summaryrefslogtreecommitdiff
path: root/2465/CH9
diff options
context:
space:
mode:
Diffstat (limited to '2465/CH9')
-rw-r--r--2465/CH9/EX9.1/Example_1.sce19
-rw-r--r--2465/CH9/EX9.10/Example_10.sce22
-rw-r--r--2465/CH9/EX9.11/Example_11.sce17
-rw-r--r--2465/CH9/EX9.12/Example_12.sce21
-rw-r--r--2465/CH9/EX9.2/Example_2.sce16
-rw-r--r--2465/CH9/EX9.3/Example_3.sce17
-rw-r--r--2465/CH9/EX9.4/Example_4.sce25
-rw-r--r--2465/CH9/EX9.5/Example_5.sce17
-rw-r--r--2465/CH9/EX9.6/Example_6.sce11
-rw-r--r--2465/CH9/EX9.7/Example_7.sce16
-rw-r--r--2465/CH9/EX9.8/Example_8.sce15
-rw-r--r--2465/CH9/EX9.9/Example_9.sce18
12 files changed, 214 insertions, 0 deletions
diff --git a/2465/CH9/EX9.1/Example_1.sce b/2465/CH9/EX9.1/Example_1.sce
new file mode 100644
index 000000000..8c983f2ae
--- /dev/null
+++ b/2465/CH9/EX9.1/Example_1.sce
@@ -0,0 +1,19 @@
+//Chapter-9,Example 1,Page 219
+clc();
+close();
+
+a= 1.25 //cross section area in cmsquare
+
+l= 10.5 //distance of seperation
+
+r=1996 //resistance
+
+O_cond= 1/r //observed conductivity
+
+C_constant = l/a //cell constant
+
+S_cond=C_constant*O_cond //specific conductivity
+
+printf('the cell constant is %.2f /cm',C_constant)
+
+printf('\n the specific conductivity is %.5f /ohm.cm ',S_cond)
diff --git a/2465/CH9/EX9.10/Example_10.sce b/2465/CH9/EX9.10/Example_10.sce
new file mode 100644
index 000000000..dcd2b7092
--- /dev/null
+++ b/2465/CH9/EX9.10/Example_10.sce
@@ -0,0 +1,22 @@
+//Chapter-9,Example 10,Page 221
+clc();
+close();
+
+lamda_Ag = 58.3
+
+lamda_Cl=65.3
+
+lamda_v=lamda_Ag+lamda_Cl //Kohlrausch's law
+
+Kv=1.24*10^-6 //specific conductivity
+
+V=lamda_v/(Kv*1000)
+
+wt=143.5 //molecular weight of AgCl
+
+S=wt/V
+
+printf('the solubility off AGCl is %.5f g/l',S)
+
+
+//mistake in textbook
diff --git a/2465/CH9/EX9.11/Example_11.sce b/2465/CH9/EX9.11/Example_11.sce
new file mode 100644
index 000000000..3c674c678
--- /dev/null
+++ b/2465/CH9/EX9.11/Example_11.sce
@@ -0,0 +1,17 @@
+//Chapter-9,Example 11,Page 222
+clc();
+close();
+
+u= 0.196 //speed of Ag+
+
+v=1 //speed of NO3-
+
+t_Ag=u/(u+v) //transport number of Ag+ ions
+
+t_NO3= 1-t_Ag //transportnumber of NO3- ions
+
+printf('the transport number of Ag+ ions is %.3f',t_Ag)
+
+printf('\n the transport number of NO3+ ions is %.3f',t_NO3)
+
+//mistake in textbook
diff --git a/2465/CH9/EX9.12/Example_12.sce b/2465/CH9/EX9.12/Example_12.sce
new file mode 100644
index 000000000..0af82950a
--- /dev/null
+++ b/2465/CH9/EX9.12/Example_12.sce
@@ -0,0 +1,21 @@
+//Chapter-9,Example 12,Page 222
+clc();
+close();
+
+wt_Ag = 0.1351 //weight of Ag deposited in a silver coulometer
+
+Ewt_Ag = 107.88 //atomic weight of Ag
+
+Ewt_Cu = 63.6 //atomic weight of Cu
+
+wt_Cu= wt_Ag*(Ewt_Cu/2)/Ewt_Ag //wt of Cu deposited
+
+loss=0.6350-0.6236 //loss in weight of Cu at anode
+
+t_Cu = loss/wt_Cu
+
+t_SO4= 1-t_Cu
+
+printf('the transport number of Cu+2 ion is %.3f ',t_Cu)
+
+printf('\n the transport number of SO4 ion is %.3f ',t_SO4)
diff --git a/2465/CH9/EX9.2/Example_2.sce b/2465/CH9/EX9.2/Example_2.sce
new file mode 100644
index 000000000..b2d50cde9
--- /dev/null
+++ b/2465/CH9/EX9.2/Example_2.sce
@@ -0,0 +1,16 @@
+//Chapter-9,Example 2,Page 219
+clc();
+close();
+
+R= 500 //resistance of the cell
+
+K= 0.0002765 //specific conductivity
+
+//cell constant= l/a and R= p(l/a)
+//sice l= length a= area p= resistivity
+//(1/p) = K = specific conductivity
+//(l/a) = R*K
+
+C_constant= R*K //cell constant
+
+printf('the cell constant is %.3f /cm',C_constant)
diff --git a/2465/CH9/EX9.3/Example_3.sce b/2465/CH9/EX9.3/Example_3.sce
new file mode 100644
index 000000000..3e51aedc3
--- /dev/null
+++ b/2465/CH9/EX9.3/Example_3.sce
@@ -0,0 +1,17 @@
+//Chapter-9,Example 3,Page 220
+clc();
+close();
+
+R= 4364 //resistance of the cell
+
+K= 2.767*10^-3 //specific conductivity
+
+C_constant= R*K //cell constant
+
+
+//cell constant= l/a = R/p
+R1 = 3050 //new resistance
+
+p= R1/C_constant
+
+printf('the specific resistance is %.3f ohm.cm ',p)
diff --git a/2465/CH9/EX9.4/Example_4.sce b/2465/CH9/EX9.4/Example_4.sce
new file mode 100644
index 000000000..fbd6e46ab
--- /dev/null
+++ b/2465/CH9/EX9.4/Example_4.sce
@@ -0,0 +1,25 @@
+//Chapter-9,Example 4,Page 220
+clc();
+close();
+
+R= 550 //resistance of the cell
+
+K=0.002768 //specific conductivity
+
+C_constant= R*K
+
+p= 72.18 //observed resistance
+
+Kv = C_constant*(1/p)
+
+C= 0.2 //concentration
+
+lamda_v= Kv*1000/C //equivalent conductivity
+
+M= 0.1
+
+lamda_m= 1000*Kv/M //molar conductivity
+
+printf('the equivalent conductivity of ZnSO4 is %.2f /ohm.cm^2',lamda_v)
+
+printf('\n the molar conductivity of ZnSO4 is %.2f /ohm.cm^2',lamda_m)
diff --git a/2465/CH9/EX9.5/Example_5.sce b/2465/CH9/EX9.5/Example_5.sce
new file mode 100644
index 000000000..eb9776f64
--- /dev/null
+++ b/2465/CH9/EX9.5/Example_5.sce
@@ -0,0 +1,17 @@
+//Chapter-9,Example 5,Page 220
+clc();
+close();
+
+R= 32 //resistance of solution
+
+l= 1.8 //distance between electrodes
+
+a= 5.4 //area
+
+Kv=l/(R*a) //specific conductivity
+
+C= 0.1 //concentration
+
+lamda_v= Kv*1000/C //equivalent conductivity
+
+printf('the equivalent conductivity is %.3f /ohm.cm^2',lamda_v)
diff --git a/2465/CH9/EX9.6/Example_6.sce b/2465/CH9/EX9.6/Example_6.sce
new file mode 100644
index 000000000..6cec6eaf8
--- /dev/null
+++ b/2465/CH9/EX9.6/Example_6.sce
@@ -0,0 +1,11 @@
+//Chapter-9,Example 6,Page 221
+clc();
+close();
+
+lamda_v= 48.15 //equivalent conductivity
+
+lamda_v1= 390.6 //equivalent conductivity at infinity
+
+alpha= lamda_v/lamda_v1
+
+printf('the degree of dissolution of acetic acid is %.4f ',alpha)
diff --git a/2465/CH9/EX9.7/Example_7.sce b/2465/CH9/EX9.7/Example_7.sce
new file mode 100644
index 000000000..88a5053e4
--- /dev/null
+++ b/2465/CH9/EX9.7/Example_7.sce
@@ -0,0 +1,16 @@
+//Chapter-9,Example 7,Page 221
+clc();
+close();
+
+lamda_HCl=426.1 //equivalent conductance of HCl
+
+lamda_AcONa=91 //equivalent conductance of AcONa
+
+lamda_NaCl=126.5 //equivalent conductance of NaCl
+
+// lamda_HCl + lamda_AcONa - lamda_NaCl= (lamda_H+lamda_Cl)+(lamda_Na+lamda_OAc)-(lamda_Na+lamda_Cl)
+// = lamda_H +lamda_OAc = lamda_AcOH
+
+lamda_AcOH = lamda_HCl + lamda_AcONa - lamda_NaCl
+
+printf('the equivalent conductance of AcOH = %.2f/ohm.cm^2',lamda_AcOH)
diff --git a/2465/CH9/EX9.8/Example_8.sce b/2465/CH9/EX9.8/Example_8.sce
new file mode 100644
index 000000000..522db0bde
--- /dev/null
+++ b/2465/CH9/EX9.8/Example_8.sce
@@ -0,0 +1,15 @@
+//Chapter-9,Example 8,Page 221
+clc();
+close();
+
+lamda_H=0.0348 //equivalent conductance of H+ ion
+
+lamda_CH3COO=0.004 //equivalent conductance of CH3COO- ion
+
+lamda= lamda_H+lamda_CH3COO //equivalent conductance at infinity
+
+lamda_v= 0.018 //equvalent conductance
+
+alpha= lamda_v/lamda //degree of dissolution
+
+printf('the degree of dissolution is %.4f ',alpha)
diff --git a/2465/CH9/EX9.9/Example_9.sce b/2465/CH9/EX9.9/Example_9.sce
new file mode 100644
index 000000000..b0181a822
--- /dev/null
+++ b/2465/CH9/EX9.9/Example_9.sce
@@ -0,0 +1,18 @@
+//Chapter-9,Example 9,Page 221
+clc();
+close();
+
+strength =0.05 //strength of CH3COOH
+
+Ka=1.8*10^-5
+
+// CH3COOH <---> CH3COO- + H+
+//intially = 0.05 0 0
+//dissolution a
+//at equilibrium= 0.05(1-a) 0.05*a 0.05*a
+//Ka =(0.05*a*0.05*a)/(0.05(1-a))
+//Ka=0.05*a^2 a=negligible 1-a=1
+
+a=sqrt(Ka/strength)
+
+printf('the degree of dissolution is %.4f ',a)