blob: 2f0fb76263313387e4727c7b6ee6f1d6d21ebcb1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
// EXAMPLE : 2.7 :
// Page number 104
clear ; clc ; close ; // Clear the work space and console
// Given data
D_a_a = 100.0 // Distance between conductors a & a(cm)
D_a_b = 25.0 // Distance between conductors a & b(cm)
d = 2.0 // Diameter of conductor(cm)
// Calculations
r = d/2.0 // Conductor radius(cm)
GMR = 0.7788*r // GMR(cm)
D_a_aa = GMR // GMR of conductors a & a'(cm)
D_aa_a = D_a_aa // GMR of conductors a' & a(cm)
D_aa_aa = D_a_a // GMR of conductors a' & a'(cm)
D_s = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD of conductor A = Self GMD of conductor B(cm)
D_a_bb = (D_a_a**2+D_a_b**2)**(1.0/2) // Distance between conductors a & b'(cm)
D_aa_b = D_a_bb // Distance between conductors a' & b(cm)
D_aa_bb = D_a_b // Distance between conductors a' & b'(cm)
D_m = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4) // Mutual GMD(cm)
L = 2*10**-7*log(D_m/D_s) // Inductance/conductor/mt(H)
L_mH = 2.0*L*1000.0*1000.0 // Loop inductance per km(mH)
// Results
disp("PART II - EXAMPLE : 2.7 : SOLUTION :-")
printf("\nInductance per km of the double circuit line, L = %.1f mH", L_mH)
|