blob: d69817c35b77afde90d0f9c767ce9d7e9ffa1f21 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
// EXAMPLE : 2.21 :
// Page number 118
clear ; clc ; close ; // Clear the work space and console
// Given data
d = 2.5/100 // Diameter of conductor(m)
D = 5.0 // Distance of separation(m)
h = 2.0 // Height of separation(m)
// Calculations
r = d/2 // Radius of conductor(m)
e = 1.0/(36*%pi)*10**-9 // Constant ε_0
m = (D**2+h**2)**(1.0/2) // (m)
n = (D**2+(h*2)**2)**(1.0/2) // (m)
D_ab = (D*m)**(1.0/2) // Distance between conductor a & b(m)
D_bc = (D*m)**(1.0/2) // Distance between conductor b & c(m)
D_ca = (2*D*h)**(1.0/2) // Distance between conductor c & a(m)
D_eq = (D_ab*D_bc*D_ca)**(1.0/3) // Equivalent GMD(m)
D_s1 = (r*n)**(1.0/2) // Self GMD in position 1(m)
D_s2 = (r*h)**(1.0/2) // Self GMD in position 2(m)
D_s3 = (r*n)**(1.0/2) // Self GMD in position 3(m)
D_s = (D_s1*D_s2*D_s3)**(1.0/3) // Self GMD(m)
C_n = 2*%pi*e/log(D_eq/D_s)*1000.0 // Capacitance per phase to neutral(F/km)
C_nu = C_n*10.0**6 // Capacitance per phase to neutral(μF/km)
// Results
disp("PART II - EXAMPLE : 2.21 : SOLUTION :-")
printf("\nCapacitance per phase to neutral, C_n = %.2f μF/km", C_nu)
|