diff options
Diffstat (limited to '284')
-rwxr-xr-x | 284/CH10/EX10.10/ex_10.sce | 27 | ||||
-rwxr-xr-x | 284/CH10/EX10.6/ex_6.sce | 35 | ||||
-rwxr-xr-x | 284/CH10/EX10.7/ex_7.sce | 34 | ||||
-rwxr-xr-x | 284/CH11/EX11.1/ex1.sce | 24 | ||||
-rwxr-xr-x | 284/CH11/EX11.3/ex3.sce | 21 | ||||
-rwxr-xr-x | 284/CH11/EX11.4/ex4.sce | 30 | ||||
-rwxr-xr-x | 284/CH11/EX11.5/ex_5.sce | 40 | ||||
-rwxr-xr-x | 284/CH12/EX12.8/ex8.sce | 38 | ||||
-rwxr-xr-x | 284/CH13/EX13.4/ex4.sce | 12 | ||||
-rwxr-xr-x | 284/CH13/EX13.7/ex7.sce | 21 | ||||
-rwxr-xr-x | 284/CH3/EX3.13/ex_13.sce | 21 | ||||
-rwxr-xr-x | 284/CH6/EX6.3/ex_3.sce | 24 | ||||
-rwxr-xr-x | 284/CH6/EX6.5/ex_5.sce | 28 | ||||
-rwxr-xr-x | 284/CH7/EX7.2/ex_2.sce | 27 | ||||
-rwxr-xr-x | 284/CH8/EX8.1/ex_1.sce | 26 | ||||
-rwxr-xr-x | 284/CH8/EX8.5/ex_5.sce | 45 |
16 files changed, 236 insertions, 217 deletions
diff --git a/284/CH10/EX10.10/ex_10.sce b/284/CH10/EX10.10/ex_10.sce index 3d45afa3e..87bc3ca89 100755 --- a/284/CH10/EX10.10/ex_10.sce +++ b/284/CH10/EX10.10/ex_10.sce @@ -1,13 +1,14 @@ -// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
-//Caption_Substrate bias effects
-//Ex_10//page 478
-T=300
-Na=3*10^16
-tox=500*10^-8
-VSB=1
-ni=1.5*10^10 //intrinsic carrier concentration
-phi_fp=0.0259*log(Na/ni)
-eps_ox=3.9*8.85*10^-14
-Cox=eps_ox/tox
-delVT=(2*e*eps*Na)^0.5*((2*phi_fp+VSB)^0.5-(2*phi_fp)^0.5)/Cox
-printf('The change in threshold voltage is %1.2fV',delVT)
+// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor +//Caption_Substrate bias effects +//Ex_10//page 478 +e = 1.6*10^-19; +T=300 +Na=3*10^16 +tox=500*10^-8 +VSB=1 +ni=1.5*10^10 //intrinsic carrier concentration +phi_fp=0.0259*log(Na/ni) +eps_ox=3.9*8.85*10^-14 +Cox=eps_ox/tox +delVT=(2*e*eps_ox*Na)^0.5*((2*phi_fp+VSB)^0.5-(2*phi_fp)^0.5)/Cox +printf('The change in threshold voltage is %1.2fV',delVT)
\ No newline at end of file diff --git a/284/CH10/EX10.6/ex_6.sce b/284/CH10/EX10.6/ex_6.sce index 0bd83a43b..457a28921 100755 --- a/284/CH10/EX10.6/ex_6.sce +++ b/284/CH10/EX10.6/ex_6.sce @@ -1,17 +1,18 @@ -// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
-//Caption_Threshold voltage voltage
-//Ex_6//page 448
-tox=650*10^-8
-eps=11.7*8.85*10^-14
-eps_ox=3.9*8.85*10^-14
-Qss=10^10
-Vtp=-1
-Nd=2.5*10^14
-ni=1.5*10^10 //intrinsic carrier concentration
-phi_tn=0.0259*log(Nd/ni)
-xdt=(4*eps*phi_tn/(e*Nd))^0.5
-QSD_MAX=e*Nd*xdt;
-phi_ms=-0.35
-Vtp2=(-QSD_MAX-Qss*e)*(tox/eps_ox)+phi_ms-2*phi_tn
-q=abs(Vtp2)==Vtp
-printf('Since Vtp2=Vtp, it is essentially equal to the desired result')
+// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor +//Caption_Threshold voltage voltage +//Ex_6//page 448 +e = 1.6*10^-19; +tox=650*10^-8 +eps=11.7*8.85*10^-14 +eps_ox=3.9*8.85*10^-14 +Qss=10^10 +Vtp=-1 +Nd=2.5*10^14 +ni=1.5*10^10 //intrinsic carrier concentration +phi_tn=0.0259*log(Nd/ni) +xdt=(4*eps*phi_tn/(e*Nd))^0.5 +QSD_MAX=e*Nd*xdt; +phi_ms=-0.35 +Vtp2=(-QSD_MAX-Qss*e)*(tox/eps_ox)+phi_ms-2*phi_tn +q=abs(Vtp2)==Vtp +printf('Since Vtp2=Vtp, it is essentially equal to the desired result')
\ No newline at end of file diff --git a/284/CH10/EX10.7/ex_7.sce b/284/CH10/EX10.7/ex_7.sce index 9fa60069d..61b870c43 100755 --- a/284/CH10/EX10.7/ex_7.sce +++ b/284/CH10/EX10.7/ex_7.sce @@ -1,17 +1,17 @@ -// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
-//Caption_Capacitance Voltage characteristics
-//Ex_7//page 455
-Na=10^16
-tox=550*10^-8 //oxide thickness
-eps=11.7*8.85*10^-14
-eps_ox=3.9*8.85*10^-14
-Cox=eps_ox/tox*10^9
-ni=1.5*10^10 //intrinsic carrier concentration
-phi_fp=0.0259*log(Na/ni)
-xdt=(4*eps*phi_fp/(e*Na))^0.5
-Cmin=eps_ox/(tox+(eps_ox/eps)*xdt)*10^9
-r=Cmin/Cox
-CFB=eps_ox/(tox+(eps_ox/eps)*(0.0259*eps/(e*Na))^0.5) *10^9 //flat band capacitance
-r2=CFB/Cox
-printf('The value of oxide capacitance, minimum capacitance and flat band capacitance are %1.2f nF, %1.2f nF and %1.2f nF respectively',Cox,Cmin,CFB)
-
\ No newline at end of file +// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor +//Caption_Capacitance Voltage characteristics +//Ex_7//page 455 +e = 1.6*10^-19; +Na=10^16 +tox=550*10^-8 //oxide thickness +eps=11.7*8.85*10^-14 +eps_ox=3.9*8.85*10^-14 +Cox=eps_ox/tox*10^9 +ni=1.5*10^10 //intrinsic carrier concentration +phi_fp=0.0259*log(Na/ni) +xdt=(4*eps*phi_fp/(e*Na))^0.5 +Cmin=eps_ox/(tox+(eps_ox/eps)*xdt)*10^9 +r=Cmin/Cox +CFB=eps_ox/(tox+(eps_ox/eps)*(0.0259*eps/(e*Na))^0.5) *10^9 //flat band capacitance +r2=CFB/Cox +printf('The value of oxide capacitance, minimum capacitance and flat band capacitance are %1.2f nF, %1.2f nF and %1.2f nF respectively',Cox,Cmin,CFB)
\ No newline at end of file diff --git a/284/CH11/EX11.1/ex1.sce b/284/CH11/EX11.1/ex1.sce index 0e5556add..53a65c8e2 100755 --- a/284/CH11/EX11.1/ex1.sce +++ b/284/CH11/EX11.1/ex1.sce @@ -1,11 +1,13 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts
-//Caption_Mobility variation
-//Ex_1//page 509
-T=300
-Na=3*10^16
-ni=1.5*10^10 //intrinsic carrier concentration
-phi_fp=0.0259*log(Na/ni)
-xdt=(4*eps*phi_fp/(e*Na))^0.5
-QSD_MAX=e*Na*xdt;
-Eeff=1/eps*QSD_MAX
-printf('Effective electric field at threshold is %1.2f V/cm',Eeff)
+// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Mobility variation +//Ex_1//page 509 +eps=11.7*8.85*10^-14 +e=1.6*10^-19 +T=300 +Na=3*10^16 +ni=1.5*10^10 //intrinsic carrier concentration +phi_fp=0.0259*log(Na/ni) +xdt=(4*eps*phi_fp/(e*Na))^0.5 +QSD_MAX=e*Na*xdt; +Eeff=1/eps*QSD_MAX +printf('Effective electric field at threshold is %1.2f V/cm',Eeff)
\ No newline at end of file diff --git a/284/CH11/EX11.3/ex3.sce b/284/CH11/EX11.3/ex3.sce index ab26815fa..779808339 100755 --- a/284/CH11/EX11.3/ex3.sce +++ b/284/CH11/EX11.3/ex3.sce @@ -1,11 +1,12 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts
-//Caption_Narrow channel effects
-//Ex_3//page 520
-Na=3*10^16
-tox=450*10^-8 //oxide thickness
-fi=%pi/2 //fitting parameter
-delVt=0.2
-Cox=7.67*10^-8 //oxide capacitance
-xdt=0.18*10^-4
-W=10^4*e*Na*(fi*xdt^2)/(Cox*delVt)
+// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Narrow channel effects +//Ex_3//page 520 +e = 1.6*10^-19; +Na=3*10^16 +tox=450*10^-8 //oxide thickness +fi=%pi/2 //fitting parameter +delVt=0.2 +Cox=7.67*10^-8 //oxide capacitance +xdt=0.18*10^-4 +W=10^4*e*Na*(fi*xdt^2)/(Cox*delVt) printf('The channel width that will limit the threshold voltage is %1.2f micrometer',W)
\ No newline at end of file diff --git a/284/CH11/EX11.4/ex4.sce b/284/CH11/EX11.4/ex4.sce index 475ba4b7d..28d62f6a6 100755 --- a/284/CH11/EX11.4/ex4.sce +++ b/284/CH11/EX11.4/ex4.sce @@ -1,14 +1,16 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts
-//Caption_Breakdown voltage
-//Ex_4//page 527
-Nd=10^19 //donor concentration
-Na=10^16 //acceptor concentration
-L=1.2*10^-4 //channel length
-ni=1.5*10^10 //intrinsic carrier concentration
-Vbi=0.0259*log(Na*Nd/ni^2)
-xdo=(2*eps*Vbi/(e*Na))^0.5 //zero biased source-substrate pn junction width
-//xd=(2*eps*(VbiVDS)/(e*Na))^0.5 //reverse biased drain substrate pn junction width
-xd=L-xdo //at punch through
-VbiVDS=xd^2*e*Na/(2*eps) //Vbi+VDS
-VDS=VbiVDS-Vbi
-printf('The punch through voltage is %1.1f V',VDS)
+// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Breakdown voltage +//Ex_4//page 527 +eps=11.7*8.85*10^-14 +e=1.6*10^-19; +Nd=10^19 //donor concentration +Na=10^16 //acceptor concentration +L=1.2*10^-4 //channel length +ni=1.5*10^10 //intrinsic carrier concentration +Vbi=0.0259*log(Na*Nd/ni^2) +xdo=(2*eps*Vbi/(e*Na))^0.5 //zero biased source-substrate pn junction width +//xd=(2*eps*(VbiVDS)/(e*Na))^0.5 //reverse biased drain substrate pn junction width +xd=L-xdo //at punch through +VbiVDS=xd^2*e*Na/(2*eps) //Vbi+VDS +VDS=VbiVDS-Vbi +printf('The punch through voltage is %1.1f V',VDS)
\ No newline at end of file diff --git a/284/CH11/EX11.5/ex_5.sce b/284/CH11/EX11.5/ex_5.sce index 4405168c9..0f0dd3f7b 100755 --- a/284/CH11/EX11.5/ex_5.sce +++ b/284/CH11/EX11.5/ex_5.sce @@ -1,20 +1,20 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts
-//Caption_Lightly doped drain transistor
-//Ex_5//page 531
-tox=500*10^-8
-VFBO=-1.25 //initial flat band voltage
-e=1.6*10^-19
-eps_ox=3.9*8.85*10^-14
-ni=1.5*10^10 //intrinsic carrier concentration
-VT=0.70
-Na=5*10^15
-phi_fpo=0.0259*log(Na/ni)
-xdto=(4*eps*phi_fpo/(e*Na))^0.5
-Cox=eps_ox/tox
-VTO=VFBO+2*phi_fpo+(e*Na*xdto)/Cox
-x=VT-VTO
-Dt=Cox*x/e //implant dose
-xt=0.15*10^-4 //depth to which uniform implant extends
-Nsa=Dt/xt
-Ns=Nsa+Na
-printf('The required implant dose to achieve the desired threshold voltage is %1.2f per cm^2',Dt)
+// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Lightly doped drain transistor +//Ex_5//page 531 +tox=500*10^-8 +VFBO=-1.25 //initial flat band voltage +e=1.6*10^-19 +eps_ox=3.9*8.85*10^-14 +ni=1.5*10^10 //intrinsic carrier concentration +VT=0.70 +Na=5*10^15 +phi_fpo=0.0259*log(Na/ni) +xdto=(4*eps_ox*phi_fpo/(e*Na))^0.5 +Cox=eps_ox/tox +VTO=VFBO+2*phi_fpo+(e*Na*xdto)/Cox +x=VT-VTO +Dt=Cox*x/e //implant dose +xt=0.15*10^-4 //depth to which uniform implant extends +Nsa=Dt/xt +Ns=Nsa+Na +printf('The required implant dose to achieve the desired threshold voltage is %1.2f per cm^2',Dt)
\ No newline at end of file diff --git a/284/CH12/EX12.8/ex8.sce b/284/CH12/EX12.8/ex8.sce index c313f06da..7885266d1 100755 --- a/284/CH12/EX12.8/ex8.sce +++ b/284/CH12/EX12.8/ex8.sce @@ -1,19 +1,19 @@ -// Chapter 12_The junction field effect transistor
-//Caption_The MESFET-Channel length modulation
-//Ex_8//page 573
-Nd=3*10^15
-eps=8.85*10^-14*11.7
-L=10
-ID1=4
-VDSsat=0 //assume
-VDS1=VDSsat+2
-VDS2=VDSsat+2.5
-
-delL2=10^4*(2*eps*(VDS2-VDSsat)/(e*Nd))^0.5 //change in length
-delL1=10^4*(2*eps*(VDS1-VDSsat)/(e*Nd))^0.5 //change in length
-//drain currents are
-ID22=ID1*(L/(L-0.5*delL2))
-ID11=ID1*(L/(L-0.5*delL1))
-rds=(VDS2-VDS1)/(ID22-ID11)
-printf('The small signal output resistance at the drain terminal due to channel length modulation effects is %1.1f kohm',rds)
-
+// Chapter 12_The junction field effect transistor +//Caption_The MESFET-Channel length modulation +//Ex_8//page 573 +Nd=3*10^15 +eps=8.85*10^-14*11.7 +L=10; +e = 1.6*10^-19; +ID1=4 +VDSsat=0 //assume +VDS1=VDSsat+2 +VDS2=VDSsat+2.5 + +delL2=10^4*(2*eps*(VDS2-VDSsat)/(e*Nd))^0.5 //change in length +delL1=10^4*(2*eps*(VDS1-VDSsat)/(e*Nd))^0.5 //change in length +//drain currents are +ID22=ID1*(L/(L-0.5*delL2)) +ID11=ID1*(L/(L-0.5*delL1)) +rds=(VDS2-VDS1)/(ID22-ID11) +printf('The small signal output resistance at the drain terminal due to channel length modulation effects is %1.1f kohm',rds)
\ No newline at end of file diff --git a/284/CH13/EX13.4/ex4.sce b/284/CH13/EX13.4/ex4.sce index c35409336..b63e40d14 100755 --- a/284/CH13/EX13.4/ex4.sce +++ b/284/CH13/EX13.4/ex4.sce @@ -1,7 +1,7 @@ -// Chapter 13_Optical Devices
-//Caption_Solar concentration
-//Ex_4//page 605
-JL==150*10^-3 //PHOTOCURRENT DENSITY
-Js=3.6*10^-11 //reverse saturation current density
-Voc=0.0259*log(1+JL/Js)
+// Chapter 13_Optical Devices +//Caption_Solar concentration +//Ex_4//page 605 +JL=150*10^-3 //PHOTOCURRENT DENSITY +Js=3.6*10^-11 //reverse saturation current density +Voc=0.0259*log(1+JL/Js) printf('Open circuit voltage when solar concentration is used is %1.3f V',Voc)
\ No newline at end of file diff --git a/284/CH13/EX13.7/ex7.sce b/284/CH13/EX13.7/ex7.sce index 6d3a97e1b..2909d12af 100755 --- a/284/CH13/EX13.7/ex7.sce +++ b/284/CH13/EX13.7/ex7.sce @@ -1,10 +1,11 @@ -// Chapter 13_Optical Devices
-//Caption_PIN Photodiode
-//Ex_7//page 618
-W=20*10^-4 //intrinsic region width
-phio=10^17 //photon flux
-alpha=10^3 //absorption coefficient
-GL1=alpha*phio //generation rate of electron hole pair at the front region
-GL2=GL1*exp(-alpha*W)
-JL=1000*e*phio*(1-exp(-alpha*W)) //photocurrent density
-printf('The photocurrent density in PIN photodiode is %1.1f mA/cm^2 ',JL)
+// Chapter 13_Optical Devices +//Caption_PIN Photodiode +//Ex_7//page 618 +e = 1.6*10^-19; +W=20*10^-4 //intrinsic region width +phio=10^17 //photon flux +alpha=10^3 //absorption coefficient +GL1=alpha*phio //generation rate of electron hole pair at the front region +GL2=GL1*exp(-alpha*W) +JL=1000*e*phio*(1-exp(-alpha*W)) //photocurrent density +printf('The photocurrent density in PIN photodiode is %1.1f mA/cm^2 ',JL)
\ No newline at end of file diff --git a/284/CH3/EX3.13/ex_13.sce b/284/CH3/EX3.13/ex_13.sce index ea6191d36..c45fefecd 100755 --- a/284/CH3/EX3.13/ex_13.sce +++ b/284/CH3/EX3.13/ex_13.sce @@ -1,9 +1,12 @@ -// Chapter 3_The Semiconductor in Equilibrium
-//Caption_Position of Fermi Energy level
-//Ex_13//page 116
-T=300 //temperature in kelvin
-Na=10^16 // acceptor carrier impurity in per cm cube
-Ef=0.20 //Fermi energy is Ef eV below the conduction band edge
-Nc=2.8*(10^19)
-Nd=Na+(Nc*exp(-Ef/0.0259))
-printf('The require donor impurity concentration is %fd per cm cube',Nd)
\ No newline at end of file +// Chapter 3_The Semiconductor in Equilibrium +//Caption_Position of Fermi Energy level +//Ex_14//page 121 +T=300 //temperature in kelvin +Ef=0.20; +kT=0.0259 +ni=1.5*(10^10) //intrinsic carrier concentration +Efa=3*kT //Ef-Ea=3kT +Eav=0.045 +Efif=Ef/2-(Eav)-(Efa) //The position of fermi level at the maximum doping +Na=exp(Efif/kT)*ni +printf('Maximum doping is %3.2f d per cm cube',Na)
\ No newline at end of file diff --git a/284/CH6/EX6.3/ex_3.sce b/284/CH6/EX6.3/ex_3.sce index 0c63d7842..bd8ce1396 100755 --- a/284/CH6/EX6.3/ex_3.sce +++ b/284/CH6/EX6.3/ex_3.sce @@ -1,12 +1,14 @@ -// Chapter 6_The pn junction
-//Caption_Space charge width
-//Ex_3//page 227
-Na=10^16 //acceptor ion concentration
-T=300 //temperature in kelvin
-Nd=10^15
-ni=1.5*(10^10) //intrinsic ion concentration
-Vr=5 //Reverse applied voltage
-Vbi=0.635
-V=Vr+Vbi
-W=(2*eps*V/e*(Na+Nd)/(Na*Nd))^0.5
+// Chapter 6_The pn junction +//Caption_Space charge width +//Ex_3//page 227 +eps=11.7*8.85*(10^-14); +e=1.6*(10^-19); +Na=10^16 //acceptor ion concentration +T=300 //temperature in kelvin +Nd=10^15 +ni=1.5*(10^10) //intrinsic ion concentration +Vr=5 //Reverse applied voltage +Vbi=0.635 +V=Vr+Vbi +W=(2*eps*V/e*(Na+Nd)/(Na*Nd))^0.5 printf('The space charge width is %f cm ',W)
\ No newline at end of file diff --git a/284/CH6/EX6.5/ex_5.sce b/284/CH6/EX6.5/ex_5.sce index 474bb22d1..20dfa6b5d 100755 --- a/284/CH6/EX6.5/ex_5.sce +++ b/284/CH6/EX6.5/ex_5.sce @@ -1,14 +1,16 @@ -// Chapter 6_The pn junction
-//Caption_Junction capacitance
-//Ex_5//page 230
-Na=10^16 //acceptor ion concentration
-T=300 //temperature in kelvin
-Nd=10^15
-ni=1.5*(10^10) //intrinsic ion concentration
-Vr=5 //Reverse applied voltage
-Vbi=0.635
-V=Vr+Vbi
-C=(e*eps*Na*Nd/(2*(V)*(Na+Nd)))^0.5
-A=10^-4 //Area of the pn junction
-Ca=A*C*10^12
+// Chapter 6_The pn junction +//Caption_Junction capacitance +//Ex_5//page 230 +eps=11.7*8.85*(10^-14); +e=1.6*(10^-19); +Na=10^16 //acceptor ion concentration +T=300 //temperature in kelvin +Nd=10^15 +ni=1.5*(10^10) //intrinsic ion concentration +Vr=5 //Reverse applied voltage +Vbi=0.635 +V=Vr+Vbi +C=(e*eps*Na*Nd/(2*(V)*(Na+Nd)))^0.5 +A=10^-4 //Area of the pn junction +Ca=A*C*10^12 printf('The junction capacitance for the given semiconductor is %1.3f pF',Ca)
\ No newline at end of file diff --git a/284/CH7/EX7.2/ex_2.sce b/284/CH7/EX7.2/ex_2.sce index 9ec93a934..715749372 100755 --- a/284/CH7/EX7.2/ex_2.sce +++ b/284/CH7/EX7.2/ex_2.sce @@ -1,13 +1,14 @@ -// Chapter 7_The pn junction Diode
-//Caption_pn Junction current
-//Ex_2//page 258
-Na=10^16 //acceptor impurity
-Nd=10^16 // donor impurity
-ni=1.5*10^10 //intrinsic concentration
-Dn=25
-Dp=10
-tau_po=5*10^-7
-tau_no=5*10^-7
-epsr=11.7
-Js=e*ni^2*((1/Na*(Dn/tau_no)^0.5)+(1/Nd)*(Dp/tau_po)^0.5)*10^9
-printf('Ideal reverse satureation current density is %f nA/cm',Js)
+// Chapter 7_The pn junction Diode +//Caption_pn Junction current +//Ex_2//page 258 +e = 1.6*10^-19; +Na=10^16 //acceptor impurity +Nd=10^16 // donor impurity +ni=1.5*10^10 //intrinsic concentration +Dn=25 +Dp=10 +tau_po=5*10^-7 +tau_no=5*10^-7 +epsr=11.7 +Js=e*ni^2*((1/Na*(Dn/tau_no)^0.5)+(1/Nd)*(Dp/tau_po)^0.5)*10^9 +printf('Ideal reverse saturation current density is %f nA/cm',Js)
\ No newline at end of file diff --git a/284/CH8/EX8.1/ex_1.sce b/284/CH8/EX8.1/ex_1.sce index a564c8681..2b4144341 100755 --- a/284/CH8/EX8.1/ex_1.sce +++ b/284/CH8/EX8.1/ex_1.sce @@ -1,13 +1,15 @@ -// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions
-//Caption_Shottky barrier diode
-//Ex_1//page 308
-T=300 //temperature in kelvin
-Nd=10^16 //donor impurity
-phi_m=4.55 //metal work function for tungsten
-xi=4.01 //electron affinity for silicon
-phi_bo=phi_m-xi
-phi_n=0.0259*log(2.8*10^19/Nd)
-Vbi=phi_bo-phi_n
-xn=(2*eps*Vbi/(e*Nd))^0.5 //space charge width at zero bias
-Emax=e*Nd*xn/eps //maximum electric field
+// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions +//Caption_Shottky barrier diode +//Ex_1//page 308 +eps=13.1*8.85*10^-14; +e = 1.6*10^-19; +T=300 //temperature in kelvin +Nd=10^16 //donor impurity +phi_m=4.55 //metal work function for tungsten +xi=4.01 //electron affinity for silicon +phi_bo=phi_m-xi +phi_n=0.0259*log(2.8*10^19/Nd) +Vbi=phi_bo-phi_n +xn=(2*eps*Vbi/(e*Nd))^0.5 //space charge width at zero bias +Emax=e*Nd*xn/eps //maximum electric field printf('Theoritical barrier height is %f V, built-in potential barrier is %f V and maximium electric field is %f V/cm', phi_bo,phi_n,Emax)
\ No newline at end of file diff --git a/284/CH8/EX8.5/ex_5.sce b/284/CH8/EX8.5/ex_5.sce index adf372723..01a4252f9 100755 --- a/284/CH8/EX8.5/ex_5.sce +++ b/284/CH8/EX8.5/ex_5.sce @@ -1,23 +1,24 @@ -// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions
-//Caption_Comparison of the schottky barrier diode and the pn junction diode
-//Ex_5/page 319
-e_phi_bn=0.67
-A=114 //effective richardson constant
-T=300
-Jst=A*T^2*exp(-e_phi_bn/0.0259)
-//if we neglect the barrier lowering effect, we have for the schottky barrier diode
-//for a pn junction
-Na=10^18
-Nd=10^16
-Dp=10
-Dn=25
-tau_po=10^-7
-tau_no=10^-7
-Lp=(Dp*tau_po)^0.5
-Ln=(Dn*tau_no)^0.5
-pno=2.25*10^4
-npo=2.25*10^2
-//the ideal reverse saturation current density of the pn junction diode can be determined as
-Js=e*Dn*npo/Ln+(e*Dp*pno/Lp)
-J=10^9*(Js+5.7*10^-13)
+// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions +//Caption_Comparison of the schottky barrier diode and the pn junction diode +//Ex_5/page 319 +e = 1.6*10^-19; +e_phi_bn=0.67 +A=114 //effective richardson constant +T=300 +Jst=A*T^2*exp(-e_phi_bn/0.0259) +//if we neglect the barrier lowering effect, we have for the schottky barrier diode +//for a pn junction +Na=10^18 +Nd=10^16 +Dp=10 +Dn=25 +tau_po=10^-7 +tau_no=10^-7 +Lp=(Dp*tau_po)^0.5 +Ln=(Dn*tau_no)^0.5 +pno=2.25*10^4 +npo=2.25*10^2 +//the ideal reverse saturation current density of the pn junction diode can be determined as +Js=e*Dn*npo/Ln+(e*Dp*pno/Lp) +J=10^9*(Js+5.7*10^-13) printf('Reverse saturation current density for schottky baarier diode is %f A/cm^2 and for pn junction is %f nA/cm^2',Jst,J)
\ No newline at end of file |