD_i);// Fixed cost per kW per year in Rs./kW
+C=CC/N;// Changes per customer per year in rupees
+Er=EC/E;// Energy rate in Rs./kWh
+printf('\nFixed cost per kW per year=Rs.%0.0f/kW \nEnergy rate=Rs.%0.1f/kWh \nThree charge rate=Rs.%0.0f+%0.0f kW+%0.1f/kWh',Fc_kW,Er,C,Fc_kW,Er);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.23/Ex34_23.sce b/3733/CH34/EX34.23/Ex34_23.sce
new file mode 100644
index 000000000..49feb15fc
--- /dev/null
+++ b/3733/CH34/EX34.23/Ex34_23.sce
@@ -0,0 +1,26 @@
+// Example 34_23
+clc;funcprot(0);
+//Given data
+P=100;// MW
+CC=10000;// Rs./kW
+R=2;// Royalty in Rs./kW
+C_e=0.3;//Rs./kWh
+MD=70;// MW
+F_l=0.6;// Annual load factor
+S_a=10^7;// Salaries and maintainence in rupees
+
+//Calculation
+E=(MD*10^3)*F_l*8760;// kWh
+CC=P*10^3*CC;// Capital cost of the plant in rupees
+
+// Annual fixed charges
+D=(15/100)*CC;// Depriciation in rupees
+S=(20/100)*S_a;// Salaries and maintainence in rupees
+Tfc=D+S;// Total fixed charges in rupees
+C_kw=(Tfc/(MD*10^3));// Cost per kW
+
+// Annual fixed charges
+S=(80/100)*S_a;// Salaries and maintainence in rupees
+Tc=(S/E)+C_e;// Total cost in rupees
+Tc=(Tc*100);// paise/kWh
+printf('\nTwo part tariff=Rs.%0.0f/kW+%0.3f/kWh',C_kw,Tc/100);
diff --git a/3733/CH34/EX34.24/Ex34_24.sce b/3733/CH34/EX34.24/Ex34_24.sce
new file mode 100644
index 000000000..de9341003
--- /dev/null
+++ b/3733/CH34/EX34.24/Ex34_24.sce
@@ -0,0 +1,34 @@
+// Example 34_24
+clc;funcprot(0);
+//Given data
+P=25;// MW
+CC=12000;// Rs/kW
+CC_ps=15*10^6;// Capital cost of primary and secondary distribution in rupees
+Mc=80*10^4;// Plant maintainence cost in Rs./year
+Mc_ps=2*10^6;// Maintainence cost of primary and secondary equipments in Rs./year
+Sw=6*10^6;// Salaries and wages in Rs./year
+Cc=80*10^3;// Consumption of coal in tonnes/year
+cc=800;// Cost of coal Rs./tonne
+Di=12*10^6;// Rs./year
+E_l=10/100;// Energy loss in transmission
+F_d=1.5;// Diversity factor
+F_l=80/100;// Load factor
+MD=14;// MW
+
+//Calculation
+L_a=MD*10^3*F_l;// kW
+E_g=L_a*8760;// kW-hr
+CC=P*10^3*CC;// Rs.
+IiD=(10/100)*CC;// Interest,insurance,depriciation charges of plant in rupees
+IiD_ps=(80/100)*CC;// Interest,insurance,depriciation charges of primary and secondary equipments in rupees
+Tfc=IiD+IiD_ps+Di;// Total fixed cost in rupees
+MD_i=MD*10^3*F_d;
+FC=Tfc/MD_i;// Fixed cost per kW in rupees
+Fc=Cc*cc;// Rs./year
+Tvc=Mc+Mc_ps+Sw+Fc;// Total variable charges in rupees
+E_t=E_g*(1-E_l);// Energy generated in kW-hr
+Cec=Tvc/E_t;// Charges for energy consumption in Rs./kW-hr
+Tc=Tfc+Tvc;// Total charges in rupees
+Ac=Tc/E_t;// Average cost of supply in Rs./kWh
+printf('\nAverage cost of supply=Rs.%0.2f/kWh',Ac);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.25/Ex34_25.sce b/3733/CH34/EX34.25/Ex34_25.sce
new file mode 100644
index 000000000..59a50dba7
--- /dev/null
+++ b/3733/CH34/EX34.25/Ex34_25.sce
@@ -0,0 +1,29 @@
+// Example 34_25
+clc;funcprot(0);
+//Given data
+P=12;// MW
+MD=10;// MW
+F_l=0.7;// load factor
+CC=17000;// Rs./kW
+C_td=3*10^6;// Cost of transmission and distribution system in rupees
+ID=5;// Interest,depriciation on distribution system in %
+Oc=3*10^6;// Operating cost in rupees
+Cc=800;// Cost of coal in Rs./ton
+Mc_f=0.3*10^6;// Plant maintainence costs in Rs./year (fixed)
+Mc_r=350000;//Plant maintainence costs in Rs./year (running)
+c=30*10^3;// Coal used in tons/year
+
+
+//Calculation
+ID_f=(10/100)*CC*P*10^3;// Interest,depriciation etc. of the plant in Rs./year
+ID_ftd=(5/100)*C_td;// Interest,depriciation etc.of the transmission and distribution in Rs./year
+Ac_r=c*Cc;//Annual cost of coal in Rs./year
+FC=ID_f+ID_ftd+Mc_f;// Fixed cost in Rs./year
+RC=Ac_r+Oc+Mc_r;// Running cost in Rs./year
+Gtc=FC+RC;// Grand total cost in Rs./year
+E_g=MD*10^3*F_l*8760;// Energy generated per year in kWh
+Tpt_1=(FC/(MD*10^3));// Rs./kW
+Tpt_2=(RC/(E_g));// Rs./kWh
+Oac=(FC+RC)/(E_g);// Over all cost/kWh
+printf('\nTwo part tariff=Rs.%0.0f/kW+Rs.%0.3f/kWh \nOver all cost/kWh=Rs.%0.2f',Tpt_1,Tpt_2,Oac);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.26/Ex34_26.sce b/3733/CH34/EX34.26/Ex34_26.sce
new file mode 100644
index 000000000..857ecf56e
--- /dev/null
+++ b/3733/CH34/EX34.26/Ex34_26.sce
@@ -0,0 +1,31 @@
+// Example 34_26
+clc;funcprot(0);
+//Given data
+P=5000;// kW
+MD_d=3000;// kW
+F_ld=20/100;// Load factor
+MD_s=1800;// kW
+F_ls=50/100;// Load factor
+MD_st=200;// kW
+F_lst=30/100;// Load factor
+CC=18000;// Rs./kW
+Trc=6.2*10^6;//Total running cost in Rs./year
+ID=10/100;// Annual rate of depriciation and interest in capital
+
+//Calculation
+E_s=((MD_d*F_ld)+(MD_s*F_ls)+(MD_st*F_lst))*8760;// The energy supplied per year to all three consumers in kW-hrs
+Oc=Trc/E_s;// Operating charges per kW-hr in rupees
+CC=P*CC;// Capital cost of the plant in rupees
+Fcpy=CC*ID;// Fixed cost per year in rupees
+Fc=Fcpy/P;// Fixed cost per kW in rupees
+//(a)
+Tc_d=(MD_d*Fc)+((MD_d*F_ld)*8760*Oc);// The total charges in rupees
+Oac_d=Tc_d/((MD_d*F_ld)*8760);// Over all cost per unit in rupees
+//(b)
+Tc_s=(MD_s*Fc)+((MD_s*F_ls)*8760*Oc);// The total charges in rupees
+Oac_s=Tc_s/((MD_s*F_ls)*8760);// Over all cost per unit in rupees
+//(c)
+Tc_st=(MD_st*Fc)+((MD_st*F_lst)*8760*Oc);// The total charges in rupees
+Oac_st=((Tc_st)/((MD_st*F_lst)*8760));// Over all cost per unit in rupees
+printf('\n(a)Over all cost per unit=Rs.%0.2f/kW-hr \n(b)Over all cost per unit=Rs.%0.3f/kW-hr \n(c)Over all cost per unit=Rs.%0.2f/kW-hr',Oac_d,Oac_s,Oac_st);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.27/Ex34_27.sce b/3733/CH34/EX34.27/Ex34_27.sce
new file mode 100644
index 000000000..405bf3da6
--- /dev/null
+++ b/3733/CH34/EX34.27/Ex34_27.sce
@@ -0,0 +1,27 @@
+// Example 34_27
+clc;funcprot(0);
+//Given data
+// Annual fixed and running charges
+// Diesel Rs.(300/kW + 0.5/kWh)
+// Steam Rs.(1200/kW + 0.125/kWh)
+E=500*10^6;//kWh
+// Calculation
+//(a)
+// P=Maximum load in kW
+// K=Load factor
+// C_1=(300*P + (0.5*P*K*8760))
+// C_2=(1200*P + (0.125*P*K*8760))
+// Unit energy cost by Diesel=Unit energy cost by steam
+function[X]=loadfactor(y)
+ X(1)=((300)+(0.5*y(1)*8760))-((1200)+(0.125*y(1)*8760))
+endfunction
+y=[0.1];
+z=fsolve(y,loadfactor)
+K=z(1);
+
+//(b)
+P=(E/(8760*K));// kW
+C_1=((300*P)+(0.5*P*K*8760));// Rupees
+GC=C_1/E;// Generation cost in Rs./kWh
+printf('\nLoad factor=%0.1f percentage \nThe generation cost=Rs.%0.3f/kWh',K*100,GC);
+// The answer vary due to round off error
diff --git a/3733/CH34/EX34.28/Ex34_28.sce b/3733/CH34/EX34.28/Ex34_28.sce
new file mode 100644
index 000000000..02f0160a2
--- /dev/null
+++ b/3733/CH34/EX34.28/Ex34_28.sce
@@ -0,0 +1,37 @@
+// Example 34_28
+clc;funcprot(0);
+//Given data
+P=30;// kW
+C_a=60000;// Cost of motor A in rupees
+C_b=40000;// Cost of motor B in rupees
+n_a=90;// Efficiency of motor A at full load
+n_b=85;// Efficiency of motor B at full load
+n_50a=86;// Efficiency of motor A at 50% load
+n_50b=82;// Efficiency of motor B at 50% load
+N=20;// Life of each motor
+I=5/100;// Interest
+T=25;// Time in %
+Mc_a=4200;// The annual maintainence cost of motor A in rupees
+Mc_b=2400;// The annual maintainence cost of motor B in rupees
+Er=1;// Energy rate in Re./kWh
+
+//Calculation
+//(a)
+SV=(10/100)*C_a;// Salary value in rupees
+D=(C_a-SV)/N;// Depriciation in Rs./year
+I=(5/100)*C_a;// Interest in Rs./year
+E=((P/1)*(8760*(T/100)*(1/(n_a/100))))+((P/2)*(8760*((100-T)/100)*(1/(n_50a/100))));// Energy cost in rupees
+Tc_a=D+I+Mc_a+E;// Total cost of motor A
+//(b)
+SV=(10/100)*C_b;// Salary value in rupees
+D=(C_b-SV)/N;// Depriciation in Rs./year
+I=(5/100)*C_b;// Interest in Rs./year
+E=((P/1)*(8760*(T/100)*(1/(n_b/100))))+((P/2)*(8760*((100-T)/100)*(1/(n_50b/100))));// Energy cost in rupees
+Tc_b=D+I+Mc_b+E;// Total cost of motor B
+printf('\nTotal cost of motor A=Rs.%0.0f/year \nTotal cost of motor B=Rs.%0.0f/year',Tc_a,Tc_b);
+if(Tc_a<Tc_b)
+ printf('\nMotor A is recommended as its annual cost is less than motor B.');
+else(Tc_b<Tc_a)
+ printf('\nMotor B is recommended as its annual cost is less than motor A.');
+end
+// The answer vary due to round off error
diff --git a/3733/CH34/EX34.29/Ex34_29.sce b/3733/CH34/EX34.29/Ex34_29.sce
new file mode 100644
index 000000000..4ea0b534e
--- /dev/null
+++ b/3733/CH34/EX34.29/Ex34_29.sce
@@ -0,0 +1,32 @@
+// Example 34_29
+clc;funcprot(0);
+//Given data
+P=50;// MW
+F_l=40/100;// Load factor
+CC_s=15000;// Initial cost of steam plant in Rs./kW
+Mc_s=20;// Maintainence cost in paise/kWh
+n_os=25/100;// The over all efficiency of the steam plant
+CV=25000;// kJ/kg
+CC_h=30000;// Capital cost of hydel plant in Rs./kW
+Rc=5;// Running cost in paise/kWh
+ID_s=12/100;// Interest and depriciation for steam plant
+ID_h=9/100;// Interest and depriciation for hydel plant
+
+//Calculation
+E=P*10^3*F_l*8760;// Energy required per year in kWh/year
+//(a)Steam plant
+ID_s=P*10^3*CC_s*ID_s;//Interest and depriciation in Rs./year
+Mc_s=(Mc_s/100)*E;//Maintainence cost in Rs./year
+m_c=E/(10^3*CV*n_os)*3600;// The mass of coal in tons/year
+//(b)Hydel plant
+ID_h=P*10^3*CC_h*ID_h;//Interest and depriciation in Rs./year
+Rc_h=(Rc/100)*E;// Running cost in Rs./year
+Tc_h=ID_h+Rc_h;// Total cost of hydel plant in rupees
+// Tc_s=ID_s+Mc_s+(m_c*C); where C is the cost of coal
+function[X]=costofcoal(y)
+ X(1)=(ID_s+Mc_s+(m_c*y(1)))-Tc_h;
+endfunction
+y=[0.1];
+z=fsolve(y,costofcoal);
+C=z(1);// Rs./ton
+printf('\nThe cost of coal=Rs.%0.0f/ton',C);
diff --git a/3733/CH34/EX34.3/Ex34_3.sce b/3733/CH34/EX34.3/Ex34_3.sce
new file mode 100644
index 000000000..e51063132
--- /dev/null
+++ b/3733/CH34/EX34.3/Ex34_3.sce
@@ -0,0 +1,27 @@
+// Example 34_3
+clc;funcprot(0);
+//Given data
+C=40000;//Capital cost in Rupees
+V_1=4000;// Salvage value in Rupees
+n=20;// Useful life in years
+r=6/100;//Interest rate
+
+//Calculation
+//(a)
+TD=C-V_1;//Total depreciation in rupees
+D=TD/2;//Depreciation in 10 years in rupees
+V_2a=C-D;//Plant value at the end of 10 years in rupees
+//(b)
+// Assume p_d=(1-p)
+p_d=(V_1/C)^(1/n);
+n=10;// Plant life in years
+V_2b=C*(p_d)^(n);// Plant value at the end of 10 years in rupees
+//(c)
+n=20;// Plant life in years
+Q=C-V_1;// Replacement cost in rupees
+q=(Q*r)/(((1+r)^n)-1);//The amonut set aside per year
+n=10;// Plant life in years
+Q=(q*(((1+r)^n)-1))/(r);// The amount deposited in sinking fund in rupees
+V_2c=C-Q;// Plant value at the end of 10 years in rupees
+printf('\n(a)Plant value at the end of 10 year,V_2=Rs.%0.0f\n(b)Plant value at the end of 10 year,V_2=Rs.%0.0f\n(c)Plant value at the end of 10 year,V_2=Rs.%0.0f',V_2a,V_2b,V_2c)
+// The answer vary due to round off error
diff --git a/3733/CH34/EX34.30/Ex34_30.sce b/3733/CH34/EX34.30/Ex34_30.sce
new file mode 100644
index 000000000..7f10683b9
--- /dev/null
+++ b/3733/CH34/EX34.30/Ex34_30.sce
@@ -0,0 +1,26 @@
+// Example 34_30
+clc;funcprot(0);
+//Given data
+// High voltage-Rs.450/kW per year + paise 35/kWh
+// Low voltage-Rs.470/kW per year + paise 40/kWh
+CC=1000;// Rs./kW
+T_l=3/100;// Losses in the transformer
+N=50;// Working weeks per year
+P=1;// MW
+
+//Calculation
+Cl=1000;// Consumer load in kW
+Rr=Cl/(1-T_l);// Required rating of transformer in kW
+Ct=Cl*Rr;// Cost of transformer to the consumer in rupees
+ID=(Ct/P)*(10/100);// Annual Interest and depriciation in rupees
+// P=50*h; Power used during the year in hours
+// N_l=Cl*P; Number of units consumed from low voltage side in kWh/year
+// N_h=Rr*P; Number of units consumed from high voltage side in hours
+function[X]=hours(y)
+ X(1)=((Cl*470)+(((Cl*50*y(1))/P)*(40/100)))-((Rr*450)+(((Rr*50*y(1))/P)*(35/100))+ID);
+endfunction
+y=[10];
+z=fsolve(y,hours);
+h=z(1);// The number of working hours per week (hrs/week)
+printf('\nThe number of working hours per week=%0.2f hrs/week',h);
+// The answer vary due to round off error
diff --git a/3733/CH34/EX34.31/Ex34_31.sce b/3733/CH34/EX34.31/Ex34_31.sce
new file mode 100644
index 000000000..88f296ea6
--- /dev/null
+++ b/3733/CH34/EX34.31/Ex34_31.sce
@@ -0,0 +1,28 @@
+// Example 34_31
+clc;funcprot(0);
+//Given data
+P=2500;// kW
+MD=1600;// Maximum load in kW
+F_l=0.48;// Load factor
+CC_s=15000;// Initial cost of
+Ic=18000;// Installation cost in Rs./kW
+I=15/100;// Interest on capital
+Mc=200000;// Maintainence cost in Rs./year
+Tlo=850000;// Total labour and other consumables in Rs./year
+Fc=7;// Fuel cost in Rs./kg
+Lc=30;// Lubricating oil cost in Rs./kg
+F=0.25;// Fuel consumed in kg/kWh
+O=0.025;// Oil consumed in kg/kWh
+
+//Calculation
+CC=P*Ic;// Capital cost of the plant in rupees
+I=CC*I;// Interest on capital in rupees
+E_g=MD*F_l*8760;// Energy generated per year in kWh
+Cf=F*E_g*Fc;// Cost of fuel in Rs./year
+Cl=O*E_g*Lc;// Cost of Lubricating oil in rupees
+Tfc=I+Mc;// Total fixed cost in rupees
+Trc=Cf+Cl+Tlo;// Total running cost in rupees
+Tc=Tfc+Trc;// Total cost in rupees
+Gc=Tc/E_g;// Generation cost in Rs./kWh
+printf('\nThe cost of generation=Rs.%0.2f/kWh',Gc);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.32/Ex34_32.sce b/3733/CH34/EX34.32/Ex34_32.sce
new file mode 100644
index 000000000..ea90c6ea8
--- /dev/null
+++ b/3733/CH34/EX34.32/Ex34_32.sce
@@ -0,0 +1,33 @@
+// Example 34_32
+clc;funcprot(0);
+//Given data
+P=200;// MW
+Fc=24*10^6;// Fixed cost Rs./year
+Cf=1800;// Cost of fuel in Rs./ton
+CV=20000;// Calorific value in kJ/kg
+Oe=280;// Other expanses in Rs./kW
+Q_1=18000;// Plant heat rate at 100% capacity factor in kJ/kWh
+F_c1=100/100;// Capacity factor
+Q_2=10500;// Plant heat rate at 50% capacity factor in kJ/kWh
+F_c2=50/100;// Capacity factor
+
+//Calculation
+Fc=Oe+(Fc/(P*10^3));// Fixed cost per kW capacity per year in Rs./kW
+
+//(a)At 100% C.F
+AD=P*10^3*F_c1;// The average demand in kW
+E_g=AD*8760;// Energy generated per year in kWh
+Fc_1=((Fc*AD)/(E_g))*100;// Fixed cost per kWh in paise
+C=Q_1/CV;// Coal burned per kWh in kg
+Cc=(C*Cf)/1000;// Cost of coal per kWh energy generated in rupees
+Tc_1=(Fc_1/100)+Cc;// Total cost of generation per kWh in rupees
+
+//(b)At 50% C.F
+AD=P*10^3*F_c2;// The average demand in kW
+E_g=AD*8760;// Energy generated per year in kWh
+Fc_2=((Fc*AD)/(E_g))*100;// Fixed cost per kWh in paise
+C=Q_2/CV;// Coal burned per kWh in kg
+Cc=(C*Cf)/1000;// Cost of coal per kWh energy generated in rupees
+Tc_2=(Fc_2/100)+Cc;// Total cost of generation per kWh in rupees
+printf('\n(a)Total cost of generation per kWh=Rs.%0.3f \n(b)Total cost of generation per kWh=Rs.%0.3f',Tc_1,Tc_2);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.33/Ex34_33.sce b/3733/CH34/EX34.33/Ex34_33.sce
new file mode 100644
index 000000000..16b7aad84
--- /dev/null
+++ b/3733/CH34/EX34.33/Ex34_33.sce
@@ -0,0 +1,24 @@
+// Example 34_33
+clc;funcprot(0);
+//Given data
+P=210*10^3;// kW
+CC=10000;// Rs./kW
+
+//Calculation
+CC=CC*P;// Capital cost of the plant in rupees
+//(a)When the plant is operating at full load
+F_l=1;// Load factor
+Fc=CC*(13/100);// Fixed cost in rupees
+Vc=Fc*1.3;// Variable cost in rupees
+Tc=Fc+Vc;// Total cost in rupees
+E_t=(P*F_l*8760);//Total units generated per year in kWh
+Gc_1=(Tc/E_t)*100;// Generating cost in paise/kWh
+
+//(b)When the plant is running at 50% load
+F_l=50/100;
+E_t=E_t*F_l;// Total units generated per year in kWh
+Vc=Vc/2;// Variable cost in rupees
+Tc=Fc+Vc;// Total operating cost in rupees
+Gc_2=(Tc/E_t)*100;// Generating cost in paise/kWh
+printf('\n(a)Generating cost when the plant is operating at full load=%0.1f paise/kWh \n(b)Generating cost when the plant is operating at 50 percentage load=%0.0f paise/kWh',Gc_1,Gc_2);
+// The answer vary due to round off error
diff --git a/3733/CH34/EX34.34/Ex34_34.sce b/3733/CH34/EX34.34/Ex34_34.sce
new file mode 100644
index 000000000..7fa1d7751
--- /dev/null
+++ b/3733/CH34/EX34.34/Ex34_34.sce
@@ -0,0 +1,37 @@
+// Example 34_34
+clc;funcprot(0);
+//Given data
+P=[600 600 600 400];// Capacity of 4-generating sets in kW
+MD=1600;// kW
+F_l=0.45;// Load factor
+CC=10000;// Capital cost in Rs./kW
+Mc=60000;// Annual maintainence cost in rupees
+Oc=100000;// Operation cost in rupees
+Fc=7;// Fuel cost in Rs./kg
+Lc=40;// Lubricating oil cost in Rs./kg
+F=0.5;// Fuel consumed in kg/kWh
+O=0.0025;// Lubricating oil consumed in kg/kWh
+CV=42000;// kJ/kg
+n_g=0.92;// Generator efficiency
+
+//Calculation
+//(a)
+R_f3=P(1)/n_g;// Rating of first 3 sets in kW
+R_4=P(4)/n_g;// Rating of last set in kW
+//(b)
+AD=MD*F_l;// Average demand in kW
+E_g=AD*8760;// Energy generated/year in kWh
+//(c)(i)Fixed costs per year
+CC=((3*P(1))+(1*P(4)))*CC;
+Afc=.15*CC;// Annual fixed cost in rupees
+Tfc=Afc+Mc;// Total fixed cost in rupees
+//(i)Variable costs per year
+Fc=(E_g*F)*Fc;// Fuel cost in rupees
+Lc=(E_g*O)*Lc;// Lubricating oil cost in rupees
+Tvc=Fc+Lc+Oc;// Total variable cost in rupees
+Tc=Tfc+Tvc;// Total cost in rupees
+C=Tc/E_g;// Cost per kWh generated
+//(d)
+n_o=((E_g*3600)/(E_g*F*CV))*100;// Over all efficiency of the plant in %
+printf('\n(a)Rating of first 3 sets=%0.0f kW \n Rating of last set=%0.0f kW \n(b)Energy generated/year=%0.1e kWh \n(c)Cost of generation=Rs.%0.2f \n(d) Over all efficiency of the plant=%0.2f percentage',R_f3,R_4,E_g,C,n_o);
+// The answer vary due to round off error
diff --git a/3733/CH34/EX34.35/Ex34_35.sce b/3733/CH34/EX34.35/Ex34_35.sce
new file mode 100644
index 000000000..f6ae07c40
--- /dev/null
+++ b/3733/CH34/EX34.35/Ex34_35.sce
@@ -0,0 +1,24 @@
+// Example 34_35
+clc;funcprot(0);
+//Given data
+P=30;// MW
+Pc=10*10^7;// Plant cost in rupees
+Ii=13/100;// Interest and insurance
+D=5/100;// Depriciation
+Mc=50*10^5;// Plant maintainence cost in rupees
+Fc=700*10^5;// Fuel cost in rupees
+Lc=25*10^5;// Lubricating cost in rupees
+LC=75*10^5;// Labour cost in rupees
+MD=25;// MW
+F_l=0.75;// Load factor
+p=5;// Profit expected in paise/kWh
+
+//Calculation
+L_a=(MD*F_l);// Average load in MW
+E_g=L_a*10^3*24*365;// Energy generated/year in kWh
+Iic=Ii*Pc;// Interest and insurance cost in rupees
+D=D*Pc;// Depriciation in rupees
+Pr=(p/100)*E_g;// Profit required in rupees
+Tc=Iic+D+Mc+Fc+Lc+LC+Pr;// Total cost in rupees
+Ce=(Tc*100)/(E_g);// Cost of energy generated in paise/kWh
+printf('\nCost of energy generated=%0.1f paise/kWh',Ce);
diff --git a/3733/CH34/EX34.4/Ex34_4.sce b/3733/CH34/EX34.4/Ex34_4.sce
new file mode 100644
index 000000000..80a4411ec
--- /dev/null
+++ b/3733/CH34/EX34.4/Ex34_4.sce
@@ -0,0 +1,19 @@
+// Example 34_4
+clc;funcprot(0);
+//Given data
+PC=30;// Plant capacity in MW
+F_l=0.4;// Load factor
+Cc=650;// Caoal costs in Rupees
+t=24;// hours
+n_o=25;// Over all efficiency in %
+CV=25000;// kJ/kg
+
+//Calculation
+E_g=PC*F_l*24;// Energy generated in the form of electricity per day in kWh
+E_i=E_g/(n_o/100);// Input energy per day in kWh
+E_i=E_i*10^3*3600;// kJ
+m_f=E_i/CV;// Mass of fuel consumed per day in kg/day
+m_f=m_f/1000;// tonnes/day
+Cc_d=Cc*m_f;// Cost of coal/day in rupees
+printf('\nCost of coal/day=Rs.%0.0f',Cc_d);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.5/Ex34_5.sce b/3733/CH34/EX34.5/Ex34_5.sce
new file mode 100644
index 000000000..e5e013406
--- /dev/null
+++ b/3733/CH34/EX34.5/Ex34_5.sce
@@ -0,0 +1,29 @@
+// Example 34_5
+clc;funcprot(0);
+//Given data
+//Demand rates
+DR_1=200;//0-5kW:Rs./kW
+DR_2=150;// 6-10kW:Rs./kW
+DR_3=120;//11-15kW:Rs./kW
+//Energy rates
+Er_1=2;//First-100 kW-hr:Rs. kW-hr
+Er_2=1.5;//Next-500 kW-hr:Rs. kW-hr
+Er_3=1;//Next-2000 kW-hr:Rs. kW-hr
+Er_4=0.8;///Excess over-2000 kW-hr:Rs./kW-hr
+Ecpm=2300;// Energy consumption per month in kW-hr
+
+//Calculation
+//(a)
+DC=(5*DR_1)+(5*DR_2)+(2*DR_3);// Demand charges per month in rupees
+EC=(100*Er_1)+(500*Er_2)+(1700*Er_3);// Energy charge in rupees
+Mb=DC+EC;// Monthly bill in rupees
+Auec=Mb/Ecpm;//Average unit energy cost in Rs./kWh
+//(b)
+d=30;// Number of days in a month
+ML=Ecpm/(d*24);// Maximum load = Average load in kW
+DC=ML*200;// Demand charges in Rupees
+MMb=DC+EC;// Mininmum monthly bill in Rupees
+Uec=MMb/Ecpm;// Unit energy charge in this condition in Rs./kWh
+printf('\n(a)Monthly bill of the consumer=Rs.%0.0f \n Average unit energy cost=Rs.%0.2f kW/h \n(b)Mininmum monthly bill=Rs.%0.0f \n Unit energy cost for the given energy consumption condition=Rs.%0.2f /kWh ',Mb,Auec,MMb,Uec);
+// The answer vary due to round off error
+
diff --git a/3733/CH34/EX34.6/Ex34_6.sce b/3733/CH34/EX34.6/Ex34_6.sce
new file mode 100644
index 000000000..82aedee59
--- /dev/null
+++ b/3733/CH34/EX34.6/Ex34_6.sce
@@ -0,0 +1,25 @@
+// Example 34_6
+clc;funcprot(0);
+//Given data
+t_25=10;// Operating time at 25 MW load in hours
+t_z=14;//Remaining period at zero load in hours
+// I=5*10^6*(7+0.2L+0.1L^3) where I is in kJ/hr and L is in MW
+
+//Calculation
+//(a)
+L_0=0;// Zero load
+I_0=((5*10^6)*(7+0.2*L_0+0.1*L_0^2));// The input per hour at zero load in kJ/hr
+L_1=25;// Load in MW
+I_1=((5*10^6)*(7+0.2*L_1+0.1*L_1^2));// The input per hour at 25 MW load in kJ/hr
+T_e=(L_1*t_25)+(L_0*t_z);// Total energy generated with in 24 hours in MW-hrs.
+T_p=(I_1*t_25)+(I_0*t_z);//Total energy input to the plant within 24 hours
+H_i1=T_p/T_e;//Average rate of heat input in kJ/MW-hr.
+
+//(b)
+A_l=T_e/24;// The average load on the plant MW
+L=A_l;// Load in MW
+I=5*10^6*(7+0.2*L+0.1*L^2);// The input per hour at L=10.41 MW in kJ/hr
+H_i2=I/L;// The heat rate in kJ/MW-hr
+H_rs=H_i1-H_i2;//Saving in heat rate in kJ/MW-hr
+printf('\n(a)Average rate of heat input=%0.3e kJ/MW-hr \n(b)Saving in heat rate=%0.3e kJ/MW-hr',H_i1,H_rs);
+// The answer provided in the textbook is wrong
diff --git a/3733/CH34/EX34.7/Ex34_7.sce b/3733/CH34/EX34.7/Ex34_7.sce
new file mode 100644
index 000000000..56bd38035
--- /dev/null
+++ b/3733/CH34/EX34.7/Ex34_7.sce
@@ -0,0 +1,26 @@
+// Example 34_7
+clc;funcprot(0);
+//Given data
+L_p=10;// MW
+// I=5*10^6(18+12L+0.5L^2)
+L_1=5;// MW
+L_2=7;// MW
+
+// Calculation
+//(a)
+// n=(L/I)=(1/(5*10^6((18/L)+12+0.5L)));
+// The efficiency will be maximum when ((18/L)+12+0.5L)),differentiating we get
+L_m=sqrt((-18)/(-0.5));// MW
+L=L_m*10^3*3600;// kJ/hr
+I_6=5*10^6*(18+(12*L_m)+(0.5*L_m^2));// kJ/hr
+n_max=(L/I_6)*100;// Maximum efficiency in %
+printf('\n(a)The load at which the efficiency of the plant will be maximum=%0.0f MW \n The maximum efficiency=%0.0f percentage',L_m,n_max);
+//(b)
+I_5=5*10^6*(18+(12*L_1)+(0.5*L_1^2));// kJ/hr
+I_7=5*10^6*(18+(12*L_2)+(0.5*L_2^2));// kJ/hr
+dI=I_7-I_5;// Increase in output to the plant per hour in kJ/hr
+L=(L_1+L_2)/2;// MW
+IR=5*10^6*(12+L);// kJ/hr
+Ti=IR*(L_2-L_1);// Total increase in input in kJ/hr
+printf('\n(b)Total increase in input=%0.2e kJ/hr',Ti);
+
diff --git a/3733/CH34/EX34.8/Ex34_8.sce b/3733/CH34/EX34.8/Ex34_8.sce
new file mode 100644
index 000000000..2607542f3
--- /dev/null
+++ b/3733/CH34/EX34.8/Ex34_8.sce
@@ -0,0 +1,45 @@
+// Example 34_8
+clc;funcprot(0);
+//Given data
+a=[5 4 2 1 0.5];// Load in kW
+b=[200 4000 2000 1000 1560];// No of hours at load
+CV_c=28000;// kJ/kg
+Cc=350;// Cost of coal in Rs./ton
+CV_d=36000;// kJ/kg
+Cd=1200;// Cost of diesel oil in Rs./ton
+Ci_s=18500;// Capital investment for steam plant in Rs/kW
+Ci_d=17000;// Capital investment for diesel plant in Rs/kW
+Es=320000;// Extra annual salary for steam plant in rupees
+
+// Calculation
+Cce=(10^6*Cc)/(CV_c*1000);// The cost of coal energy per 10^6 kJ
+Cde=(10^6*Cd)/(CV_d*1000);// The cost of diesel oil energy per 10^6 kJ
+for (i=1:5)
+ c(i)=a(i)*b(i);// MW-hrs
+ d(i)=5*10^6*(1.5+(2*a(i))+(0.025*(a(i))^3));// Input rate in kJ per hour for steam plant
+ e(i)=b(i)*d(i);// Total input in kJ
+ f(i)=5*10^6*(2.25+a(i)+(0.12*(a(i))^2)-(0.004*(a(i))^3));// Input rate in kJ per hour for diesel plant
+ g(i)=b(i)*f(i);// Total input in kJ
+end
+N=b(1)+b(2)+b(3)+b(4)+b(5);// Total no. of hours at load
+MW_hrs=c(1)+c(2)+c(3)+c(4)+c(5);// Total MW-hrs
+T_s=e(1)+e(2)+e(3)+e(4)+e(5);// Total input in kJ for steam plant
+T_d=g(1)+g(2)+g(3)+g(4)+g(5);// Total input in kJ for diesel plant
+Ahr_s=(T_s)/(MW_hrs*1000);// Average heat rate in kJ per kW hour (for steam plant)
+Ahr_d=(T_d)/(MW_hrs*1000);// Average heat rate in kJ per kW hour (for diesel plant)
+// Steam plant
+Fc_s=a(1)*10^3*Ci_s*(12/100);// Fixed cost in Rs./year
+Oc_s=((T_s/10^6)*Cce)+(Es);// Operating cost in Rs./year
+Tc_s=Fc_s+Oc_s;// Total cost in rupees
+// Diesel plant
+Fc_d=a(1)*10^3*Ci_d*(12/100);// Fixed cost in Rs./year
+Oc_d=((T_d/10^6)*Cde);// Operating cost in Rs./year
+Tc_d=Fc_d+Oc_d;// Total cost in rupees
+printf('\nTotal cost of steam plant=Rs.%0.4e \nTotal cost of diesel plant=Rs.%0.4e',Tc_s,Tc_d)
+if(Tc_s<Tc_d)
+ printf('\nThe steam plant would be the choice under the given circumstances despite the higher investment and the greater relative labour cost.');
+else
+ printf('\nThe diesel plant would be the choice under the given circumstances.');
+end
+// The answer provided in the textbook is wrong
+
diff --git a/3733/CH34/EX34.9/Ex34_9.sce b/3733/CH34/EX34.9/Ex34_9.sce
new file mode 100644
index 000000000..b98e8b174
--- /dev/null
+++ b/3733/CH34/EX34.9/Ex34_9.sce
@@ -0,0 +1,21 @@
+// Example 34_9
+clc;funcprot(0);
+//Given data
+L=60;// MW
+L_0=0;// Zero load in MW
+// I=5*10^6*(8+8*L+0.4L^2)
+T_f=20;// Time in hours
+T_0=4;// Time in hours
+
+// Calculation
+E_g=(T_f*L)+(T_0*0);// Total energy generated by the power plant during 24 hoursbin MWh
+I_60=5*10^6*(8+(8*L)+(0.4*L^2))*20;// Input to the plant when the plant is running at full load in kJ
+I_0=5*10^6*(8+(8*L_0)+(0.4*L_0^2))*20;// Input at no load in kJ
+Ti=I_60+I_0;// Total input to the plant during 24 hours in kJ/day
+Q=Ti/(E_g*10^3);// Average heat supplied per kWh generated in kJ/kWh
+L_a=E_g/24;// Average load in MW
+I_50=5*10^6*(8+(8*L_a)+(0.4*L_a^2))*24;// Heat supplied during 24 hours in kJ/day
+Ns=Ti-I_50;// Net saving per day in kJ/day
+S=Ns/(E_g*10^3);// Saving per kWh
+printf('\nThe heat input per day to the power station=%0.5e kJ/day \nSaving per kWh=%0.0f kJ/kWh',I_50,S);
+// The answer provided in the textbook is wrong