summaryrefslogtreecommitdiff
path: root/1445/CH2
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH2')
-rw-r--r--1445/CH2/EX2.1/Ex2_1.sce17
-rw-r--r--1445/CH2/EX2.10/Ex2_10.sce11
-rw-r--r--1445/CH2/EX2.11/Ex2_11.sce31
-rw-r--r--1445/CH2/EX2.13/Ex2_13.sce37
-rw-r--r--1445/CH2/EX2.14/Ex2_14.sce30
-rw-r--r--1445/CH2/EX2.15/Ex2_15.sce57
-rw-r--r--1445/CH2/EX2.16/Ex2_16.sce49
-rw-r--r--1445/CH2/EX2.17/Ex2_17.sce31
-rw-r--r--1445/CH2/EX2.18/Ex2_18.sce21
-rw-r--r--1445/CH2/EX2.19/Ex2_19.sce59
-rw-r--r--1445/CH2/EX2.20/Ex2_20.sce9
-rw-r--r--1445/CH2/EX2.22/Ex2_22.sce28
-rw-r--r--1445/CH2/EX2.23/Ex2_23.sce24
-rw-r--r--1445/CH2/EX2.24/Ex2_24.sce9
-rw-r--r--1445/CH2/EX2.25/Ex2_25.sce14
-rw-r--r--1445/CH2/EX2.26/Ex2_26.sce17
-rw-r--r--1445/CH2/EX2.27/Ex2_27.sce13
-rw-r--r--1445/CH2/EX2.28/Ex2_28.sce42
-rw-r--r--1445/CH2/EX2.29/Ex2_29.sce8
-rw-r--r--1445/CH2/EX2.3/Ex2_3.sce15
-rw-r--r--1445/CH2/EX2.30/Ex2_30.sce9
-rw-r--r--1445/CH2/EX2.31/Ex2_31.sce5
-rw-r--r--1445/CH2/EX2.32/Ex2_32.sce7
-rw-r--r--1445/CH2/EX2.33/Ex2_33.sce15
-rw-r--r--1445/CH2/EX2.34/Ex2_34.sce9
-rw-r--r--1445/CH2/EX2.35/Ex2_35.sce17
-rw-r--r--1445/CH2/EX2.36/Ex2_36.sce15
-rw-r--r--1445/CH2/EX2.37/Ex2_37.sce11
-rw-r--r--1445/CH2/EX2.38/Ex2_38.sce8
-rw-r--r--1445/CH2/EX2.39/Ex2_39.sce23
-rw-r--r--1445/CH2/EX2.4/Ex2_4.sce8
-rw-r--r--1445/CH2/EX2.40/Ex2_40.sce12
-rw-r--r--1445/CH2/EX2.41/Ex2_41.sce7
-rw-r--r--1445/CH2/EX2.42/Ex2_42.sce31
-rw-r--r--1445/CH2/EX2.43/Ex2_43.sce5
-rw-r--r--1445/CH2/EX2.44/Ex2_44.sce8
-rw-r--r--1445/CH2/EX2.45/Ex2_45.sce24
-rw-r--r--1445/CH2/EX2.46/Ex2_46.sce13
-rw-r--r--1445/CH2/EX2.47/Ex2_47.sce13
-rw-r--r--1445/CH2/EX2.48/Ex2_48.sce4
-rw-r--r--1445/CH2/EX2.49/Ex2_49.sce15
-rw-r--r--1445/CH2/EX2.5/Ex2_5.sce26
-rw-r--r--1445/CH2/EX2.50/Ex2_50.sce21
-rw-r--r--1445/CH2/EX2.51/Ex2_51.sce21
-rw-r--r--1445/CH2/EX2.52/Ex2_52.sce17
-rw-r--r--1445/CH2/EX2.53/Ex2_53.sce13
-rw-r--r--1445/CH2/EX2.54/Ex2_54.sce13
-rw-r--r--1445/CH2/EX2.6/Ex2_6.sce14
-rw-r--r--1445/CH2/EX2.7/Ex2_7.sce15
-rw-r--r--1445/CH2/EX2.8/Ex2_8.sce23
-rw-r--r--1445/CH2/EX2.9/Ex2_9.sce24
51 files changed, 413 insertions, 555 deletions
diff --git a/1445/CH2/EX2.1/Ex2_1.sce b/1445/CH2/EX2.1/Ex2_1.sce
index 5e008ab00..9d1060542 100644
--- a/1445/CH2/EX2.1/Ex2_1.sce
+++ b/1445/CH2/EX2.1/Ex2_1.sce
@@ -1,30 +1,21 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 1
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 1");
-//Find the Form Factor of the half-wave rectified sine wave as shown in Fig 2.20
-//Peak value of voltage is Vm
-//Period is 2pi
-//v=Vm sinwt for 0<wt<pi
-//v=0 for pi<wt<2pi
-
//SOLUTION
-//average value Vav by integrating v over 0 to pi and pi to 2pi and dividing by 2pi
-//assume Vm=1, as value not given
-//The second term of integration not computed as v=0 on the range pi to 2pi
+//average value
v_av=(integrate('sin(x)','x',0,%pi))/(2*%pi);
-//rms value
-//assume Vm=1, as value not given
+//rms value
v_rms=(integrate('sin(x)^2','x',0,%pi))/(2*%pi);
v_rms=sqrt(v_rms);
ff=v_rms/v_av;
-//truncate the answer to 3 digits while displaying:
-disp(sprintf("The form factor is %4.3f",ff));//The answer in the textbook is wrongly shown as 1.572
+disp(sprintf("The form factor is %f",ff));
//END
diff --git a/1445/CH2/EX2.10/Ex2_10.sce b/1445/CH2/EX2.10/Ex2_10.sce
index a4136861e..971167bbd 100644
--- a/1445/CH2/EX2.10/Ex2_10.sce
+++ b/1445/CH2/EX2.10/Ex2_10.sce
@@ -1,14 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 10
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 10");
-//Equations
-//If z1, z2 || then net impedance is Z=z1.z2/(z1+z2)
-//V=IZ
-//Power drawn is = V.I. cos (phi)
-
//VARIABLE INITIALIZATION
v=230; //in Volts
z1=3+(%i*4); //impedance in rectangular form in Ohms
@@ -26,10 +22,7 @@ endfunction;
z=(z1*z2)/(z1+z2);
I=v/z;
angle=-angle1; //as angle1=angle2
-//
-disp(sprintf("The current drawn from the circuit is %2.0f Amp",I));
-disp(sprintf("The net current lags net voltage by %4.2f and ckt is inductive in nature",-angle));
p=v*I*cos(angle*%pi/180); //to convert the angle from degrees to radians
-disp(sprintf("The power drawn from the source is %5.3f kW",p/1000));
+disp(sprintf("The power drawn from the source is %f kW",p/1000));
//END
diff --git a/1445/CH2/EX2.11/Ex2_11.sce b/1445/CH2/EX2.11/Ex2_11.sce
index ba0618572..2ac6e7fd2 100644
--- a/1445/CH2/EX2.11/Ex2_11.sce
+++ b/1445/CH2/EX2.11/Ex2_11.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 11
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 11");
@@ -8,29 +9,17 @@ disp("EXAMPLE 11");
vdc=100; //DC voltage in Volts
vac=100; //AC voltage in Volts
f=50; //in Hertz
-Idc=10; //dc current in Amperes
-Iac=5; //ac current in Amperes
-
-// coil means a unit of resistence and inductance both
-//Impedence Z=R+jXl
-//when DC supply is connected to coil, it behaves like a short circuit
-//Xl=2.pi.f.L
-//since f=0 in DC, Xl=0 ohms
-//Therefore, R=Vdc/I
-
-//Equation to be used
-//Z^2=R^2+Xl^2
+I1=10; //in Amperes
+I2=5; //in Amperes
//SOLUTION
-r=vdc/Idc; //resistance of the coil in dc circuit
-z=vac/Iac; //impedance of the coil in Ac supply
-xl=sqrt((z^2)-(r^2)); // inductive reactance of coil
-L=xl/(2*%pi*f); //inductance of the coil
-pf=r/z; // power factor pf=R/Z
-//
-disp(sprintf("The inductive reactance of the coil is %5.2f Ohm",xl));
-disp(sprintf("The inductance of the coil is %4.2f H",L));//text book answer is 0.05 H
-disp(sprintf("The power factor of the coil is %3.1f (lagging)",pf));
+r=vdc/I1;
+z=vac/I2;
+xl=sqrt((z^2)-(r^2));
+L=xl/(2*%pi*f);
+pf=r/z;
+disp(sprintf("The inductance of the coil is %f H",L));
+disp(sprintf("The power factor of the coil is %f (lagging)",pf));
//END
diff --git a/1445/CH2/EX2.13/Ex2_13.sce b/1445/CH2/EX2.13/Ex2_13.sce
index 7d6d5143c..fce8566d7 100644
--- a/1445/CH2/EX2.13/Ex2_13.sce
+++ b/1445/CH2/EX2.13/Ex2_13.sce
@@ -1,49 +1,36 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 13
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 13");
-//given
-//load of impedance 1+j.1 ohm connected AC Voltage
-//AC Voltage represented by V=20.sqrt(2).cos(wt+10) volt
-
-//to find
-//current in form of i=Im.sin(wt+phi) A
-// real power
-
-//Equations to be used
-//real Power pr=Vrms.Irms.cos (phi)
-// =(Vm/sqrt(2)).(Im/sqrt(2)).cos(phi)
-// apparent power pa=Vrms.Irms
-// =(Vm/sqrt(2)).(Im/sqrt(2))
-//
//VARIABLE INITIALIZATION
-z1=1+(%i*1); //impedance in rectangular form in Ohms
-v=20*sqrt(2); //amplitude of rms value of voltage in Volts
+z=1+(%i*1); //load impedance in rectangular form in Ohms
+v=20*sqrt(2); //amplitude of rms value of voltage in Volts
//SOLUTION
-function [z,angle]=rect2pol(x,y);
-z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y
-angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
+function [zp,angle]=rect2pol(x,y); //function 'rect2pol()' converts impedance in rectangular form to polar form
+zp=sqrt((x^2)+(y^2)); //z= (x) + j(y)= (1)+ j(1); 'zp' is in polar form
+angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
//solution (i)
-[z,angle]=rect2pol(1,1);
+[zp,angle]=rect2pol(1,1); //since x=1 and y=1
v=v/sqrt(2);
-angle_v=100; //v=(20/sqrt(2))*sin(ωt+100)
-I=v/z; //RMS value of current
+angle_v=100; //v=(20/sqrt(2))*sin(ωt+100)
+I=v/zp; //RMS value of current
angle_I=angle_v-angle;
Im=I*sqrt(2);
disp(sprintf("(i) The current in load is i = %d sin(ωt+%d) A",Im,angle_I));
//solution (ii)
-pr=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180));
-disp(sprintf("(ii) The real power is %4.0f W",pr));
+p=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180));
+disp(sprintf("(ii) The real power is %f W",p));
//solution (iii)
pa=(v/sqrt(2))*(I*sqrt(2));
-disp(sprintf("(ii) The apparent power is %6.2f VAR",pa));
+disp(sprintf("(ii) The apparent power is %f VAR",pa));
//END
diff --git a/1445/CH2/EX2.14/Ex2_14.sce b/1445/CH2/EX2.14/Ex2_14.sce
index 2a46b86fd..c9eeeb76c 100644
--- a/1445/CH2/EX2.14/Ex2_14.sce
+++ b/1445/CH2/EX2.14/Ex2_14.sce
@@ -1,13 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 14
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 14");
-//given
-//EMF e=100.sin(314.t-pi/4) V
-//current i=20.sin (314.t-1.5808) Amp
-
//VARIABLE INITIALIZATION
v=100; //amplitude of rms value of voltage in Volts
I=20; //amplitude of rms value of current in Amperes
@@ -15,42 +12,27 @@ I=20; //amplitude of rms value of current in Amperes
//SOLUTION
//solution(i)
-w=314; //angular frequency in radian/sec, given w.t=314.t
+w=314; //angular frequency in radian/sec
f=w/(2*%pi); //as w=2*(%pi)*f
f=ceil(f);
disp(sprintf("(i) The frequency is %d Hz",f));
//solution (ii)
E=v/sqrt(2);
-angle_E=-45; //in degrees, given in emf equation
+angle_E=-45; //in degrees
I=I/sqrt(2);
-angle_I=-(1.5808*180/%pi); //converting the given angle value in current equation
- // to degrees
- //text book assumes it to be 90 degrees
- // actually the value comes to 90.573168
+angle_I=-90; //in degrees
z=E/I;
angle=angle_E-angle_I;
-disp(sprintf("(ii) The impedance is %d Ω, %d degrees",z,angle));// text book answer is 45 deg
- // the value comes to 45.573168 deg
- // hence shall use floor() to round
-//
-//Equation
-//Z=R+j.Xl
-//Z=Z.cos (phi)+j.Zsin(phi)
+disp(sprintf("(ii) The impedance is %d Ω, %d degrees",z,angle));
function [x,y]=pol2rect(mag,angle1);
x=mag*cos(angle1*(%pi/180)); //to convert the angle from degrees to radian
y=mag*sin(angle1*(%pi/180));
endfunction;
-//round the angle value first using floor
-angle=floor(angle);
-//disp(sprintf(" The angle is %f Degree",angle)); //testing value of angle
[r,x]=pol2rect(z,angle);
L=x/(2*%pi*f);
-//
-disp(sprintf(" The resistance is %f Ohm",r));//text book uses format as 5/sqrt(2)
-disp(sprintf(" The reactance is %f Ohm",x));//text book uses format as 5/sqrt(2)
-disp(sprintf(" The inductance is %6.5f H",L));//text book answer is 0.01126 H
+disp(sprintf(" The inductance is %f H",L));
//END
diff --git a/1445/CH2/EX2.15/Ex2_15.sce b/1445/CH2/EX2.15/Ex2_15.sce
index 4a6ab9086..02d922e8a 100644
--- a/1445/CH2/EX2.15/Ex2_15.sce
+++ b/1445/CH2/EX2.15/Ex2_15.sce
@@ -1,46 +1,43 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 15
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 15");
-//GIVEN
-//choke coil takes current of 2 Amp 60 deg lagging
-//Applied voltage 200 V 50Hz
-
//VARIABLE INITIALIZATION
-I=2; //in Amperes
-angle_I=60; //in degrees
-v1=200; //in Volts
-f=50; //in Hertz
-
-//SOLUTION (i)
-z1=v1/I;
+I=2; //in Amperes
+angle_I=60; //in degrees
+v1=200; //in Volts
+f1=50; //in Hertz
+v2=100; //in Volts
+f2=25; //in Hertz
+
+//SOLUTION
+
+//solution (i): when supply is 200V and frequency is 50 Hz
+z1=v1/I;
+disp(sprintf("(i) When the supply is 200V and frequency is 50 Hz:"));
disp(sprintf("The impedance is %d Ω, %d degrees",z1,angle_I));
-//function to convert from polar form to rectangular form
-function [x,y]=pol2rect(mag,angle);
-x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
+function [x,y]=pol2rect(mag,angle); //function 'pol2rect()' converts impedance in polar form to rectangular form
+x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
y=mag*sin(angle*(%pi/180));
endfunction;
[r,x1]=pol2rect(z1,angle_I);
disp(sprintf("The resistance is %d Ω",r));
-L=x1/(2*%pi*f);
-disp(sprintf("The inductance is %5.3f H",L));
-
-//SOLUTION (ii)
-//Choke is now connected to 100 V 25 hz power supply
-//Howevetr, R and L of the choke will remain the same
-//Reactance will change
-v2=100; // in volts
-f2=25; // in Hz
-x2=2*%pi*f2*L; // inductive reactance in the new system
-z2=sqrt((r^2)+(x2^2)); // impedance in the new system
+L=x1/(2*%pi*f1);
+disp(sprintf("The inductance is %f H",L));
+
+//solution (ii): when supply is 100V and frequency is 25 Hz
+x2=2*%pi*f2*L;
+z2=sqrt((r^2)+(x2^2));
angle=atan(x2/r);
-I1=v2/z2; // current in the new system
-p=v2*I1*cos(-angle); //power consumed
-//
-//disp(sprintf("The angle is %5.4f ",angle));// text book value is assumed 0.75
-disp(sprintf("The power consumed is %5.1f W",p));
+I1=v2/z2;
+p=v2*I1*cos(-angle);
+disp(sprintf("(ii) When supply is 100V and frequency is 25 Hz:"));
+disp(sprintf("The power consumed is %f W",p));
+
+//Answer may be slightly different due to precision of floating point numbers
//END
diff --git a/1445/CH2/EX2.16/Ex2_16.sce b/1445/CH2/EX2.16/Ex2_16.sce
index 1de5edbc7..a838f2925 100644
--- a/1445/CH2/EX2.16/Ex2_16.sce
+++ b/1445/CH2/EX2.16/Ex2_16.sce
@@ -1,16 +1,17 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 16
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 16");
//VARIABLE INITIALIZATION
-r1=5; //in Ohms
-r2=10; //in Ohms
-L1=0.04; //in Henry
-L2=0.05; //in Henry
-v=200; //in Volts
-f=50; //in Hertz
+r1=5; //in Ohms
+r2=10; //in Ohms
+L1=0.04; //in Henry
+L2=0.05; //in Henry
+v=200; //in Volts
+f=50; //in Hertz
//SOLUTION
@@ -19,32 +20,30 @@ xl1=L1*(2*%pi*f);
xl2=L2*(2*%pi*f);
z1=r1+(%i*xl1);
z2=r2+(%i*xl2);
-//function to convert from rectangular form to polar form
-function [z,angle]=rect2pol(x,y);
-z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y
-angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
+function [z,angle]=rect2pol(x,y); //function 'rect2pol()' converts impedance in rectangular form to polar form
+z=sqrt((x^2)+(y^2)); //z=(x) + j(y) where 'x' represents resistance and 'y' represents inductive reactance
+angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
[z1,angle1]=rect2pol(r1,xl1);
[z2,angle2]=rect2pol(r2,xl2);
-Y1=1/z1; //admittance
+Y1=1/z1; //admittance
Y2=1/z2;
-//function to convert from polar form to rectangular form
-function [x,y]=pol2rect(mag,angle);
-x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
+function [x,y]=pol2rect(mag,angle); //function 'pol2rect()' converts admittance in polar form to rectangular form
+x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
y=mag*sin(angle*(%pi/180));
endfunction;
[G1,B1]=pol2rect(Y1,angle1);
[G2,B2]=pol2rect(Y2,angle2);
disp("......................................");
disp("SOLUTION (i)");
-disp(sprintf("Conductance of 1st coil is %5.3f S",G1));
-disp(sprintf("Conductance of 2nd coil is %5.3f S",G2));
+disp(sprintf("Conductance of 1st coil is %f S",G1));
+disp(sprintf("Conductance of 2nd coil is %f S",G2));
disp(" ");
-disp(sprintf("Susceptance of 1st coil is %5.3f S",B1));
-disp(sprintf("Susceptance of 2nd coil is %5.3f S",B2));
+disp(sprintf("Susceptance of 1st coil is %f S",B1));
+disp(sprintf("Susceptance of 2nd coil is %f S",B2));
disp(" ");
-disp(sprintf("Admittance of 1st coil is %5.3f S",Y1));
-disp(sprintf("Admittance of 2nd coil is %5.3f S",Y2));
+disp(sprintf("Admittance of 1st coil is %f S",Y1));
+disp(sprintf("Admittance of 2nd coil is %f S",Y2));
disp("......................................");
//solution (ii)
@@ -54,14 +53,14 @@ B=B1+B2;
I=v*Y;
pf=cos((angle)*(%pi/180));
disp("SOLUTION (ii)");
-disp(sprintf("Total current drawn by the circuit is %5.3f A, %.2f degrees",I,-angle));
-disp(sprintf("Power factor of the circuit is %5.3f (lagging)",pf));
+disp(sprintf("Total current drawn by the circuit is %f A, %f degrees",I,-angle));
+disp(sprintf("Power factor of the circuit is %f (lagging)",pf));
disp("......................................");
//solution (iii)
p=v*I*pf;
disp("SOLUTION (iii)");
-disp(sprintf("Power absorbed by the circuit is %5.3f kW",p/1000));// text book answer is 2.256 kW
+disp(sprintf("Power absorbed by the circuit is %f kW",p/1000));
disp("......................................");
//solution (iv)
@@ -73,8 +72,8 @@ endfunction;
[r,x]=pol2rect(z,angle);
L=x/(2*%pi*f);
disp("SOLUTION (iv)");
-disp(sprintf("Resitance of single coil is %5.3f Ω",r));//
-disp(sprintf("Inductance of single coil is %5.3f H",L));//inductance not worked out i the etx book
+disp(sprintf("Resitance of single coil is %f Ω",r));
+disp(sprintf("Inductance of single coil is %f H",L));
disp("......................................");
//END
diff --git a/1445/CH2/EX2.17/Ex2_17.sce b/1445/CH2/EX2.17/Ex2_17.sce
index 9b4c7c29e..614c7b42a 100644
--- a/1445/CH2/EX2.17/Ex2_17.sce
+++ b/1445/CH2/EX2.17/Ex2_17.sce
@@ -1,18 +1,13 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 17
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 17");
-
-//Given
-//AC Voltage e(t)=141.4.sin (120.t)
-//Current in the circuit is
-//i(t)=14.14.sin (120.t+7.07.cos (120.t+30)
-
//VARIABLE INITIALIZATION
-e=141.4; //in Volts
-E=141.4/sqrt(2); //in Volts
+e=141.4; //amplitude of e(t) in Volts
+E=141.4/sqrt(2); //RMS value of e(t) in Volts
angle_E=0; //in degrees
//i(t)=(14.14<0)+(7.07<120)
i1=14.14; //in Amperes
@@ -21,16 +16,16 @@ i2=7.07; //in Amperes
angle_i2=120; //in degrees
//SOLUTION
-//function to convert from polar form to rectangular form
-function [x,y]=pol2rect(mag,angle);
+function [x,y]=pol2rect(mag,angle); //function 'pol2rect()' converts current in polar form to rectangular form
x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
y=mag*sin(angle*(%pi/180));
endfunction;
-[i1_x,i1_y]=pol2rect(i1,angle_i1);
-[i2_x,i2_y]=pol2rect(i2,angle_i2);
+//the given current i(t) is composed of two currents i1(t) and i2(t)
+//i1(t) and i2(t) are not mentioned in the book but are considered for the sake of convenience
+[i1_x,i1_y]=pol2rect(i1,angle_i1); //i1(t)= 14.14 sin(120t)
+[i2_x,i2_y]=pol2rect(i2,angle_i2); //i2(t)=7.07 cos(120t+30)
i=(i1_x+i2_x)+(%i*(i1_y+i2_y));
-//function to convert from rectangular form to polar form
-function [mag,angle]=rect2pol(x,y);
+function [mag,angle]=rect2pol(x,y); //function 'rect2pol()' converts current in rectangular form to polar form
mag=sqrt((x^2)+(y^2));
angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
@@ -43,15 +38,15 @@ angle_z=angle_E-angle_I;
[r,xc]=pol2rect(z,angle_z);
f=50;
c=1/(2*%pi*f*(-xc));
-disp(sprintf("(i) The value of resistance is %5.3f Ω",r));
-disp(sprintf(" The value of capacitance is %6.4f μF",c*10^6));
+disp(sprintf("(i) The value of resistance is %f Ω",r));
+disp(sprintf(" The value of capacitance is %f μF",c*10^6));
//solution (ii)
pf=cos(angle_z*(%pi/180));
-disp(sprintf("(ii) The power factor is %4.3f ",pf));
+disp(sprintf("(ii) The power factor is %f ",pf));
//solution (iii)
p=E*I*pf;
-disp(sprintf("(iii) The power absorbed by the source is %d W",p));
+disp(sprintf("(iii) The power absorbed by the source is %f W",p));
//END
diff --git a/1445/CH2/EX2.18/Ex2_18.sce b/1445/CH2/EX2.18/Ex2_18.sce
index 3f09f083a..b29c61a43 100644
--- a/1445/CH2/EX2.18/Ex2_18.sce
+++ b/1445/CH2/EX2.18/Ex2_18.sce
@@ -1,15 +1,16 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 18
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 18");
//VARIABLE INITIALIZATION
-r=10; //in Ohms
-v=200; //in Volts
-f=50; //in Hertz
-I=10; //in Amperes
-rc=2; //resistance of coil in Ohms
+r=10; //in Ohms
+v=200; //in Volts
+f=50; //in Hertz
+I=10; //in Amperes
+rc=2; //resistance of coil in Ohms
//SOLUTION
@@ -17,21 +18,19 @@ rc=2; //resistance of coil in Ohms
z=v/I;
xl=sqrt((z^2)-((r+rc)^2));
L=xl/(2*%pi*f);
-//disp(sprintf("(i) The Xl of the coil is %3.1f ",xl));
-disp(sprintf("(i) The inductance of the coil is %3.1f H",L*1000));//converting to milli henry
+disp(sprintf("(i) The inductance of the coil is %f H",L));
//solution (ii)
pf=(r+rc)/z;
-disp(sprintf("(ii) The power factor is %3.1f",pf));
+disp(sprintf("(ii) The power factor is %f",pf));
//solution (iii)
vl=I*(rc+(%i*xl));
-//function to convert from rectangular form to polar form
-function [mag,angle]=rect2pol(x,y);
+function [mag,angle]=rect2pol(x,y);//function 'rect2pol()' converts voltage in rectangular form to polar form
mag=sqrt((x^2)+(y^2));
angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
[vl,angle_vl]=rect2pol(real(vl),imag(vl));
-disp(sprintf("(iii) The voltage across the coil is %7.3f V, %5.2f degrees",vl,angle_vl));
+disp(sprintf("(iii) The voltage across the coil is %f V, %f degrees",vl,angle_vl));
//END
diff --git a/1445/CH2/EX2.19/Ex2_19.sce b/1445/CH2/EX2.19/Ex2_19.sce
index 32395bf13..015f1ab16 100644
--- a/1445/CH2/EX2.19/Ex2_19.sce
+++ b/1445/CH2/EX2.19/Ex2_19.sce
@@ -1,50 +1,51 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 19
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 19");
//VARIABLE INITIALIZATION
-z1=4+(%i*3); //impedance in rectangular form in Ohms
-z2=6-(%i*8); //impedance in rectangular form in Ohms
-z3=1.6+(%i*7.2); //impedance in rectangular form in Ohms
-v=100 //in volts
+z1=4+(%i*3); //impedance in rectangular form in Ohms
+z2=6-(%i*8); //impedance in rectangular form in Ohms
+z3=1.6+(%i*7.2); //impedance in rectangular form in Ohms
+v=100 //in volts
//SOLUTION
-//solution (i)
-//Admittance of each parallel branch Y1 and Y2
+//SOLUTION (i)
+
+//Y1 and Y2 are admittances of each parallel branch
Y1=1/z1;
Y2=1/z2;
disp("SOLUTION (i)");
-disp(sprintf("Admittance parallel branch 1 is %3.3f %3.3fj S", real(Y1), imag(Y1)));
-disp(sprintf("Admittance parallel branch 2 is %3.3f+%3.3fj S", real(Y2), imag(Y2)));
+disp(sprintf("Admittance parallel branch 1 is %3f %3fj S", real(Y1), imag(Y1)));
+disp(sprintf("Admittance parallel branch 2 is %3f+%3fj S", real(Y2), imag(Y2)));
disp(" ");
-//solution (ii)
-//Total circuit impedance Z=(Z1||Z2)+Z3
-z=z3+(z2*z1)/(z1+z2)
+//SOLUTION (ii)
+
+z=z3+(z2*z1)/(z1+z2) //series and parallel combination of impedances
disp("SOLUTION (ii)");
-disp(sprintf("Total circuit impedance is %3.3f %3.3fj S", real(z), imag(z)));
-//solution in the book is wrong as there is a total mistake in imaginery part 7.2+0.798=11.598
-//
-//solution (iii)
-//Supply current I=V/Z
-i=v/z;
-function [z,angle]=rect2pol(x,y);
-z0=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y
-angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
+disp(sprintf("Total circuit impedance is %3f %3fj S", real(z), imag(z)));
+//solution given in the book is wrong as j(7.2+0.798) cannot be equal to j11.598
+
+//SOLUTION (iii)
+
+I=v/z;
+function [Z,angle]=rect2pol(x,y); //function 'rect2pol()' converts impedance in rectangular form to polar form
+Z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y
+angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
-[z, angle]=rect2pol(real(i), imag(i));
+[Z, angle]=rect2pol(real(I), imag(I));
//disp(sprintf("%f, %f",z,angle));
-//disp(sprintf("%f, %f",real(i), imag(i)));
+//disp(sprintf("%f, %f",real(I), imag(I)));
pf=cos(angle*%pi/180);
-
disp("SOLUTION (iii)");
-disp(sprintf("The power factor is %4.2f",pf));
-//solution (iv)
-//Power supplied by source = VI cosΦ or I^2 . R
-P=v*real(i)*pf;
+disp(sprintf("The power factor is %f",pf));
+
+//SOLUTION (iv)
+P=v*real(I)*pf; //power supplied by source is either (VI cosΦ) or (I^2 . R)
disp("SOLUTION (iv)");
-disp(sprintf("The power supplied by source is %d watt",P));
-//END
+disp(sprintf("The power supplied by source is %f watt",P));
+//END \ No newline at end of file
diff --git a/1445/CH2/EX2.20/Ex2_20.sce b/1445/CH2/EX2.20/Ex2_20.sce
index 77d5ad76a..74c8f035b 100644
--- a/1445/CH2/EX2.20/Ex2_20.sce
+++ b/1445/CH2/EX2.20/Ex2_20.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 20 // read it as example 19 in the book on page 2.72
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 20");
@@ -14,26 +15,26 @@ R=25 //in ohms
//Resonance frequency f = (1/2π)sqrt((1/LC)-R^2/L^2)
fr=(1/(2*%pi))*sqrt((1/(L*C*10^-6))-(R^2)/(L^2));
disp("SOLUTION (i)");
-disp(sprintf("For parallel circuit,Resonant frquency is %3.2f Hz", fr));
+disp(sprintf("For parallel circuit,Resonant frquency is %3f Hz", fr));
disp(" ");
//solution (ii)
//Total circuit impedance at resonance is Z=L/RC
z=L/(R*C*10^-6);
disp("SOLUTION (ii)");
-disp(sprintf("Total impedence at resonance is %3.0f kΩ", z/1000));
+disp(sprintf("Total impedence at resonance is %3f kΩ", z/1000));
//
//solution (iii)
//Bandwidth (f2-f1)=R/(2.π.L)
bw=R/(2*%pi*L);
disp("SOLUTION (iii)");
-disp(sprintf("Bandwidth is %3.2f Hz", bw));
+disp(sprintf("Bandwidth is %3f Hz", bw));
//
//solution (iv)
//Quality factor Q=1/R.sqrt(L/C)
Q=(1/R)*sqrt(L/(C*10^-6));
disp("SOLUTION (iv)");
-disp(sprintf("Quality Factor is %3.2f", Q));
+disp(sprintf("Quality Factor is %3f", Q));
//solution in the book is wrong as there is a total mistake in imaginery part 7.2+0.798=11.598
//
//END
diff --git a/1445/CH2/EX2.22/Ex2_22.sce b/1445/CH2/EX2.22/Ex2_22.sce
index 5a3d218e3..992d68318 100644
--- a/1445/CH2/EX2.22/Ex2_22.sce
+++ b/1445/CH2/EX2.22/Ex2_22.sce
@@ -1,39 +1,33 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
-//Example 22 // read it as example 21 in the book on page 2.75
+//Example 22 (mentioned as 'example 21' in the book)
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 22");
//VARIABLE INITIALIZATION
L=0.1 //in Henry
-C=8 //in mf, multiply by 10^-6 to convert to f
-R=10 //in ohms
+C=8*10^-6 //in Farad
+R=10 //in Ohms
//SOLUTION
//solution (i)
-//Resonance frequency for a series RLC circuitf = 1/2.π.sqrt(LC)
-fr=1/(2*%pi*sqrt(L*C*10^-6));
+fr=1/(2*%pi*sqrt(L*C)); //resonant frequency
disp("SOLUTION (i)");
-disp(sprintf("For series circuit,Resonant frquency is %3.2f Hz", fr));
+disp(sprintf("For series circuit, resonant frquency is %3f Hz", fr));
disp(" ");
//solution (ii)
-//Q-factor is Q=w.L/R= 2.π,fr.L/R
w=2*%pi*fr;
Q=w*L/R;
disp("SOLUTION (ii)");
-disp(sprintf("The Q-factor at resonance is %3.2f kΩ", Q));
-//
+disp(sprintf("The Q-factor at resonance is %3f kΩ", Q));
+
//solution (iii)
-//Bandwidth, BW, (f2-f1)=R/(2.π.L), where f1,f2 half power frequencies
-//f1=fr-BW/2
-//f2=fr+BW/2
bw=R/(2*%pi*L);
-f1=fr-bw/2;
-f2=fr+bw/2;
+f1=fr+bw/2;
disp("SOLUTION (iii)");
-disp(sprintf("half frequency 1 is %3.2f Hz", f1));
-disp(sprintf("half frequency 2 is %3.2f Hz", f2));//
-//
+disp(sprintf("Half power frequencies are %3f Hz and %3f Hz", f1,fr));
+
//END
diff --git a/1445/CH2/EX2.23/Ex2_23.sce b/1445/CH2/EX2.23/Ex2_23.sce
index 7ff187786..c570e9471 100644
--- a/1445/CH2/EX2.23/Ex2_23.sce
+++ b/1445/CH2/EX2.23/Ex2_23.sce
@@ -1,38 +1,32 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
-//Example 22 // read it as example 22 in the book on page 2.76
+//Example 22 (mentioned as 'example 22' in the book)
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 23");
-//Given
-//Equation of an Ac current with respect to origin
-//i=100.sin2.pi.50t
-//i=100.sin 100.pi.t
-//
//VARIABLE INITIALIZATION
-A=100 //Amplitude in Amps
-f=50 //frquency in Hz
-t1=1/600 //sec after wave becomes zero again
-a1=86.6 //amplitude at some time t after start
+A=100 //amplitude in Amperes
+f=50 //frequency in Hz
+t1=1/600 //time in seconds after wave becomes zero again
+a1=86.6 //amplitude in Amperes at some time 't' after start
+
//SOLUTION
//solution (a)
//Amplitude at 1/600 second after it becomes zero
-//
w=f*2*%pi; //angular speed
hp=1/(2*f); //half period, the point where sine beomes zero again after origin
-//The hald period , hp, needs to be added to 1/600 sec
t=hp+t1;
a2=A*sin(w*t);
disp("SOLUTION (a)");
-disp(sprintf("Amplitude after 1/600 sec is %3.0f A", a2));
+disp(sprintf("Amplitude after 1/600 sec is %3f A", a2));
disp(" ");
//solution (b)
//since A=A0.sinwt, t=asin(A/A0)/w
t2=(asin(a1/A))/w;
disp("SOLUTION (b)");
-disp(sprintf("The time at which amp would be %3.2f is %3.3f sec", a1,t2));//text book answer is 1/300 sec
-//
+disp(sprintf("The time at which amp would be %f is %3f sec", a1,t2));
//END
diff --git a/1445/CH2/EX2.24/Ex2_24.sce b/1445/CH2/EX2.24/Ex2_24.sce
index ceb0d8ce0..7d2c67727 100644
--- a/1445/CH2/EX2.24/Ex2_24.sce
+++ b/1445/CH2/EX2.24/Ex2_24.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 22 // read it as example 23 in the book on page 2.77
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 24");
@@ -17,11 +18,11 @@ rms=Im/2;
Iav=Im/%pi; //average current
ff=rms/Iav;
disp("SOLUTION");
-disp(sprintf("RMS value of current is %3.0f A", rms));
-disp(sprintf("Average value of current is %3.2f A", Iav));
-disp(sprintf("Form Factor of current is %3.2f A", ff));
+disp(sprintf("RMS value of current is %3f A", rms));
+disp(sprintf("Average value of current is %3f A", Iav));
+disp(sprintf("Form Factor of current is %3f A", ff));
disp(" ");
-//
+
//END
diff --git a/1445/CH2/EX2.25/Ex2_25.sce b/1445/CH2/EX2.25/Ex2_25.sce
index 9ac4777b9..0d45038ac 100644
--- a/1445/CH2/EX2.25/Ex2_25.sce
+++ b/1445/CH2/EX2.25/Ex2_25.sce
@@ -1,23 +1,23 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 25 // read it as example 24 in the book on page 2.78
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 25");
//VARIABLE INITIALIZATION
V=350 //Amplitude in Volts
-f=50 //frquency in Hz
+f=50 //frequency in Hz
t1=0.005 //sec after wave becomes zero again
-t2=0.008 //sec after waves passes tgrough 0 in -ve direction
+t2=0.008 //sec after waves passes through 0 in -ve direction
//SOLUTION
-//e=E.sin(wt)
-
+//e=Esinwt
//solution (a)
-//
+//RAmplitude at 1/600 second after it becomes zero
w=f*2*%pi; //angular speed
v1=V*sin(w*t1);
disp("SOLUTION (a)");
-disp(sprintf("Voltage after %.3f sec is %3d V", t1,v1));
+disp(sprintf("Voltage after %f sec is %3f A", t1,v1));
disp(" ");
//solution (b)
//since wave will pass in -ve direction after half period
@@ -25,7 +25,7 @@ hp=1/(2*f); //half period, the point where sine beomes zero
t=hp+t2;
v2=V*sin(w*t);
disp("SOLUTION (b)");
-disp(sprintf("The voltage would be %5.2f V in %.3f sec", v2,t));
+disp(sprintf("The voltage would be %f V %3f sec", v2,t));
//
//END
diff --git a/1445/CH2/EX2.26/Ex2_26.sce b/1445/CH2/EX2.26/Ex2_26.sce
index 05ce350d7..99705bbcd 100644
--- a/1445/CH2/EX2.26/Ex2_26.sce
+++ b/1445/CH2/EX2.26/Ex2_26.sce
@@ -1,29 +1,30 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 26 // read it as example 25 in the book on page 2.79
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 26");
//VARIABLE INITIALIZATION
A=100 //Amplitude in Amps
f=25 //frquency in Hz
-a1=20 //value of current in Amps to be achieved in certain time
-a2=100 //value of current in Amps tobe achieved in certain time
+a1=20 //svalue in Amps to be achieved in certain time
+a2=100 //in Amps
//SOLUTION
-//i=Im.sin(wt)
+//i=Isinwt
//solution (a)
-//
+//RAmplitude at 1/600 second after it becomes zero
w=f*2*%pi; //angular speed
-//when current attains 20 amp means instantaneous value of i=20 Amp
t1=(asin(a1/A))/w;
disp("SOLUTION (a)");
-disp(sprintf("The time to reach value %d A is %3.5f sec", a1,t1));
+disp(sprintf("The time to reach value %f A is %3f sec", a1,t1));
disp(" ");
-//solution (b)//when current attains 100 amp means instantaneous value of i=100 Amp
+//solution (b)
+//since wave will pass in -ve direction after half period
t2=(asin(a2/A))/w;
disp("SOLUTION (a)");
-disp(sprintf("The time to reach value %d A is %3.2f sec", a2,t2));
+disp(sprintf("The time to reach value %f A is %3f sec", a2,t2));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.27/Ex2_27.sce b/1445/CH2/EX2.27/Ex2_27.sce
index a88d01676..a8113eea2 100644
--- a/1445/CH2/EX2.27/Ex2_27.sce
+++ b/1445/CH2/EX2.27/Ex2_27.sce
@@ -1,15 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 27 // read it as example 26 in the book on page 2.79
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 27");
-// Given
-//Voltage across the circuit
-//v=250.sin (314.t-10)
-//current is given by
-//i=10.sin(314.t+50)
-//
//VARIABLE INITIALIZATION
V=250; //Amplitude in Volts
w=314; //angular spped
@@ -41,13 +36,13 @@ angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
[mag,angle]=rect2pol(real(Z),imag(Z));
disp("SOLUTION (a)");
-disp(sprintf("The impedance is %d < %3d Deg", mag,angle));//text book answer is -60 deg
+disp(sprintf("The impedance is %f < %3f Deg", mag,angle));
//disp(" ");
//power factor=cos(angle)
pf=cos(-1*angle*%pi/180); //convert to radians and change sign
-disp(sprintf("The power factor is %2.1f", pf));
+disp(sprintf("The power factor is %f", pf));
//Z=R-jXc by comparing real and imag paarts we get
-disp(sprintf("The resistance is %3.1fΩ and Reactance is %4.2fΩ", real(Z), imag(Z)));
+disp(sprintf("The resistance is %fΩ and Reactance is %3fΩ", real(Z), imag(Z)));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.28/Ex2_28.sce b/1445/CH2/EX2.28/Ex2_28.sce
index ce41fd503..daea93794 100644
--- a/1445/CH2/EX2.28/Ex2_28.sce
+++ b/1445/CH2/EX2.28/Ex2_28.sce
@@ -1,10 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 28 // read it as example 27 in the book on page 2.80
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 28");
-//
-//Circuit diagram given with 3 branches
+
//VARIABLE INITIALIZATION
z1=2+(%i*3); //impedance in rectangular form in Ohms
z2=1-(%i*5); //impedance in rectangular form in Ohms
@@ -16,51 +16,43 @@ v=10; //in volts
//Total impedance
//Total circuit impedance Z=(Z1||Z2)+Z3
z=z1+(z2*z3)/(z2+z3);
-//define function
+disp("SOLUTION (i)");
+disp(sprintf("Total circuit impedance is %3f %3fj S", real(z), imag(z)));
+//Total supply current I=V/Z
+//solution (b)
+i=v/z;
function [mag,angle]=rect2pol(x,y);
mag=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y
angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
-[magZ, angleZ]=rect2pol(real(z),imag(z));
-disp("SOLUTION (i)");
-disp(sprintf("Total circuit impedance is %3.2f+%3.1fj S", real(z), imag(z)));// in rectangula rform
-disp(sprintf("Total circuit impedance is %3.2f %3.1f S", magZ, angleZ)); //in polar form
-
-//solution (b)
-//Total supply current I=V/Z
-i=v/z;
[mag, angle]=rect2pol(real(i), imag(i));
disp("SOLUTION (b)");
-disp(sprintf("Total current is %3.2f <%3.1f Amp",mag,angle));
+disp(sprintf("Total current is %f<%f Amp",mag,angle));
//solution (c)
//Vbc=I.Zbc where Zbc=(z2*z3)/(z2+z3)
Vbc=i*((z2*z3)/(z2+z3));
[mag1, angle1]=rect2pol(real(Vbc), imag(Vbc));
disp("SOLUTION (c)");
-disp(sprintf("The voltage across the || circuit is %3.2f-%3.2fj",real(Vbc), imag(Vbc)));
-disp(sprintf("The voltage across the || circuit is %3.2f <%3.1f",mag1, angle1));
-disp(sprintf("The voltage Vbc lags circuit by %3.2f Deg",angle-angle1));
+disp(sprintf("The voltage across the || circuit is %f<%f",mag1, angle1));
+disp(sprintf("The voltage Vbc lags circuit by %f Deg",angle-angle1));
//solution (d)
//i2=Vbc/z2, i3=Vbc/z3
i2=Vbc/z2;
i3=Vbc/z3;
[mag2, angle2]=rect2pol(real(i2), imag(i2));
[mag3, angle3]=rect2pol(real(i3), imag(i3));
-disp("SOLUTION (d)");
-disp(sprintf("The current across fist branch of || circuit is %3.2f <%3.1f",mag2, angle2));
-disp(sprintf("The current across second branch of || circuit is %3.2f <%3.1f",mag3, angle3));
+disp(sprintf("The current across fist branch of || circuit is %f<%f",mag2, angle2));
+disp(sprintf("The current across second branch of || circuit is %f<%f",mag3, angle3));
//solution (e)
pf=cos(-1*angle*%pi/180);
disp("SOLUTION (e)");
-disp(sprintf("The power factor is %.3f",pf));
+disp(sprintf("The power factor is %f",pf));
//solution (iv)
//Apparent power s=VI, True Power, tp I^2R, Reactive Power, rp=I^2X or VISSin(angle)
-s=v*mag; //apparent power
-tp=(mag^2)*magZ;//true power
-rp=v*mag*sin(-1*angle*%pi/180);//reactive power
+s=v*mag;
+tp=mag*mag*real(z);
+rp=v*mag*sin(-1*angle*%pi/180);
disp("SOLUTION (f)");
-disp(sprintf("The Apparent power is %.2f VA",s));
-disp(sprintf("The True power is %.2f W",tp));//text book answer is 16.32 may be due to truncation
-disp(sprintf("The Reactive power is %.1f vars",rp));
+disp(sprintf("The Apparent power is %f VA, True power is %f W , Reactive power is %f vars",s,tp,rp));
disp(" ");
//END
diff --git a/1445/CH2/EX2.29/Ex2_29.sce b/1445/CH2/EX2.29/Ex2_29.sce
index e09038cf4..0f2920b3b 100644
--- a/1445/CH2/EX2.29/Ex2_29.sce
+++ b/1445/CH2/EX2.29/Ex2_29.sce
@@ -1,10 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 29 // read it as example 28 in the book on page 2.83
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 29");
-//
-//i=120.si(2.pi.f.t)
+
//VARIABLE INITIALIZATION
I=120; //Amplitude in Amps
f=60; //Hz
@@ -16,11 +16,11 @@ i2=96; //in Amps ,2 to find time taken to reach this
w=2*%pi*f;
i=I*sin(w*t1);
disp("SOLUTION (a)");
-disp(sprintf("The amplitude at time %.3f sec is %.1f Amp", t1,i));
+disp(sprintf("The amplitude at time %f sec is %f Amp", t1,i));
//solution (b)
t2=(asin(i2/I))/w;
disp("SOLUTION (b)");
-disp(sprintf("The time taken to reach %2.0f Amp is %.5f Sec", i2,t2));
+disp(sprintf("The time taken to reach %f Amp is %f Sec", i2,t2));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.3/Ex2_3.sce b/1445/CH2/EX2.3/Ex2_3.sce
index a6ea8cb77..cb6e00086 100644
--- a/1445/CH2/EX2.3/Ex2_3.sce
+++ b/1445/CH2/EX2.3/Ex2_3.sce
@@ -1,25 +1,18 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 3
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 3");
-//To find average and rms value rectified sine wave shown in Fig. 2.22
-
//VARIABLE INITIALIZATION
-//Time period T=pi
v_m=5; //peak value of voltage in Volts
-
//SOLUTION
-//average value Vav by integrating v over 0 to pi and dividing by pi
v_av=(integrate('v_m*sin(x)','x',0,%pi))/(%pi);
-//first v squre rms
v_rms=(integrate('(v_m*sin(x))^2','x',0,%pi))/(%pi);
-//then V rms: The previous variable reused
v_rms=sqrt(v_rms);
-//truncating display to 3 digits
-disp(sprintf("Average value of full wave rectifier sine wave is %4.3f V",v_av));// answer is wrongly shown as 3.185 in the book
-//truncating display to 2 digits
-disp(sprintf("Effective value of full wave rectifier sine wave is %4.2f V",v_rms));
+disp(sprintf("Average value of full wave rectifier sine wave is %f V",v_av));
+disp(sprintf("Effective value of full wave rectifier sine wave is %f V",v_rms));
+
//END
diff --git a/1445/CH2/EX2.30/Ex2_30.sce b/1445/CH2/EX2.30/Ex2_30.sce
index 7f36ea719..ebe06388b 100644
--- a/1445/CH2/EX2.30/Ex2_30.sce
+++ b/1445/CH2/EX2.30/Ex2_30.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 30 // read it as example 29 in the book on page 2.83
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 30");
@@ -15,21 +16,21 @@ i3=14.14; //in Amps, to find time when will it occur a
//solution (a)
w=2*%pi*f;
Im=rms*sqrt(2);
-disp(sprintf("The equation would be i=%.2f. sin(%f.t)", Im,w));
+disp(sprintf("The equation would be i=%f. sin(%f.t)", Im,w));
t0=(asin(1)/w); //time to reach maxima in +ve direction
i=Im*sin(w*t1);
disp("SOLUTION (a)");
-disp(sprintf("The amplitude at time %f sec is %.2f Amp", t1,i));
+disp(sprintf("The amplitude at time %f sec is %f Amp", t1,i));
//solution (b)
tx=t0+t2;
i2=Im*sin(w*tx);
disp("SOLUTION (b)");
-disp(sprintf("The amplitude at time %.5f sec is %.2f Amp", t2,i2));
+disp(sprintf("The amplitude at time %f sec is %f Amp", t2,i2));
//solution (c)
ty=(asin(i3/Im))/w;
t3=t0-ty; //since ty is the time starting from 0, the origin needs to be shifted to maxima
disp("SOLUTION (c)");
-disp(sprintf("The amplitude of %.2f Amp would be reached in %.5f Sec", i3,t3));
+disp(sprintf("The amplitude of %f Amp would be reached in %f Sec", i3,t3));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.31/Ex2_31.sce b/1445/CH2/EX2.31/Ex2_31.sce
index 870c20204..a462adcc7 100644
--- a/1445/CH2/EX2.31/Ex2_31.sce
+++ b/1445/CH2/EX2.31/Ex2_31.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 31 // read it as example 30 in the book on page 2.84
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 31");
@@ -11,10 +12,10 @@ disp("EXAMPLE 31");
//say
T=1; // 1 sec
Yav=(1/T)*integrate('(10+10*t/T)', 't', 0, 1);
-disp(sprintf("The average value of waveform is %.0f", Yav));
+disp(sprintf("The average value of waveform is %f", Yav));
//RMS value Yrms=(1/T).Integral(y^2.dt) from 0 to T
Yms=(1/T)*integrate('(10+10*t/T)^2', 't', 0, 1);
-disp(sprintf("The RMS value of waveform is %.2f", sqrt(Yms)));
+disp(sprintf("The RMS value of waveform is %f", sqrt(Yms)));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.32/Ex2_32.sce b/1445/CH2/EX2.32/Ex2_32.sce
index dcbdbaf4a..a48c72871 100644
--- a/1445/CH2/EX2.32/Ex2_32.sce
+++ b/1445/CH2/EX2.32/Ex2_32.sce
@@ -1,16 +1,15 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 32 // read it as example 31 in the book on page 2.85
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 32");
//VARIABLE INITIALIZATION
//function of the waveform is deduced to be i=Im.sinΘ
//SOLUTION
-//Average value of current is Iav=area of rectified wave/interval
-//Can be achieved by integration
//Iav=(1/2.π).Integral(ydΘ) from 0 to π, and π to 2.π is zero, interval is 2.π
-//need to assume values, let Im=1
+//
//say
Im=1; // in Amp
Iav=(1/(2*%pi))*integrate('(Im*sin(th))', 'th', 0, %pi);
@@ -19,7 +18,7 @@ Iav=(1/(2*%pi))*integrate('(Im*sin(th))', 'th', 0, %pi);
Ims=(1/(2*%pi))*integrate('(Im*sin(th))^2', 'th', 0, %pi);
//disp(sprintf("The RMS value of waveform is %f", sqrt(Ims)));
ff=sqrt(Ims)/Iav;
-disp(sprintf("The form factor of waveform is %.2f",ff));
+disp(sprintf("The form factor of waveform is %f",ff));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.33/Ex2_33.sce b/1445/CH2/EX2.33/Ex2_33.sce
index 3897c5fcc..132e1b1b0 100644
--- a/1445/CH2/EX2.33/Ex2_33.sce
+++ b/1445/CH2/EX2.33/Ex2_33.sce
@@ -1,9 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 33 // read it as example 32 in the book on page 2.86
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 33");
-//Three coils of resistance 20,30,40 ohms and inductance 0.5,0.3 and 0.2 H are connected in series
+
//VARIABLE INITIALIZATION
r1=20; //in Ω
r2=30; //
@@ -16,17 +17,17 @@ f=50; //Hz
//coils connected in series
//
//SOLUTION
-R=r1+r2+r3; //Total resistance
-L=l1+l2+l3; //Total inductance
-XL=2*%pi*f*L;//inductive reactance
+R=r1+r2+r3;
+L=l1+l2+l3;
+XL=2*%pi*f*L;
//impedence Z=sqrt(R*2 +XL^2)
Z=sqrt(R^2 +XL^2);
I=V/Z;
pf=R/Z;
pc=V*I*pf;
-disp(sprintf("The total current is %.3f Amp", I));
-disp(sprintf("The Power Factor is %.3f lagging", pf));
-disp(sprintf("The Power consumed in the circuit is %.1f W", pc));
+disp(sprintf("The total current is %f Amp", I));
+disp(sprintf("The Power Factor is %f lagging", pf));
+disp(sprintf("The Power consumed in the circuit is %f W", pc));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.34/Ex2_34.sce b/1445/CH2/EX2.34/Ex2_34.sce
index 560d4657d..aecd5a669 100644
--- a/1445/CH2/EX2.34/Ex2_34.sce
+++ b/1445/CH2/EX2.34/Ex2_34.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 34 // read it as example 33 in the book on page 2.87
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 34");
@@ -11,15 +12,15 @@ V=400; // volts
f=50; //Hz
//
//SOLUTION
-XC=1/(2*%pi*f*c); //capacitative reactance
+XC=1/(2*%pi*f*c);
//impedence Z=sqrt(R^2 +XL^2)
Z=sqrt(r^2 +XC^2);
I=V/Z;
pf=r/Z;
pc=V*I*pf;
-disp(sprintf("The total current is %.2f Amp", I));
-disp(sprintf("The Power Factor is %.3f leading", pf));
-disp(sprintf("The Power consumed in the circuit is %.0f W",pc));
+disp(sprintf("The total current is %f Amp", I));
+disp(sprintf("The Power Factor is %f leading", pf));
+disp(sprintf("The Power consumed in the circuit is %f W",pc));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.35/Ex2_35.sce b/1445/CH2/EX2.35/Ex2_35.sce
index 6d46b1c66..c205d94bf 100644
--- a/1445/CH2/EX2.35/Ex2_35.sce
+++ b/1445/CH2/EX2.35/Ex2_35.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 35 // read it as example 34 in the book on page 2.88
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 35");
@@ -19,27 +20,27 @@ XC=1/(2*%pi*f*C);
X=XL-XC;
Z=sqrt(R^2 +X^2);
disp("SOLUTION (a)");
-disp(sprintf("The total impedence is %d Ω", Z));
+disp(sprintf("The total impedence is %f Ω", Z));
I=V/Z;
disp("SOLUTION (b)");
-disp(sprintf("The total current is %.3f Amp", I));
+disp(sprintf("The total current is %f Amp", I));
Vr=I*R;
Vi=I*XL;
Vc=I*XC;
disp("SOLUTION (c)");
-disp(sprintf("The voltage across resistance is %.1f V",Vr));
-disp(sprintf("The voltage across inductance is %.1f V",Vi));
-disp(sprintf("The voltage across capacitance is %.1f V",Vc));
+disp(sprintf("The voltage across resistance is %f V",Vr));
+disp(sprintf("The voltage across inductance is %f V",Vi));
+disp(sprintf("The voltage across capacitance is %f V",Vc));
pf=R/Z;
pc=V*I*pf;
disp("SOLUTION (d)");
-disp(sprintf("The Power Factor is %.2f leading", pf));
+disp(sprintf("The Power Factor is %f leading", pf));
disp("SOLUTION (e)");
-disp(sprintf("The Power consumed in the circuit is %.0f W",pc));
+disp(sprintf("The Power consumed in the circuit is %f W",pc));
//XL=XC
f0=1/(2*%pi*sqrt(L*C));
disp("SOLUTION (f)");
-disp(sprintf("Resonance will occur at %.1f Hz",f0));//The text book answer is 39.8 which is apprently wrong
+disp(sprintf("Resonance will occur at %f Hz",f0));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.36/Ex2_36.sce b/1445/CH2/EX2.36/Ex2_36.sce
index 7ea401187..3ec7e82b8 100644
--- a/1445/CH2/EX2.36/Ex2_36.sce
+++ b/1445/CH2/EX2.36/Ex2_36.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 36 // read it as example 35 in the book on page 2.90
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 36");
@@ -17,20 +18,20 @@ f=50; //Hz
//conductance g, susceptance b
Z12=(R1^2 +XL^2); //squared impedance Z^2 for branch 1
Z22=(R1^2 +C^2); //squared impedance Z^2 for branch 2
-g1=R1/Z12; //conductance
+g1=R1/Z12;
g2=R2/Z22;
-b1=-XL/Z12; //susceptance
+b1=-XL/Z12;
b2=C/Z22;
-g=g1+g2; //Total conductance
-b=b1+b2; //Total susceptance
-Y=sqrt(g^2+b^2); //Total admittance
+g=g1+g2;
+b=b1+b2;
+Y=sqrt(g^2+b^2);
I=V*Y;
disp("SOLUTION (a)");
-disp(sprintf("The total current is %.1f Amp", I));//text book answer is 12.3 A
+disp(sprintf("The total current is %f Amp", I));
pf=g/Y;
disp("SOLUTION (b)");
-disp(sprintf("The power factor is %.3f", pf)); // text book answer is 0.985
+disp(sprintf("The power factor is %f", pf));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.37/Ex2_37.sce b/1445/CH2/EX2.37/Ex2_37.sce
index 692a599ba..e96f6f0fe 100644
--- a/1445/CH2/EX2.37/Ex2_37.sce
+++ b/1445/CH2/EX2.37/Ex2_37.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 37 // read it as example 36 in the book on page 2.93
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 37");
@@ -20,8 +21,8 @@ Z2=sqrt(R2^2 +C^2); //squared impedance Z^2 for branch 2
i1=V/Z1;
i2=V/Z2;
disp("SOLUTION (a)");
-disp(sprintf("The current in Branch 1 is %d Amp", i1));
-disp(sprintf("The current in Branch 2 is %d Amp", i2));
+disp(sprintf("The current in Branch 1 is %f Amp", i1));
+disp(sprintf("The current in Branch 2 is %f Amp", i2));
phi1=atan(XL/R1);
phi2=%pi/2; //atan(C/R2); //R2=0, output is infinity
Icos=i1*cos(phi1)+i2*cos(phi2); // phi in radians
@@ -29,11 +30,11 @@ Isin=-i1*sin(phi1)+i2*sin(phi2); // phi in radians
I=sqrt(Icos^2+Isin^2);
//
disp("SOLUTION (b)");
-disp(sprintf("The total current is %.2f Amp", I));
+disp(sprintf("The total current is %f Amp", I));
//
-pf=Icos/I; //power factor
+pf=Icos/I;
disp("SOLUTION (c)");
-disp(sprintf("The power factor is %.3f ", pf));
+disp(sprintf("The power factor is %f ", pf));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.38/Ex2_38.sce b/1445/CH2/EX2.38/Ex2_38.sce
index bce55490e..b429b6181 100644
--- a/1445/CH2/EX2.38/Ex2_38.sce
+++ b/1445/CH2/EX2.38/Ex2_38.sce
@@ -1,10 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 38 // read it as example 37 in the book on page 2.93
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 38");
-//
-//Solve exercise 36 by j method
+
//VARIABLE INITIALIZATION
z1=10+15*%i;
z2=12-20*%i;
@@ -15,10 +15,10 @@ magZ=sqrt(real(Z)^2+imag(Z)^2);
I=V/magZ;
pf=real(Z)/magZ;
disp("SOLUTION (a)");
-disp(sprintf("The current is %.1f Amp", I));
+disp(sprintf("The current is %f Amp", I));
//
disp("SOLUTION (b)");
-disp(sprintf("The Power factor is %.3f lagging", pf));
+disp(sprintf("The Power factor is %f", pf));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.39/Ex2_39.sce b/1445/CH2/EX2.39/Ex2_39.sce
index 6fe1c5555..2501085b9 100644
--- a/1445/CH2/EX2.39/Ex2_39.sce
+++ b/1445/CH2/EX2.39/Ex2_39.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 39 // read it as example 38 in the book on page 2.94
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 39");
@@ -12,14 +13,8 @@ V=200;
f=50;
E=V+0*%i; // representing as a vector
//invZ=1/z1+1/z2;
-//Z23=1/Z2+1/Z3 which is equivalent impedance of parallel circuits
-//Z13=Z1+Z23 which is symbolic expression of total impedance
-//
-//SOLUTION
Z23=z2*z3/(z2+z3);
Z=z1+Z23;
-disp("SOLUTION (a)");
-disp(sprintf("The symbolic expression of impedance %.1f+j%.1f Amp",real(Z),imag(Z)));
I=E/Z;
magI=sqrt(real(I)^2+imag(I)^2); //total current
phi=atan(-imag(I)/real(I)); //total phase
@@ -43,21 +38,21 @@ i2=e23/z3;
magi2=sqrt(real(i2)^2+imag(i2)^2);
phii2=atan(imag(i2)/real(i2));
disp("SOLUTION (b)");
-disp(sprintf("The current in Upper branch is %.1f Amp",magi1));
-disp(sprintf("The current in Lower branch is %.1f Amp",magi2));
-disp(sprintf("The Total current is %.2f Amp",magI));//the text book answer is wrongly shown as 328 A
+disp(sprintf("The current in Upper branch is %f Amp",magi1));
+disp(sprintf("The current in Lower branch is %f Amp",magi2));
+disp(sprintf("The Total current is %f Amp",magI));
//
pf=cos(phi); //
disp("SOLUTION (c)");
-disp(sprintf("The Power factor is %.3f", pf));
+disp(sprintf("The Power factor is %f", pf));
//
disp("SOLUTION (d)");
-disp(sprintf("The voltage across series branch is %.1f V", mage12));
-disp(sprintf("The voltage across parallel branch is %.0f V", mage23));
+disp(sprintf("The voltage across series branch is %f V", mage12));
+disp(sprintf("The voltage across parallel branch is %f V", mage23));
//
-tp=V*magI*pf; //total power
+tp=V*magI*pf;
disp("SOLUTION (e)");
-disp(sprintf("The total power absorbed in circuit is %d W", tp));// the text book answer is 6480 W
+disp(sprintf("The total power absorbed in circuit is %f W", tp));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.4/Ex2_4.sce b/1445/CH2/EX2.4/Ex2_4.sce
index 7045a8f28..d39171e75 100644
--- a/1445/CH2/EX2.4/Ex2_4.sce
+++ b/1445/CH2/EX2.4/Ex2_4.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 4
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 4");
@@ -9,13 +10,10 @@ v_m=10; //peak value of voltage in Volts
angle=60*(%pi/180); //delay angle in radians
//SOLUTION
-//average value Vav by integrating v over 0 to pi and dividing by pi
v_av=(integrate('v_m*sin(x)','x',angle,%pi))/(%pi);
-//effective value
v_rms=(integrate('(v_m*sin(x))^2','x',angle,%pi))/(%pi);
v_rms=sqrt(v_rms);
-disp(sprintf("Average value of full wave rectifier sine wave is %4.2f V",v_av));// truncade to two decimals
-// //text book answer is 4.78
-disp(sprintf("Effective value of full wave rectifier sine wave is %4.2f V",v_rms));//text book answer is 6.33
+disp(sprintf("Average value of full wave rectifier sine wave is %f V",v_av));
+disp(sprintf("Effective value of full wave rectifier sine wave is %f V",v_rms));
//END
diff --git a/1445/CH2/EX2.40/Ex2_40.sce b/1445/CH2/EX2.40/Ex2_40.sce
index e70e3d40c..6b07c1b9a 100644
--- a/1445/CH2/EX2.40/Ex2_40.sce
+++ b/1445/CH2/EX2.40/Ex2_40.sce
@@ -1,12 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 40 // read it as example 39 in the book on page 2.98
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 40");
-//
-//Given
-//V=100.sin(314.t+5) V
-//current is i=5.sin (314.t-40)
+
//VARIABLE INITIALIZATION
V=100; // max amplitude of wave
w=314; //angular speed
@@ -16,12 +14,12 @@ phiI=-40; //phase angle in current in deg
//
//SOLUTION
-phi=phiI-phiV; // phase difference
+phi=phiI-phiV;
pf=cos(phi*%pi/180); //convert to radians
p=(V/sqrt(2))*(I/sqrt(2))*pf;
//
-disp(sprintf("The Power factor is %.3f lagging", pf));
-disp(sprintf("The Power delivered is %.2f W", p));
+disp(sprintf("The Power factor is %f lagging", pf));
+disp(sprintf("The Power delivered is %f W", p));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.41/Ex2_41.sce b/1445/CH2/EX2.41/Ex2_41.sce
index 48ca080c2..5d1c14a4e 100644
--- a/1445/CH2/EX2.41/Ex2_41.sce
+++ b/1445/CH2/EX2.41/Ex2_41.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 41 // read it as example 40 in the book on page 2.99
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 41");
@@ -15,18 +16,18 @@ lampI=lampW/lampV;
lampR=lampW/lampI^2; //W=I^2.R
//
disp("SOLUTION (a)");
-disp(sprintf("The resistance of the lamp is t is %.2f Ohms", lampR));
+disp(sprintf("The resistance of the lamp is t is %f Ohms", lampR));
//
//in purely resistive / non inductive circuit,V=IR applies, and R=lampR+R
R=V/lampI-lampR;
-disp(sprintf("The value value of resistor to be placed in series with the lamp is %.0f Ohms", R));
+disp(sprintf("The value value of resistor to be placed in series with the lamp is %f Ohms", R));
//
//in case of inductance
//XL=2*%pi*f*L;
//V=Z.I where Z^2=R^2+XL^2
//L=sqrt((V^2/I^2-R^2)/2*%pi*f)
L=sqrt((V/lampI)^2-lampR^2)/(2*%pi*f);
-disp(sprintf("The inductive resistance to be placed is %.4f H",L));
+disp(sprintf("The inductive resistance to be placed is %f H",L));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.42/Ex2_42.sce b/1445/CH2/EX2.42/Ex2_42.sce
index 4d3681898..9fba797b9 100644
--- a/1445/CH2/EX2.42/Ex2_42.sce
+++ b/1445/CH2/EX2.42/Ex2_42.sce
@@ -1,37 +1,34 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 42 // read it as example 41 in the book on page 2.100
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 42");
//VARIABLE INITIALIZATION
I=10; // max amplitude of wave in Amp
-rms1=5; //rms values of current
+rms1=5;
rms2=7.5;
rms3=10;
-phi1=30; //phase angles
+phi1=30;
phi2=-60;
phi3=45;
-f=50; //frequency in Hz
+f=50; //Hz
w=2*%pi*f;
//
//SOLUTION
-//in case of sinosoidal wave, average value of alternating quantity = RMS values/1.11
-av1=rms1/1.11; //average values of 1,2,3 currents
+av1=rms1/1.11;
av2=rms2/1.11;
av3=rms3/1.11;
disp("SOLUTION (i)");
-disp(sprintf("The average value of 1st current is %.2f Amp", av1));
-disp(sprintf("The average value of 2nd current is %.2f Amp", av2));
-disp(sprintf("The average value of 3rd current is %.2f Amp", av3));
+disp(sprintf("The average value of 1st current is %f Amp", av1));
+disp(sprintf("The average value of 2nd current is %f Amp", av2));
+disp(sprintf("The average value of 3rd current is %f Amp", av3));
//
-//instantaneous values of current
-//i(t)=RMS.sqrt(2).sin (w.t+phi)
-//w=2.pi.f which for 50 Hz coes to 314
disp("SOLUTION (ii)");
-disp(sprintf("The instantaneous value of 1st current is %.2f sin(%.0f*t+%.0f) Amp", rms1*sqrt(2), w,phi1));
-disp(sprintf("The instantaneous value of 2nd current is %.2f sin(%.0f*t%.0f) Amp", rms2*sqrt(2), w,phi2));
-disp(sprintf("The instantaneous value of 3rd current is %.2f sin(%.0f*t+%.0f) Amp", rms3*sqrt(2), w,phi3));
+disp(sprintf("The instantaneous value of 1st current is %f sin(%f*t+%f) Amp", rms1*sqrt(2), w,phi1));
+disp(sprintf("The instantaneous value of 2nd current is %f sin(%f*t%f) Amp", rms2*sqrt(2), w,phi2));
+disp(sprintf("The instantaneous value of 3rd current is %f sin(%f*t+%f) Amp", rms3*sqrt(2), w,phi3));
//
//instantaneous values of current at t=100msec=0.1 sec
t=0.1;
@@ -39,9 +36,9 @@ i1=(rms1*sqrt(2))*(sin(w*t+phi1*%pi/180));
i2=(rms2*sqrt(2))*(sin(w*t+phi2*%pi/180));
i3=(rms3*sqrt(2))*(sin(w*t+phi3*%pi/180));
disp("SOLUTION (iv)");
-disp(sprintf("The instantaneous value of 1st current is %.3f Amp at %.3f Sec", i1, t));
-disp(sprintf("The instantaneous value of 2nd current is %.3f Amp at %.3f Sec", i2, t));
-disp(sprintf("The instantaneous value of 3rd current is %.3f Amp at %.3f Sec", i3, t));
+disp(sprintf("The instantaneous value of 1st current is %f Amp at %f Sec", i1, t));
+disp(sprintf("The instantaneous value of 2nd current is %f Amp at %f Sec", i2, t));
+disp(sprintf("The instantaneous value of 3rd current is %f Amp at %f Sec", i3, t));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.43/Ex2_43.sce b/1445/CH2/EX2.43/Ex2_43.sce
index b4e1f6b76..44090eb66 100644
--- a/1445/CH2/EX2.43/Ex2_43.sce
+++ b/1445/CH2/EX2.43/Ex2_43.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 43 // read it as example 42 in the book on page 2.102
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 43");
@@ -14,8 +15,8 @@ f=50; //Hz
Iav=(1/(2*%pi))*integrate('5+5*sin(th)', 'th',0,2*%pi);
Ims=(1/(2*%pi))*integrate('(5+5*sin(th))^2', 'th',0,2*%pi);
//
-disp(sprintf("The average value of resultant current is %.2f Amp", Iav));
-disp(sprintf("The RMS value of resultant current is %.2f Amp", sqrt(Ims)));
+disp(sprintf("The average value of resultant current is %f Amp", Iav));
+disp(sprintf("The RMS value of resultant current is %f Amp", sqrt(Ims)));
disp(" ");
//
//END
diff --git a/1445/CH2/EX2.44/Ex2_44.sce b/1445/CH2/EX2.44/Ex2_44.sce
index b01b90a84..bd68d8081 100644
--- a/1445/CH2/EX2.44/Ex2_44.sce
+++ b/1445/CH2/EX2.44/Ex2_44.sce
@@ -1,22 +1,20 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 44
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 44");
-//given
-//current in the resistor is given by i=4+5.sin wt - 3.cos 3.wt
//VARIABLE INITIALIZATION
-r=20; //resistance in Ohms
+r=20; //in Ohms
//SOLUTION
-//Power consumed by the resistor is P=P0+P1+P2
p0=(4^2)*r;
p1=((5/sqrt(2))^2)*r;
p2=((3/sqrt(2))^2)*r;
p=p0+p1+p2;
I=sqrt(p/r);
disp(sprintf("The power consumed by the resistor is %d W",p));
-disp(sprintf("The effective value of current is %.1f A",I));
+disp(sprintf("The effective value of current is %f A",I));
//END
diff --git a/1445/CH2/EX2.45/Ex2_45.sce b/1445/CH2/EX2.45/Ex2_45.sce
index 9122b5be2..06f1c14ca 100644
--- a/1445/CH2/EX2.45/Ex2_45.sce
+++ b/1445/CH2/EX2.45/Ex2_45.sce
@@ -1,36 +1,36 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 45
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 45");
//VARIABLE INITIALIZATION
-L=1.405; //inductance in Henry
-r=40; //resistance in Ohms
-C=20/(10^6); //capacitance in Farad
-v=100; //voltage in Volts
+L=1.405; //in Henry
+r=40; //in Ohms
+c=20/(10^6); //in Farad
+v=100; //in Volts
//SOLUTION
-//resonant frequency f=1/2.pi.sqrt (L.C)
-f0=1/(2*%pi*sqrt(L*C));
+f0=1/(2*%pi*sqrt(L*c));
disp(sprintf("The frequency at which the circuit resonates is %d Hz",f0));
I0=v/r;
-disp(sprintf("The current drawn from the supply is %.1f A",I0));
+disp(sprintf("The current drawn from the supply is %f A",I0));
xl0=2*%pi*f0*L;
z0=sqrt((r^2)+(xl0^2));
vl0=I0*z0;
-disp(sprintf("The voltage across the coil is %.1f V",vl0));
+disp(sprintf("The voltage across the coil is %f V",vl0));
-xc0=1/(2*%pi*f0*C);
-disp(sprintf("The capcitative reactance is %.1f Ω",xc0));
+xc0=1/(2*%pi*f0*c);
+disp(sprintf("The capcitative reactance is %f Ω",xc0));
Q0=(2*%pi*f0*L)/r;
-disp(sprintf("The quality factor is %.3f", Q0));
+disp(sprintf("The quality factor is %f", Q0));
bw=r/L;
-disp(sprintf("The bandwidth is %.3f Hz",bw));
+disp(sprintf("The bandwidth is %f Hz",bw));
//END
diff --git a/1445/CH2/EX2.46/Ex2_46.sce b/1445/CH2/EX2.46/Ex2_46.sce
index 8b73830ef..d8a4b6452 100644
--- a/1445/CH2/EX2.46/Ex2_46.sce
+++ b/1445/CH2/EX2.46/Ex2_46.sce
@@ -1,12 +1,13 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 46
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 46");
//VARIABLE INITIALIZATION
-I=120-(%i*(50)); //given, current in Amperes
-v=8+(%i*(2)); //given, voltage in Volts
+I=120-(%i*(50)); //in Amperes
+v=8+(%i*(2)); //in Volts
//SOLUTION
@@ -21,12 +22,12 @@ endfunction;
//solution (i)
z=v/I;
angle_z=angle_v-angle_I;
-disp(sprintf("(i) The impedance is %.4f Ω,<%.2f degrees",z,angle_z));
+disp(sprintf("(i) The impedance is %f Ω, %f degrees",z,angle_z));
//solution (ii)
phi=angle_z;
pf=cos(phi*(%pi/180));
-disp(sprintf("(ii) The power factor is %.3f (lagging)",pf));
+disp(sprintf("(ii) The power factor is %f (lagging)",pf));
//solution (iii)
s=v*I;
@@ -37,7 +38,7 @@ x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
y=mag*sin(angle*(%pi/180));
endfunction;
[p,q]=pol2rect(s,angle_s);
-disp(sprintf("(iii) The power consumed is %.2f W",p));
-disp(sprintf(" The reactive power is %.2f VAR",q));
+disp(sprintf("(iii) The power consumed is %f W",p));
+disp(sprintf(" The reactive power is %f VAR",q));
//END
diff --git a/1445/CH2/EX2.47/Ex2_47.sce b/1445/CH2/EX2.47/Ex2_47.sce
index 1e5f6185b..6bffacc05 100644
--- a/1445/CH2/EX2.47/Ex2_47.sce
+++ b/1445/CH2/EX2.47/Ex2_47.sce
@@ -1,11 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 47
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 47");
-//given
-//current in the circuit is 5-j.10 A
//VARIABLE INITIALIZATION
r=10; //in Ohms
xl=8.66; //in Ohms
@@ -24,16 +23,14 @@ endfunction;
//solution(i)
v=I*z;
angle_v=angle_I+angle_z;
-disp(sprintf("(i) The applied voltage is %.1f V, %.2f degrees",v,angle_v));
+disp(sprintf("(i) The applied voltage is %f V, %f degrees",v,angle_v));
//solution (ii)
phi=angle_I-angle_v;
pf=cos(phi*(%pi/180));
-disp(sprintf("(ii) The power factor is %.3f (lagging)",pf));
+disp(sprintf("(ii) The power factor is %f (lagging)",pf));
//solution(iii)
-//S=phasor voltageXconjugate of phasor current
-//Converting v and I from polar to rectangular form
s=v*I;
angle_s=angle_v-angle_I;
//function to convert from polar form to rectangular form
@@ -42,7 +39,7 @@ x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
y=mag*sin(angle*(%pi/180));
endfunction;
[p,q]=pol2rect(s,angle_s);
-disp(sprintf("(iii) The active power is %.2f W",p));
-disp(sprintf(" The reactive power is %.2f VAR",q));
+disp(sprintf("(iii) The active power is %f W",p));
+disp(sprintf(" The reactive power is %f VAR",q));
//END
diff --git a/1445/CH2/EX2.48/Ex2_48.sce b/1445/CH2/EX2.48/Ex2_48.sce
index 9e93c267b..57c2b0e7b 100644
--- a/1445/CH2/EX2.48/Ex2_48.sce
+++ b/1445/CH2/EX2.48/Ex2_48.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 48
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 48");
@@ -10,7 +11,6 @@ pf2=0.6; //power factor of 2nd circuit
z=1; //this is an assumption
//SOLUTION
-//convert polar to rectangular form
angle1=acos(pf1)*(180/%pi); //in degrees
angle2=acos(pf2)*(180/%pi); //in degrees
//function to convert from polar form to rectangular form
@@ -32,6 +32,6 @@ endfunction;
[z,angle]=rect2pol(z_x,z_y);
angle_z=nr-angle;
pf=cos(angle_z*(%pi/180));
-disp(sprintf("The power factor of the combination is %.3f",pf));
+disp(sprintf("The power factor of the combination is %f",pf));
//END
diff --git a/1445/CH2/EX2.49/Ex2_49.sce b/1445/CH2/EX2.49/Ex2_49.sce
index a1cd3ec1d..916d4afa2 100644
--- a/1445/CH2/EX2.49/Ex2_49.sce
+++ b/1445/CH2/EX2.49/Ex2_49.sce
@@ -1,13 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 49
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 49");
-//Given
-//voltage V=200 <30
-//current 20 <60 and 40 <-30
-
//VARIABLE INITIALIZATION
v=200; //in Volts
angle_v=30; //in degrees
@@ -29,7 +26,7 @@ s1=v*I1;
angle_s1=-angle_v+angle_I1;
disp(sprintf("The apparent power in 1st branch is %d kVA",s1/1000));
[s1_x,s1_y]=pol2rect(s1,angle_s1);
-disp(sprintf("The true power in 1st branch is %.3f kW",s1_x/1000));
+disp(sprintf("The true power in 1st branch is %f kW",s1_x/1000));
disp(" ");
@@ -38,7 +35,7 @@ angle_s2=angle_v-angle_I2;
disp(sprintf("The apparent power in 2nd branch is %d kVA",s2/1000));
[s2_x,s2_y]=pol2rect(s2,angle_s2);
disp(sprintf("The true power in 2nd branch is %d kW",s2_x/1000));
-I=(I1_x+I2_x)+(%i*(I1_y+I2_y)); //disp(I);
+I=(I1_x+I2_x)+(%i*(I1_y+I2_y)); disp(I);
//function to convert from rectangular form to polar form
function [I,angle]=rect2pol(x,y);
@@ -46,12 +43,12 @@ I=sqrt((x^2)+(y^2));
angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
[I,angle]=rect2pol(real(I),imag(I));
-//disp(I);
+disp(I);
s=v*I;
angle_s=angle_v-angle;
-disp(sprintf("The apparent power in the main circuit is %.3f kVA",s/1000));
+disp(sprintf("The apparent power in the main circuit is %f kVA",s/1000));
[p,q]=pol2rect(s,angle_s);
-disp(sprintf("The true power in the main circuit is %.3f kW",p/1000));
+disp(sprintf("The true power in the main circuit is %f kW",p/1000));
//END
diff --git a/1445/CH2/EX2.5/Ex2_5.sce b/1445/CH2/EX2.5/Ex2_5.sce
index ce799fefc..4fbe07d32 100644
--- a/1445/CH2/EX2.5/Ex2_5.sce
+++ b/1445/CH2/EX2.5/Ex2_5.sce
@@ -1,30 +1,28 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 5
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 5");
//VARIABLE INITIALIZATION
-I1=0.75; //current in loop 1 in Amperes
-v=240; //voltage supply in Volts
-f=50; //frequency in Hertz
-p=80; //power consumed by the lamp in Watts
+I1=0.75; //in Amperes
+v=240; //in Volts
+f=50; //in Hertz
+p=80; //in Watts
//SOLUTION
-//V.I1.cos(Φ1) = P
-res=p/v; //I1cos(Φ1)
-pf1=res/I1; //1st power factor = cos(Φ1)
+res=p/v;
+pf1=res/I1; //1st power factor = cos(Φ1)
phi1=acos(pf1);
-res1=tan(phi1); //result1 = tan(Φ1)
-w=2*%pi*f; //w=2.pi.f
+res1=tan(phi1); //result1 = tan(Φ1)
+w=2*%pi*f;
//solution (a)
-//Given power factor = unity means cos(Φ2)=1
-//hence Φ2=0, tan (Φ2)=0
-res2=0; //result2 = tan(Φ2) as Φ2=0
+res2=0; //result2 = tan(Φ2)
Ic1=res*(res1-res2);
c1=Ic1/(v*w);
-disp(sprintf("(a) When power factor is unity, the value of capacitance is %4.2f μF",c1*(10^6))); // in mF
+disp(sprintf("(a) When power factor is unity, the value of capacitance is %f μF",c1*(10^6)));
//solution (b)
pf2=0.95; //given
@@ -32,7 +30,7 @@ phi2=acos(pf2);
res2=tan(phi2);
Ic2=res*(res1-res2);
c2=Ic2/(v*w);
-disp(sprintf("(b) When power factor is 0.95(lagging), the value of capacitance is %5.3f μF",c2*(10^6))); //textbook answer is 7.458 mF
+disp(sprintf("(b) When power factor is 0.95(lagging), the value of capacitance is %f μF",c2*(10^6)));
//END
diff --git a/1445/CH2/EX2.50/Ex2_50.sce b/1445/CH2/EX2.50/Ex2_50.sce
index 1c1aa59a3..e46eac363 100644
--- a/1445/CH2/EX2.50/Ex2_50.sce
+++ b/1445/CH2/EX2.50/Ex2_50.sce
@@ -1,14 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 50
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 50");
-//Given
-//three impedances
-//6+j5 ohm, 8-j6 ohm and 8+j10 ohm
-//Circuit in parallel
-//
//VARIABLE INITIALIZATION
z1=6+(%i*5); //impedance in Ohms
z2=8-(%i*6); //impedance in Ohms
@@ -16,10 +12,10 @@ z3=8+(%i*10); //impedance in Ohms
I=20; //in Amperes
//SOLUTION
-Y1=1/z1; // Admittance
+Y1=1/z1;
Y2=1/z2;
Y3=1/z3;
-Y=Y1+Y2+Y3; // Total admittance
+Y=Y1+Y2+Y3;
//function to convert from rectangular form to polar form
function [Y,angle]=rect2pol(x,y);
Y=sqrt((x^2)+(y^2));
@@ -38,11 +34,8 @@ angle_I2=angle_v-angle2;
I3=v/z3;
angle_I3=angle_v-angle3;
disp("The current in each branch in polar form is-");
-disp(sprintf(" %.3f A, %.2f degrees",I1,angle_I1));
-disp(sprintf(" %.3f A, %.2f degrees",I2,angle_I2));
-disp(sprintf(" %.3f A, %.2f degrees",I3,angle_I3));
-//Total current
-I=I1+I2+I3;
-disp(sprintf("The total current is %.3f A",I)); //Answer not clear in the book
-//
+disp(sprintf(" %f A, %f degrees",I1,angle_I1));
+disp(sprintf(" %f A, %f degrees",I2,angle_I2));
+disp(sprintf(" %f A, %f degrees",I3,angle_I3));
+
//END
diff --git a/1445/CH2/EX2.51/Ex2_51.sce b/1445/CH2/EX2.51/Ex2_51.sce
index 85f7d494b..90e9c5273 100644
--- a/1445/CH2/EX2.51/Ex2_51.sce
+++ b/1445/CH2/EX2.51/Ex2_51.sce
@@ -1,30 +1,25 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 51
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 51");
-//
-//Given
-// admittance of branches are:
-//Y1=0.4+j0.6
-//Y2=0.1+j0.4
-//Y3=0.06+j0.23
-//
+
//VARIABLE INITIALIZATION
Y1=0.4+(%i*0.6); //admittance of 1st branch in Siemens
Y2=0.1+(%i*0.4); //admittance of 2nd branch in Siemens
Y3=0.06+(%i*0.23); //admittance of 3rd branch in Siemens
//SOLUTION
-Y=Y1+Y2+Y3; // total admittance
+Y=Y1+Y2+Y3;
//function to convert from rectangular form to polar form
function [Y,angle]=rect2pol(x,y);
Y=sqrt((x^2)+(y^2));
angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
-[Y,angle]=rect2pol(real(Y),imag(Y));
-disp(sprintf("The total admittance of the circuit is %.3f S, %.2f degrees",Y,angle));
-z=1/Y;
-disp(sprintf("The impedance of the circuit is %.3f Ω, %.2f degrees",z,-angle));
-//
+[Y1,angle]=rect2pol(real(Y),imag(Y));
+disp(sprintf("The total admittance of the circuit is %f S, %f degrees",Y1,angle));
+z=1/Y1;
+disp(sprintf("The impedance of the circuit is %f Ω, %f degrees",z,-angle));
+
//END
diff --git a/1445/CH2/EX2.52/Ex2_52.sce b/1445/CH2/EX2.52/Ex2_52.sce
index d0d64ad6f..f3b5d6d93 100644
--- a/1445/CH2/EX2.52/Ex2_52.sce
+++ b/1445/CH2/EX2.52/Ex2_52.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 52
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 52");
@@ -49,29 +50,29 @@ r_tot=req+rp;
x_tot=xeq+xp;
[z_tot,angle_tot]=rect2pol(r_tot,x_tot);
Z=r_tot+x_tot*%i; //complex representation
-disp(sprintf("(a) The total impedance is %.3f Ω, %.2f degrees",z_tot,angle_tot));
+disp(sprintf("(a) The total impedance is %f Ω, %f degrees",z_tot,angle_tot));
//solution (b)
I=v/Z; //complex division
angle_I=-angle_tot;
[I_x,I_y]=pol2rect(I,angle_I);
-disp(sprintf("(b) The total currrent is (%.3f-j%.2f) A",real(I),imag(I)));
+disp(sprintf("(b) The total currrent is (%f-j%f) A",real(I),imag(I)));
//solution (c)
//Voltage drop across Z3
Vab=I*Z3;
-disp(sprintf(" The Voltage between AB is (%.3f-j%.2f) V",real(Vab),imag(Vab)));
+disp(sprintf(" The Voltage between AB is (%f-j%f) A",real(Vab),imag(Vab)));
//since we know that V=Vab+Vbc
Vbc=v-Vab;
-disp(sprintf(" The Voltage between BC is (%.3f-j%.2f) V",real(Vbc),imag(Vbc)));
+disp(sprintf(" The Voltage between BC is (%f-j%f) A",real(Vbc),imag(Vbc)));
I1=Vbc/Z1; //Branch 1 current
I2=Vbc/Z2; //branch 2 current
//I3=I, main branch current
[mag1,angle1]=rect2pol(real(I1),imag(I1));
[mag2,angle2]=rect2pol(real(I2),imag(I2));
-disp(sprintf("(c) Current in branch 1 is %.3f,< %.2f degrees A",mag1,angle1));
-disp(sprintf(" The currrent in branch 1 is (%.3f-j%.2f) A",real(I1),imag(I1)));
-disp(sprintf(" The current in branch 2 is %.3f A,<%.2f degrees A",mag2,angle2));
-disp(sprintf(" The currrent in branch 2 is (%.3f-j%.2f) A",real(I2),imag(I2)));
+disp(sprintf("(c) Current in branch 1 is %f A, %f degrees",mag1,angle1));
+disp(sprintf(" The currrent in branch 1 is (%f-j%f) A",real(I1),imag(I1)));
+disp(sprintf(" The current in branch 2 is %f A, %f degrees",mag2,angle2));
+disp(sprintf(" The currrent in branch 2 is (%f-j%f) A",real(I2),imag(I2)));
//END
diff --git a/1445/CH2/EX2.53/Ex2_53.sce b/1445/CH2/EX2.53/Ex2_53.sce
index ccdef8fb0..f18db0590 100644
--- a/1445/CH2/EX2.53/Ex2_53.sce
+++ b/1445/CH2/EX2.53/Ex2_53.sce
@@ -1,13 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 53 Read Example 52 of the Text Book
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 53");
-//Given
-//Voltage 230 <30 V
-//Current in branches 20 <60 A & 40<-30 A
-//
//VARIABLE INITIALIZATION
v=230; //in Volts
angle_v=30; //in degrees
@@ -37,11 +34,11 @@ endfunction;
//solution (i)
z=v/I;
angle_z=angle_v-angle;
-disp(sprintf("(i) The total impedance of the circuit is %.2f Ω, %.2f degrees",z,angle_z));
+disp(sprintf("(i) The total impedance of the circuit is %f Ω, %f degrees",z,angle_z));
//solution (ii)
//disp(sprintf("The value of I is %f and angle is %f",I, angle_z));
-pf=cos(angle_z*(%pi/180)); //power factor
-p=v*I*pf; // Power taken
-disp(sprintf("(ii) The power taken is %.0f W",p));
+pf=cos(angle_z*(%pi/180));
+p=v*I*pf;
+disp(sprintf("(ii) The power taken is %f W",p));
//END
diff --git a/1445/CH2/EX2.54/Ex2_54.sce b/1445/CH2/EX2.54/Ex2_54.sce
index 4b6e43d75..766e3ffeb 100644
--- a/1445/CH2/EX2.54/Ex2_54.sce
+++ b/1445/CH2/EX2.54/Ex2_54.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 54 Read example 53 of the Book
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 54");
@@ -10,13 +11,7 @@ R=15; //in Ohms
L=260/1000; //in Henry
//SOLUTION
-//resonant Frequency is given by
-//fr= 1/ 2.pi.(sqrt (1/LC - R^2/L^2))
-//Q-factor is given by:
-//Qf=2.pi.fr.L/R
-//dynamic impedance is given by
-//Zr=L/C.R
-//
+
//solution (i)
f_r=(1/(2*%pi))*sqrt((1/(L*C)-(R^2/L^2)));
f_r=round(f_r); //to round off the value
@@ -24,10 +19,10 @@ disp(sprintf("(i) The resonant frequency is %d Hz",f_r));
//solution (ii)
q_factor=(2*%pi*f_r*L)/R;
-disp(sprintf("(ii) The Q-factor of the circuit is %.2f",q_factor));
+disp(sprintf("(ii) The Q-factor of the circuit is %f",q_factor));
//solution (iii)
Z_r=L/(C*R);
-disp(sprintf("(iii) The dynamic impedance of the circuit is %.0f Ω",Z_r));
+disp(sprintf("(iii) The dynamic impedance of the circuit is %f Ω",Z_r));
//END
diff --git a/1445/CH2/EX2.6/Ex2_6.sce b/1445/CH2/EX2.6/Ex2_6.sce
index 378b29151..61aedd2de 100644
--- a/1445/CH2/EX2.6/Ex2_6.sce
+++ b/1445/CH2/EX2.6/Ex2_6.sce
@@ -1,6 +1,7 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 6
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 6");
@@ -12,18 +13,17 @@ v=230; //in Volts
pf2=0.9; //power factor(lagging)
//SOLUTION
-//V.I1.cos(Φ1) = P
phi1=acos(pf1);
res1=tan(phi1); //result1 = tan(Φ1)
phi2=acos(pf2);
res2=tan(phi2); //result2 = tan(Φ2)
Ic=I1*pf1*(res1-res2);
-w=2*%pi*f; //w=2.pi.f
+w=2*%pi*f;
c=Ic/(v*w);
-disp(sprintf("The value of capacitance is %5.2f μF",c*(10^6)));//text book answer is 82.53 mF
-Qc=v*Ic; // reactive power in kVAr
-disp(sprintf("The reactive power is %6.4f kVAR",Qc/(10^3)));//text book answer is 1.3716
-I2=I1*(pf1/pf2); //I1.cos(Φ1) = I2.cos(Φ2)
-disp(sprintf("The new supply current is %5.2f A",I2));
+disp(sprintf("The value of capacitance is %f μF",c*(10^6)));
+Qc=v*Ic;
+disp(sprintf("The reactive power is %f kVAR",Qc/(10^3)));
+I2=I1*(pf1/pf2);
+disp(sprintf("The new supply current is %f A",I2));
//END
diff --git a/1445/CH2/EX2.7/Ex2_7.sce b/1445/CH2/EX2.7/Ex2_7.sce
index 97183894a..a2b70e663 100644
--- a/1445/CH2/EX2.7/Ex2_7.sce
+++ b/1445/CH2/EX2.7/Ex2_7.sce
@@ -1,24 +1,25 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 7
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 7");
//VARIABLE INITIALIZATION
-s1=300; //apparent power absorbed by the plant in kVA
+s1=300; //apparent power in kVA
pf1=0.65; //power factor(lagging)
pf2=0.85; //power factor(lagging)
//SOLUTION
//solution (a)
-p=s1*pf1; //active power P=S.cos(Φ)
-q1=sqrt((s1^2)-(p^2)); //Q=sqrt(S^2-P^2) in kVAr
-disp(sprintf("(a) To bring the power factor to unity, the capacitor bank should have a capacity of %3.0f kVAR",q1));
+p=s1*pf1; //active power
+q1=sqrt((s1^2)-(p^2));
+disp(sprintf("(a) To bring the power factor to unity, the capacitor bank should have a capacity of %f kVAR",q1));
//solution (b)
-s2=p/pf2; //since P=S.cos(Φ)
-q2=sqrt((s2^2)-(p^2)); //Q=sqrt(S^2-P^2) in kVAr
-disp(sprintf("(b) To bring the power factor to 85%% lagging, the capacitor bank should have a capacity of %3.0f kVAR",q2));
+s2=p/pf2;
+q2=sqrt((s2^2)-(p^2));
+disp(sprintf("(b) To bring the power factor to 85%% lagging, the capacitor bank should have a capacity of %f kVAR",q2));
//END
diff --git a/1445/CH2/EX2.8/Ex2_8.sce b/1445/CH2/EX2.8/Ex2_8.sce
index adfd7b625..4c5492c4e 100644
--- a/1445/CH2/EX2.8/Ex2_8.sce
+++ b/1445/CH2/EX2.8/Ex2_8.sce
@@ -1,31 +1,22 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 8
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 8");
-//Given
-//V=300.cos(314.t+20) volts
-//i=15.cos(314.t-10) Amp
-//
//VARIABLE INITIALIZATION
-//V=300.cos(314.t+20) volts
-//V=300.sin(314.t+110) volts as cos(theta)=sin(theta+90)
-//i=15.cos(314.t-10) Amp
-//i=15.sin(314.t+80) Amp as cos(theta)=sin(theta+90)
-//Now
-V=300/sqrt(2); //in Volts
-angle_V=110; //in degrees
+v=300/sqrt(2); //in Volts
+angle_v=110; //in degrees
I=15/sqrt(2); //in Amperes
angle_I=80; //in degrees
//SOLUTION
-Z=V/I; //circuit impedance
-angle_Z=angle_V-angle_I; //angle between current and voltage
+Z=v/I;
+angle_Z=angle_v-angle_I;
disp(sprintf("The circuit impedance is %d Ω",Z));
disp(sprintf("The phase angle is %d degrees",angle_Z));
-//Pav=Vm*Im.cos (phi) in RL circuit
-Pav=V*I*cos(angle_Z*(%pi/180)); //to convert angle_z from degrees to radians
-disp(sprintf("The average power drawn is %7.2f W",Pav));// textboo answer is 1949.85 w
+p_av=v*I*cos(angle_Z*(%pi/180)); //to convert angle_z from degrees to radians
+disp(sprintf("The average power drawn is %f W",p_av));
//END
diff --git a/1445/CH2/EX2.9/Ex2_9.sce b/1445/CH2/EX2.9/Ex2_9.sce
index 0fd9a5c6d..f2779616b 100644
--- a/1445/CH2/EX2.9/Ex2_9.sce
+++ b/1445/CH2/EX2.9/Ex2_9.sce
@@ -1,26 +1,20 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 9
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 9");
-
//VARIABLE INITIALIZATION
-V=120; //voltage of lamp in Volts
-P=100; //in Watts
-Vsupp=220; //supply voltage in Volts
-f=50; //in Hertz
-//Equations to be used
-//Z=R+jXl
-//Vsupply=V+jVl=sqrt(V^2+Vl^2)
-//Hence Vl=sqrt(Vsupply^2-V^2)
-//P=VI
-//Xl=2.pi.f.L
+v1=120; //voltage of lamp in Volts
+p=100; //in Watts
+v2=220; //supply voltage in Volts
+f=50; //in Hertz
//SOLUTION
-Vl=sqrt((Vsupp^2)-(V^2));
-Xl=(V*Vl)/P;
-L=Xl/(2*%pi*f); //inductance
-disp(sprintf("The pure inductance should have a value of %6.4f H",L)); //text book answer is 0.7046 H
+vl=sqrt((v2^2)-(v1^2));
+xl=(v1*vl)/p;
+L=xl/(2*%pi*f);
+disp(sprintf("The pure inductance should have a value of %f H",L));
//END