diff options
Diffstat (limited to '3472/CH9')
26 files changed, 832 insertions, 0 deletions
diff --git a/3472/CH9/EX9.1/Example9_1.sce b/3472/CH9/EX9.1/Example9_1.sce new file mode 100644 index 000000000..e853e8ad8 --- /dev/null +++ b/3472/CH9/EX9.1/Example9_1.sce @@ -0,0 +1,26 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.1 :
+// Page number 100
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+D = 100.0 // Distance between conductors(cm)
+d = 1.25 // Diameter of conductor(cm)
+f = 50.0 // Frequency(Hz)
+
+// Calculations
+r_GMR = 0.7788*d/2.0 // GMR of conductor(cm)
+L = 4.0*10**-4*log(D/r_GMR) // Loop inductance(H/km)
+X_L = 2*%pi*f*L // Reactance of transmission line(ohm)
+
+// Results
+disp("PART II - EXAMPLE : 2.1 : SOLUTION :-")
+printf("\nLoop inductance of transmission line, L = %.2e H/km", L)
+printf("\nReactance of transmission line, X_L = %.2f ohm", X_L)
diff --git a/3472/CH9/EX9.10/Example9_10.sce b/3472/CH9/EX9.10/Example9_10.sce new file mode 100644 index 000000000..1a01892f5 --- /dev/null +++ b/3472/CH9/EX9.10/Example9_10.sce @@ -0,0 +1,27 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.10 :
+// Page number 109
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 5.0 // Diameter of conductor(cm)
+d_1 = 400.0 // Distance between conductor 1 & 2(cm)
+d_2 = 500.0 // Distance between conductor 2 & 3(cm)
+d_3 = 600.0 // Distance between conductor 1 & 3(cm)
+
+// Calculations
+D_eq = (d_1*d_2*d_3)**(1.0/3) // Equivalent distance(cm)
+r_GMR = 0.7788*d/2.0 // GMR(cm)
+L = 0.2*log(D_eq/r_GMR) // Inductance per phase per km(mH)
+
+// Results
+disp("PART II - EXAMPLE : 2.10 : SOLUTION :-")
+printf("\nInductance per km of 3 phase transmission line, L = %.3f mH \n", L)
+printf("\nNOTE: ERROR: Calculation mistake in the textbook")
diff --git a/3472/CH9/EX9.11/Example9_11.sce b/3472/CH9/EX9.11/Example9_11.sce new file mode 100644 index 000000000..67f4a53e6 --- /dev/null +++ b/3472/CH9/EX9.11/Example9_11.sce @@ -0,0 +1,28 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.11 :
+// Page number 109
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 3.0 // Diameter of conductor(cm)
+D_12 = 200.0 // Distance between conductor 1 & 2(cm)
+D_23 = 200.0 // Distance between conductor 2 & 3(cm)
+D_31 = 400.0 // Distance between conductor 1 & 3(cm)
+
+// Calculations
+D_eq = (D_12*D_23*D_31)**(1.0/3) // Equivalent distance(cm)
+r = d/2.0 // Radius of conductor(cm)
+L = (0.5+2*log(D_eq/r))*10**-7 // Inductance/phase/m(H)
+L_mH = L*1000.0*1000.0 // Inductance per phase per km(mH)
+
+// Results
+disp("PART II - EXAMPLE : 2.11 : SOLUTION :-")
+printf("\nInductance of each conductor per phase per km, L = %.3f mH \n", L_mH)
+printf("\nNOTE: ERROR: Calculation mistake in the textbook")
diff --git a/3472/CH9/EX9.12/Example9_12.sce b/3472/CH9/EX9.12/Example9_12.sce new file mode 100644 index 000000000..264606c32 --- /dev/null +++ b/3472/CH9/EX9.12/Example9_12.sce @@ -0,0 +1,37 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.12 :
+// Page number 109-110
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.0 // Diameter of conductor(cm)
+D_ab = 400.0 // Distance between conductor a & b(cm)
+D_bc = 400.0 // Distance between conductor b & c(cm)
+D_ca = 800.0 // Distance between conductor c & a(cm)
+
+// Calculations
+I_ab = 1.0*exp(%i*-240.0*%pi/180) // I_a/I_b
+I_cb = 1.0*exp(%i*-120.0*%pi/180) // I_c/I_b
+r_GMR = 0.7788*d/2.0 // GMR(cm)
+L_a = 2.0*10**-7*complex(log((D_ab*D_ca)**0.5/r_GMR),(3**0.5/2*log(D_ab/D_ca))) // Inductance per phase of A(H/m)
+L_amH = L_a*10.0**6 // Inductance per phase of A(mH/km)
+L_b = 2.0*10**-7*complex(log((D_bc*D_ab)**0.5/r_GMR),(3**0.5/2*log(D_bc/D_ab))) // Inductance per phase of B(H/m)
+L_bmH = L_b*10.0**6 // Inductance per phase of B(mH/km)
+L_c = 2.0*10**-7*complex(log((D_ca*D_bc)**0.5/r_GMR),(3**0.5/2*log(D_ca/D_bc))) // Inductance per phase of C(H/m)
+L_cmH = L_c*10.0**6 // Inductance per phase of C(mH/km)
+D_eq = (D_ab*D_bc*D_ca)**(1.0/3) // Equivalent distance(cm)
+L_avg = 0.2*log(D_eq/r_GMR) // Average inductance per phase(mH/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.12 : SOLUTION :-")
+printf("\nInductance of conductor a, L_a = (%.4f%.2fj) mH/km", real(L_amH),imag(L_amH))
+printf("\nInductance of conductor b, L_b = %.3f mH/km", abs(L_bmH))
+printf("\nInductance of conductor c, L_c = (%.4f+%.2fj) mH/km", real(L_cmH),imag(L_cmH))
+printf("\nAverage inductance of each phase, L_avg = %.3f mH/km", L_avg)
diff --git a/3472/CH9/EX9.13/Example9_13.sce b/3472/CH9/EX9.13/Example9_13.sce new file mode 100644 index 000000000..f2c51ad1b --- /dev/null +++ b/3472/CH9/EX9.13/Example9_13.sce @@ -0,0 +1,40 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.13 :
+// Page number 110
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+D_a_a = 0.9 // Self GMD of conductor a(cm)
+D_a_aa = 40.0 // Distance between conductor a & a'(cm)
+D_a_b = 1000.0 // Distance between conductor a & b(cm)
+D_a_bb = 1040.0 // Distance between conductor a & b'(cm)
+D_aa_b = 960.0 // Distance between conductor a' & b(cm)
+D_c_a = 2000.0 // Distance between conductor a & c(cm)
+D_c_aa = 1960.0 // Distance between conductor a' & c(cm)
+D_cc_a = 2040.0 // Distance between conductor a & c'(cm)
+
+// Calculations
+D_aa_aa = D_a_a // Self GMD of conductor a'(cm)
+D_aa_a = D_a_aa // Distance between conductor a' & a(cm)
+D_s1 = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD in position 1(cm)
+D_s2 = D_s1 // Self GMD in position 2(cm)
+D_s3 = D_s1 // Self GMD in position 3(cm)
+D_s = (D_s1*D_s2*D_s3)**(1.0/3) // Equivalent self GMD(cm)
+D_aa_bb = D_a_b // Distance between conductor a' & b'(cm)
+D_AB = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4) // Mutual GMD(cm)
+D_BC = D_AB // Mutual GMD(cm)
+D_cc_aa = D_c_a // Distance between conductor a' & c'(cm)
+D_CA = (D_c_a*D_c_aa*D_cc_a*D_cc_aa)**(1.0/4) // Mutual GMD(cm)
+D_m = (D_AB*D_BC*D_CA)**(1.0/3) // Equivalent Mutual GMD(cm)
+L = 0.2*log(D_m/D_s) // Inductance per phase(mH/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.13 : SOLUTION :-")
+printf("\nInductance per phase, L = %.3f mH/km", L)
diff --git a/3472/CH9/EX9.14/Example9_14.sce b/3472/CH9/EX9.14/Example9_14.sce new file mode 100644 index 000000000..98af403ea --- /dev/null +++ b/3472/CH9/EX9.14/Example9_14.sce @@ -0,0 +1,48 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.14 :
+// Page number 110-111
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+r = 6.0/1000 // Radius of conductor(m)
+D_a_cc = 5.0 // Distance between conductor a & c'(m)
+D_b_bb = 6.0 // Distance between conductor b & b'(m)
+D_c_aa = 5.0 // Distance between conductor c & a'(m)
+D_acc_bbb = 3.0 // Distance between conductor ac' & bb'(m)
+D_bbb_caa = 3.0 // Distance between conductor bb' & ca'(m)
+D_a_c = 6.0 // Distance between conductor a & c(m)
+
+// Calculations
+r_GMR = 0.7788*r // GMR of conductor(m)
+D_a_b = (D_acc_bbb**2+((D_b_bb-D_a_cc)/2)**2)**(1.0/2) // Distance between conductor a & b(m)
+D_a_bb = (D_acc_bbb**2+(D_a_cc+(D_b_bb-D_a_cc)/2)**2)**(1.0/2) // Distance between conductor a & b'(m)
+D_a_aa = ((D_acc_bbb+D_bbb_caa)**2+D_c_aa**2)**(1.0/2) // Distance between conductor a & a'(m)
+D_a_a = r_GMR // Self GMD of conductor a(m)
+D_aa_aa = D_a_a // Self GMD of conductor a'(m)
+D_aa_a = D_a_aa // Distance between conductor a' & a(m)
+D_S1 = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD in position 1(m)
+D_bb_b = D_b_bb // Distance between conductor b' & b(m)
+D_S2 = (D_a_a*D_b_bb*D_aa_aa*D_bb_b)**(1.0/4) // Self GMD in position 2(m)
+D_S3 = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD in position 3(m)
+D_S = (D_S1*D_S2*D_S3)**(1.0/3) // Equivalent self GMD(m)
+D_aa_bb = D_a_b // Distance between conductor a' & b'(m)
+D_aa_b = D_a_bb // Distance between conductor a' & b(m)
+D_AB = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4) // Mutual GMD(m)
+D_BC = D_AB // Mutual GMD(m)
+D_c_a = D_a_c // Distance between conductor c & a(m)
+D_cc_aa = D_c_a // Distance between conductor a' & c'(m)
+D_cc_a = D_a_cc // Distance between conductor c' & a(m)
+D_CA = (D_c_a*D_c_aa*D_cc_a*D_cc_aa)**(1.0/4) // Mutual GMD(m)
+D_m = (D_AB*D_BC*D_CA)**(1.0/3) // Equivalent Mutual GMD(m)
+L = 0.2*log(D_m/D_S) // Inductance per phase(mH/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.14 : SOLUTION :-")
+printf("\nInductance per phase, L = %.2f mH/km", L)
diff --git a/3472/CH9/EX9.15/Example9_15.sce b/3472/CH9/EX9.15/Example9_15.sce new file mode 100644 index 000000000..e9d8d1d71 --- /dev/null +++ b/3472/CH9/EX9.15/Example9_15.sce @@ -0,0 +1,26 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.15 :
+// Page number 111
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+D_eq = 2.88 // Equilateral spacing of line(m)
+
+// Calculations
+D = D_eq/2**(1.0/3) // Distance(m)
+D_13 = 2.0*D // Distance between conductor 1 & 3(m)
+D_12 = D // Distance between conductor 1 & 2(m)
+D_23 = D // Distance between conductor 2 & 3(m)
+
+// Results
+disp("PART II - EXAMPLE : 2.15 : SOLUTION :-")
+printf("\nSpacing between conductor 1 & 2 to keep inductance same, D_12 = %.1f m", D_12)
+printf("\nSpacing between conductor 2 & 3 to keep inductance same, D_23 = %.1f m", D_23)
+printf("\nSpacing between conductor 1 & 3 to keep inductance same, D_13 = %.1f m", D_13)
diff --git a/3472/CH9/EX9.16/Example9_16.sce b/3472/CH9/EX9.16/Example9_16.sce new file mode 100644 index 000000000..e2216698e --- /dev/null +++ b/3472/CH9/EX9.16/Example9_16.sce @@ -0,0 +1,32 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.16 :
+// Page number 112
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+l = 40.0 // Length of line(km)
+d = 5.0/1000 // Diameter of wire(m)
+D = 1.5 // Spacing between conductor(m)
+h = 7.0 // Height of conductors above ground(m)
+
+// Calculations
+r = d/2 // Radius of wire(m)
+e = 1.0/(36*%pi)*10**-9 // Constant ε_0
+// Neglecting presence of ground
+C_ab_1 = %pi*e/(log(D/r)) // Capacitance(F/m)
+C_ab_12 = C_ab_1*l*1000.0*10**6 // Capacitance(μF)
+// Taking presence of ground
+C_ab_2 = %pi*e/log(D/(r*(1+(D/(2*h))**2)**(1.0/2))) // Capacitance(F/m)
+C_ab_22 = C_ab_2*l*1000.0*10**6 // Capacitance(μF)
+
+// Results
+disp("PART II - EXAMPLE : 2.16 : SOLUTION :-")
+printf("\nCapacitance of line neglecting presence of ground, C_ab = %.3f μF", C_ab_12)
+printf("\nCapacitance of line taking presence of ground, C_ab = %.3f μF", C_ab_22)
diff --git a/3472/CH9/EX9.17/Example9_17.sce b/3472/CH9/EX9.17/Example9_17.sce new file mode 100644 index 000000000..28e1d356a --- /dev/null +++ b/3472/CH9/EX9.17/Example9_17.sce @@ -0,0 +1,34 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.17 :
+// Page number 114-115
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.0/100 // Diameter of conductor(m)
+D_AB = 4.0 // Spacing between conductor A & B(m)
+D_BC = 4.0 // Spacing between conductor B & C(m)
+D_CA = 8.0 // Spacing between conductor C & A(m)
+
+// Calculations
+r = d/2 // Radius of conductor(m)
+D = 4.0 // Assuming coomon distance(m)
+e = 1.0/(36*%pi)*10**-9 // Constant ε_0
+C_A = 2*%pi*e/(log(D/r)-complex(-0.5,0.866)*log(2))*1000.0 // Capacitance of conductor A(F/km)
+C_Au = C_A*10.0**6 // Capacitance of conductor A(μF/km)
+C_B = 2*%pi*e/log(D/r)*1000.0 // Capacitance of conductor B(F/km)
+C_Bu = C_B*10.0**6 // Capacitance of conductor B(μF/km)
+C_C = 2*%pi*e/(log(D/r)-complex(-0.5,-0.866)*log(2))*1000.0 // Capacitance of conductor C(F/km)
+C_Cu = C_C*10.0**6 // Capacitance of conductor C(μF/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.17 : SOLUTION :-")
+printf("\nCapacitance of conductor A, C_A = (%.5f+%.6fj) μF/km", real(C_Au),imag(C_Au))
+printf("\nCapacitance of conductor B, C_B = %.6f μF/km", C_Bu)
+printf("\nCapacitance of conductor C, C_C = (%.5f%.6fj) μF/km", real(C_Cu),imag(C_Cu))
diff --git a/3472/CH9/EX9.18/Example9_18.sce b/3472/CH9/EX9.18/Example9_18.sce new file mode 100644 index 000000000..487df35b6 --- /dev/null +++ b/3472/CH9/EX9.18/Example9_18.sce @@ -0,0 +1,29 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.18 :
+// Page number 115
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.0/100 // Diameter of conductor(m)
+D_AB = 4.0 // Spacing between conductor A & B(m)
+D_BC = 4.0 // Spacing between conductor B & C(m)
+D_CA = 8.0 // Spacing between conductor C & A(m)
+
+// Calculations
+r = d/2 // Radius of conductor(m)
+e = 1.0/(36*%pi)*10**-9 // Constant ε_0
+D_eq = (D_AB*D_BC*D_CA)**(1.0/3) // Equivalent distance(m)
+C_n = 2*%pi*e/log(D_eq/r)*1000.0 // Capacitance to neutral(F/km)
+C_nu = C_n*10.0**6 // Capacitance to neutral(μF/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.18 : SOLUTION :-")
+printf("\nNew value of capacitance, C_n = %.5f μF/km \n", C_nu)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more approximation in the textbook")
diff --git a/3472/CH9/EX9.19/Example9_19.sce b/3472/CH9/EX9.19/Example9_19.sce new file mode 100644 index 000000000..964a14077 --- /dev/null +++ b/3472/CH9/EX9.19/Example9_19.sce @@ -0,0 +1,36 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.19 :
+// Page number 115
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.6 // Outside diameter of conductor(cm)
+D_RY = 8.0 // Spacing between conductor R & Y(m)
+D_YB = 8.0 // Spacing between conductor Y & B(m)
+D_RB = 16.0 // Spacing between conductor R & B(m)
+h = 13.0 // Height of conductor from ground(m)
+
+// Calculations
+r = d/2 // Radius of conductor(m)
+e = 1.0/(36*%pi)*10**-9 // Constant ε_0
+h_12 = (D_RY**2+(2*h)**2)**(1.0/2) // Height of conductor 1 & 2(m)
+h_23 = h_12 // Height of conductor 2 & 3(m)
+h_31 = (D_RB**2+(2*h)**2)**(1.0/2) // Height of conductor 3 & 1(m)
+h_1 = 2*h // Height of transposed conductor 1(m)
+h_2 = 2*h // Height of transposed conductor 2(m)
+h_3 = 2*h // Height of transposed conductor 3(m)
+D_eq = (D_RY*D_YB*D_RB)**(1.0/3) // Equivalent distance(m)
+h_123 = (h_12*h_23*h_31)**(1.0/3) // Height(m)
+h_1_2_3 = (h_1*h_2*h_3)**(1.0/3) // Height(m)
+C_n = 2*%pi*e/(log(D_eq*100/r)-log(h_123/h_1_2_3))*1000.0 // Capacitance of conductor A(F/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.19 : SOLUTION :-")
+printf("\nCapacitance per phase to neutral of a line, C_n = %.1e F/km", C_n)
diff --git a/3472/CH9/EX9.2/Example9_2.sce b/3472/CH9/EX9.2/Example9_2.sce new file mode 100644 index 000000000..af7bf6c61 --- /dev/null +++ b/3472/CH9/EX9.2/Example9_2.sce @@ -0,0 +1,26 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.2 :
+// Page number 101
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+l = 100.0 // Length of 3-phase transmission line(km)
+D = 120.0 // Distance between conductors(cm)
+d = 0.5 // Diameter of conductor(cm)
+
+// Calculations
+r_GMR = 0.7788*d/2.0 // GMR of conductor(cm)
+L = 2.0*10**-4*log(D/r_GMR) // Inductance per phase(H/km)
+L_l = L*l // Inductance per phase for 100km length(H)
+
+// Results
+disp("PART II - EXAMPLE : 2.2 : SOLUTION :-")
+printf("\nInductance per phase of the system, L = %.4f H \n", L_l)
+printf("\nNOTE: ERROR: In textbook to calculate L, log10 is used instead of ln i.e natural logarithm. So, there is change in answer")
diff --git a/3472/CH9/EX9.20/Example9_20.sce b/3472/CH9/EX9.20/Example9_20.sce new file mode 100644 index 000000000..3003b65a9 --- /dev/null +++ b/3472/CH9/EX9.20/Example9_20.sce @@ -0,0 +1,28 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.20 :
+// Page number 117-118
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.5 // Diameter of conductor(cm)
+D = 200.0 // Distance of separation(cm)
+l = 100.0 // Length of line(km)
+
+// Calculations
+r = d/2 // Radius of conductor(cm)
+e = 1.0/(36*%pi)*10**-9 // Constant ε_0
+D_m = (D*(3**0.5)*D*(3**0.5)*D*D)**(1.0/4) // Mutual GMD(cm)
+D_s = (2*D*r)**(1.0/2) // Self GMD(cm)
+C_n = 2*%pi*e/log(D_m/D_s)*1000.0 // Phase-to-neutral capacitance(F/km)
+C_nu = C_n*l*10.0**6 // Phase-to-neutral capacitance(μF)
+
+// Results
+disp("PART II - EXAMPLE : 2.20 : SOLUTION :-")
+printf("\nPhase-to-neutral capacitance, C_n = %.2f μF", C_nu)
diff --git a/3472/CH9/EX9.21/Example9_21.sce b/3472/CH9/EX9.21/Example9_21.sce new file mode 100644 index 000000000..d69817c35 --- /dev/null +++ b/3472/CH9/EX9.21/Example9_21.sce @@ -0,0 +1,36 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.21 :
+// Page number 118
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.5/100 // Diameter of conductor(m)
+D = 5.0 // Distance of separation(m)
+h = 2.0 // Height of separation(m)
+
+// Calculations
+r = d/2 // Radius of conductor(m)
+e = 1.0/(36*%pi)*10**-9 // Constant ε_0
+m = (D**2+h**2)**(1.0/2) // (m)
+n = (D**2+(h*2)**2)**(1.0/2) // (m)
+D_ab = (D*m)**(1.0/2) // Distance between conductor a & b(m)
+D_bc = (D*m)**(1.0/2) // Distance between conductor b & c(m)
+D_ca = (2*D*h)**(1.0/2) // Distance between conductor c & a(m)
+D_eq = (D_ab*D_bc*D_ca)**(1.0/3) // Equivalent GMD(m)
+D_s1 = (r*n)**(1.0/2) // Self GMD in position 1(m)
+D_s2 = (r*h)**(1.0/2) // Self GMD in position 2(m)
+D_s3 = (r*n)**(1.0/2) // Self GMD in position 3(m)
+D_s = (D_s1*D_s2*D_s3)**(1.0/3) // Self GMD(m)
+C_n = 2*%pi*e/log(D_eq/D_s)*1000.0 // Capacitance per phase to neutral(F/km)
+C_nu = C_n*10.0**6 // Capacitance per phase to neutral(μF/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.21 : SOLUTION :-")
+printf("\nCapacitance per phase to neutral, C_n = %.2f μF/km", C_nu)
diff --git a/3472/CH9/EX9.22/Example9_22.sce b/3472/CH9/EX9.22/Example9_22.sce new file mode 100644 index 000000000..2fa8cc8a7 --- /dev/null +++ b/3472/CH9/EX9.22/Example9_22.sce @@ -0,0 +1,46 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.22 :
+// Page number 119
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.5/100 // Diameter of conductor(m)
+V = 132.0*10**3 // Line voltage(V)
+f = 50.0 // Frequency(Hz)
+h = 4.0 // Height(m)
+H = 8.0 // Height of separation(m)
+D_1_33 = 7.0 // Distance between conductors 1 & 3'(m)
+D_1_22 = 9.0 // Distance between conductors 1 & 2'(m)
+D_1_11 = 8.0 // Distance between conductors 1 & 1'(m)
+D_1 = 1.0 // Distance(m)
+
+// Calculations
+r = d/2 // Radius of conductor(m)
+e = 1.0/(36*%pi)*10**-9 // Constant ε_0
+D_12 = (h**2+D_1**2)**(1.0/2) // Distance between conductors 1 & 2(m)
+D_122 = (h**2+D_1_11**2)**(1.0/2) // Distance between conductors 1 & 2'(m)
+D_111 = (D_1_11**2+D_1_33**2)**(1.0/2) // Distance between conductors 1 & 1'(m)
+D_1_2 = (D_12*D_122)**(1.0/2) // Mutual GMD(m)
+D_2_3 = (D_12*D_122)**(1.0/2) // Mutual GMD(m)
+D_3_1 = (D_1_33*D_1_11)**(1.0/2) // Mutual GMD(m)
+D_eq = (D_1_2*D_2_3*D_3_1)**(1.0/3) // Equivalent GMD(m)
+D_s1 = (r*D_111)**(1.0/2) // Self GMD in position 1(m)
+D_s2 = (r*D_1_22)**(1.0/2) // Self GMD in position 2(m)
+D_s3 = (r*D_111)**(1.0/2) // Self GMD in position 3(m)
+D_s = (D_s1*D_s2*D_s3)**(1.0/3) // Self GMD(m)
+C_n = 2*%pi*e/log(D_eq/D_s) // Capacitance per phase to neutral(F/m)
+X_cn = 1/(2.0*%pi*f*C_n) // Capacitive reactance to neutral(ohms/m)
+V_ph = V/(3**0.5) // Phase voltage(V)
+I_charg = V_ph/X_cn*1000.0 // Charging current per phase(A/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.22 : SOLUTION :-")
+printf("\nCapacitive reactance to neutral, X_cn = %.2e ohms/m", X_cn)
+printf("\nCharging current per phase, I_charg = %.3f A/km", I_charg)
diff --git a/3472/CH9/EX9.23/Example9_23.sce b/3472/CH9/EX9.23/Example9_23.sce new file mode 100644 index 000000000..163ccdf74 --- /dev/null +++ b/3472/CH9/EX9.23/Example9_23.sce @@ -0,0 +1,38 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.23 :
+// Page number 119
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 0.8/100 // Diameter of conductor(m)
+f = 50.0 // Frequency(Hz)
+D_a_b = 5.0 // Distance between conductors a & b(m)
+D_b_c = 5.0 // Distance between conductors b & c(m)
+D_c_a = 8.0 // Distance between conductors c & a(m)
+l = 25.0 // Length of line(km)
+
+// Calculations
+r = d/2 // Radius of conductor(m)
+e = 8.854*10**-12 // Constant ε_0
+D_e = (D_a_b*D_b_c*D_c_a)**(1.0/3) // Equivalent GMD(m)
+L = 2*((1.0/4)+log(D_e/r))*10**-4 // Inductance(H/km)
+X_L = 2*%pi*f*L // Inductive reactance per km(ohms)
+C = %pi*e/log(D_e/r) // Capacitance(F/m)
+C_l = C*1000.0*l // Capacitance for entire length(F)
+C_lu = C_l*10.0**6 // Capacitance for entire length(μF)
+X_c = 1/(2.0*%pi*f*C_l) // Capacitive reactance to neutral(ohm)
+X_ck = X_c/1000.0 // Capacitive reactance to neutral(kilo-ohm)
+
+// Results
+disp("PART II - EXAMPLE : 2.23 : SOLUTION :-")
+printf("\nInductive reactance of the line per kilometer per phase, X_L = %.3f ohm", X_L)
+printf("\nCapacitance of the line, C = %.3f μF", C_lu)
+printf("\nCapacitive reactance of the transmission line, X_c = %.1f kilo-ohm\n", X_ck)
+printf("\nNOTE: ERROR: Change in obtained answer from that of textbook due to wrong substitution in finding Capacitance")
diff --git a/3472/CH9/EX9.24/Example9_24.sce b/3472/CH9/EX9.24/Example9_24.sce new file mode 100644 index 000000000..bcf5cded4 --- /dev/null +++ b/3472/CH9/EX9.24/Example9_24.sce @@ -0,0 +1,33 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.24 :
+// Page number 119-120
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V = 250.0 // Line voltage(V)
+f = 50.0 // Frequency(Hz)
+D = 1.5 // Distance of separation(m)
+d = 1.5/100 // Diameter of conductor(m)
+l = 50.0 // Length of line(km)
+
+// Calculations
+// Case(i)
+r = d/2 // Radius of conductor(m)
+e = 8.854*10**-12 // Constant ε_0
+C = %pi*e/log(D/r) // Capacitance(F/m)
+C_l = C*1000.0*l // Capacitance for entire length(F)
+C_lu = C_l*10.0**6 // Capacitance for entire length(μF)
+// Case(ii)
+I_charg = 2.0*%pi*f*C_l*V*1000.0 // Charging current(mA)
+
+// Results
+disp("PART II - EXAMPLE : 2.24 : SOLUTION :-")
+printf("\nCase(i) : Capacitance of the line, C = %.3f μF", C_lu)
+printf("\nCase(ii): Charging current, I_charg = %.2f mA", I_charg)
diff --git a/3472/CH9/EX9.25/Example9_25.sce b/3472/CH9/EX9.25/Example9_25.sce new file mode 100644 index 000000000..7da4ececf --- /dev/null +++ b/3472/CH9/EX9.25/Example9_25.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.25 :
+// Page number 120
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d_1 = 6.0 // Distance between conductor 1 & 2(m)
+d_2 = 6.0 // Distance between conductor 2 & 3(m)
+d_3 = 12.0 // Distance between conductor 3 & 1(m)
+dia = 1.24/100 // Diameter of conductor(m)
+l = 100.0 // Length of line(km)
+
+// Calculations
+r = dia/2 // Radius of conductor(m)
+e = 8.854*10**-12 // Constant ε_0
+d = (d_1*d_2*d_3)**(1.0/3) // Distance(m)
+C = 2*%pi*e/log(d/r) // Capacitance(F/m)
+C_l = C*1000.0*l // Capacitance for entire length(F)
+C_lu = C_l*10.0**6 // Capacitance for entire length(μF)
+
+// Results
+disp("PART II - EXAMPLE : 2.25 : SOLUTION :-")
+printf("\nCapacitance of the line, C = %.3f μF", C_lu)
diff --git a/3472/CH9/EX9.26/Example9_26.sce b/3472/CH9/EX9.26/Example9_26.sce new file mode 100644 index 000000000..d8acc46e2 --- /dev/null +++ b/3472/CH9/EX9.26/Example9_26.sce @@ -0,0 +1,25 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.26 :
+// Page number 120
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.0 // Spacing between conductors(m)
+dia = 1.25/100 // Diameter of conductor(m)
+
+// Calculations
+r = dia/2 // Radius of conductor(m)
+e = 8.854*10**-12 // Constant ε_0
+C = 2*%pi*e/log(d/r) // Capacitance(F/m)
+C_u = C*1000*10.0**6 // Capacitance for entire length(μF/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.26 : SOLUTION :-")
+printf("\nCapacitance of each line conductor, C = %.4f μF/km", C_u)
diff --git a/3472/CH9/EX9.3/Example9_3.sce b/3472/CH9/EX9.3/Example9_3.sce new file mode 100644 index 000000000..8ce3f4c4e --- /dev/null +++ b/3472/CH9/EX9.3/Example9_3.sce @@ -0,0 +1,23 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.3 :
+// Page number 101
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+D = 135.0 // Spacing between conductors(cm)
+r = 0.8 // Radius of conductor(cm)
+
+// Calculations
+L = (1+4*log(D/r))*10**-7*1000.0 // Loop inductance per km(H)
+L_mH = L*1000.0 // Loop inductance per km(mH)
+
+// Results
+disp("PART II - EXAMPLE : 2.3 : SOLUTION :-")
+printf("\nLoop inductance of line per km, L = %.2f mH", L_mH)
diff --git a/3472/CH9/EX9.4/Example9_4.sce b/3472/CH9/EX9.4/Example9_4.sce new file mode 100644 index 000000000..8a496b294 --- /dev/null +++ b/3472/CH9/EX9.4/Example9_4.sce @@ -0,0 +1,26 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.4 :
+// Page number 101
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+l = 80.0 // Length of 3-phase transmission line(km)
+D = 100.0 // Distance between conductors(cm)
+d = 1.0 // Diameter of conductor(cm)
+
+// Calculations
+r_GMR = 0.7788*d/2.0 // GMR of conductor(cm)
+L = 2.0*10**-7*log(D/r_GMR) // Inductance per phase(H/m)
+L_l = L*l*1000.0 // Inductance per phase for 80km(H)
+
+// Results
+disp("PART II - EXAMPLE : 2.4 : SOLUTION :-")
+printf("\nInductance per phase of the system, L = %.4f H \n", L_l)
+printf("\nNOTE: ERROR: Calculation mistake in textbook to find Inductance per phase of the system")
diff --git a/3472/CH9/EX9.5/Example9_5.sce b/3472/CH9/EX9.5/Example9_5.sce new file mode 100644 index 000000000..39e911282 --- /dev/null +++ b/3472/CH9/EX9.5/Example9_5.sce @@ -0,0 +1,32 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.5 :
+// Page number 103-104
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+D_a_b = 120.0 // Distance between conductors a & b(cm)
+D_a_bb = 140.0 // Distance between conductors a & b'(cm)
+D_aa_b = 100.0 // Distance between conductors a' & b(cm)
+D_aa_bb = 120.0 // Distance between conductors a' & b'(cm)
+D_a_aa = 20.0 // Distance between conductors a & a'(cm)
+d = 2.0 // Diameter of conductor(cm)
+
+// Calculations
+D_m = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4) // Mutual GMD(cm)
+D_a_a = 0.7788*d/2.0 // Self GMD of conductor a(cm)
+D_aa_aa = D_a_a // Self GMD of conductor a'(cm)
+D_aa_a = D_a_aa // Distance between conductors a' & a(cm)
+D_s = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD(cm)
+L = 4*10**-4*log(D_m/D_s) // Total inductance of the line(H/km)
+L_mH = L*1000.0 // Total inductance of the line(mH/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.5 : SOLUTION :-")
+printf("\nTotal inductance of the line, L = %.2f mH/km", L_mH)
diff --git a/3472/CH9/EX9.6/Example9_6.sce b/3472/CH9/EX9.6/Example9_6.sce new file mode 100644 index 000000000..8be078040 --- /dev/null +++ b/3472/CH9/EX9.6/Example9_6.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.6 :
+// Page number 104
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+D_a_b = 175.0 // Distance between conductors a & b(cm)
+D_a_aa = 90.0 // Distance between conductors a & a'(cm)
+d = 2.5 // Diameter of conductor(cm)
+
+// Calculations
+GMR = 0.7788*d/2.0 // GMR(cm)
+D_a_a = GMR // Self GMD of conductor a(cm)
+D_aa_aa = D_a_a // Self GMD of conductor a'(cm)
+D_aa_a = 90.0 // Distance between conductors a' & a(cm)
+D_s = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD of conductor A = Self GMD of conductor B(cm)
+D_a_bb = (D_a_aa**2+D_a_b**2)**(1.0/2) // Distance between conductors a & b'(cm)
+D_m = ((D_a_b*D_a_bb)**2)**(1.0/4) // Mutual GMD(cm)
+L = 4*10**-4*log(D_m/D_s) // Inductance of the line(H/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.6 : SOLUTION :-")
+printf("\nInductance of the line, L = %.1e H/km", L)
diff --git a/3472/CH9/EX9.7/Example9_7.sce b/3472/CH9/EX9.7/Example9_7.sce new file mode 100644 index 000000000..2f0fb7626 --- /dev/null +++ b/3472/CH9/EX9.7/Example9_7.sce @@ -0,0 +1,34 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.7 :
+// Page number 104
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+D_a_a = 100.0 // Distance between conductors a & a(cm)
+D_a_b = 25.0 // Distance between conductors a & b(cm)
+d = 2.0 // Diameter of conductor(cm)
+
+// Calculations
+r = d/2.0 // Conductor radius(cm)
+GMR = 0.7788*r // GMR(cm)
+D_a_aa = GMR // GMR of conductors a & a'(cm)
+D_aa_a = D_a_aa // GMR of conductors a' & a(cm)
+D_aa_aa = D_a_a // GMR of conductors a' & a'(cm)
+D_s = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD of conductor A = Self GMD of conductor B(cm)
+D_a_bb = (D_a_a**2+D_a_b**2)**(1.0/2) // Distance between conductors a & b'(cm)
+D_aa_b = D_a_bb // Distance between conductors a' & b(cm)
+D_aa_bb = D_a_b // Distance between conductors a' & b'(cm)
+D_m = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4) // Mutual GMD(cm)
+L = 2*10**-7*log(D_m/D_s) // Inductance/conductor/mt(H)
+L_mH = 2.0*L*1000.0*1000.0 // Loop inductance per km(mH)
+
+// Results
+disp("PART II - EXAMPLE : 2.7 : SOLUTION :-")
+printf("\nInductance per km of the double circuit line, L = %.1f mH", L_mH)
diff --git a/3472/CH9/EX9.8/Example9_8.sce b/3472/CH9/EX9.8/Example9_8.sce new file mode 100644 index 000000000..3b97d4967 --- /dev/null +++ b/3472/CH9/EX9.8/Example9_8.sce @@ -0,0 +1,34 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.8 :
+// Page number 104-105
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+n = 7.0 // Number of strands
+r = 1.0 // Radius of each conductor. Assume it 1 for calculation purpose
+
+// Calculations
+D_1_2 = 2.0*r // Distance between conductor 1 & 2
+D_1_6 = 2.0*r // Distance between conductor 1 & 6
+D_1_7 = 2.0*r // Distance between conductor 1 & 7
+D_3_4 = 2.0*r // Distance between conductor 3 & 4
+D_1_4 = 4.0*r // Distance between conductor 1 & 4
+D_1_3 = (D_1_4**2-D_3_4**2)**(1.0/2) // Distance between conductor 1 & 3
+D_1_5 = D_1_3 // Distance between conductor 1 & 5
+GMR = 0.7788*r // GMR
+n_o = n-1 // Number of outside strands
+D_s = (GMR**n*(D_1_2**2*D_1_3**2*D_1_4*D_1_7)**6*(2*r)**n_o)**(1.0/49) // GMR
+overall_radius = 3*r // Overall conductor radius
+ratio = D_s/overall_radius // Ratio of GMR to overall conductor radius
+
+// Results
+disp("PART II - EXAMPLE : 2.8 : SOLUTION :-")
+printf("\nGeometric mean radius of the conductor, D_s = %.3f*r", D_s)
+printf("\nRatio of GMR to overall conductor radius = %.4f ", ratio)
diff --git a/3472/CH9/EX9.9/Example9_9.sce b/3472/CH9/EX9.9/Example9_9.sce new file mode 100644 index 000000000..08b7bc30b --- /dev/null +++ b/3472/CH9/EX9.9/Example9_9.sce @@ -0,0 +1,28 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
+
+// EXAMPLE : 2.9 :
+// Page number 108-109
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 1.8 // Diameter of conductor(cm)
+D_A_B = 4.0 // Distance between conductor A & B(cm)
+D_B_C = 9.0 // Distance between conductor B & C(cm)
+D_A_C = 6.0 // Distance between conductor A & C(cm)
+
+// Calculations
+D_eq = (D_A_B*D_B_C*D_A_C)**(1.0/3) // Equivalent distance(cm)
+r_GMR = 0.7788*d/2.0 // GMR(cm)
+L = 2*10**-4*log(D_eq/r_GMR) // Inductance per phase(H/km)
+L_mH = L*1000.0 // Inductance per phase(mH/km)
+
+// Results
+disp("PART II - EXAMPLE : 2.9 : SOLUTION :-")
+printf("\nInductance of the line per phase, L = %.3f mH/km \n", L_mH)
+printf("\nNOTE: ERROR: Calculation mistake in the textbook")
|