summaryrefslogtreecommitdiff
path: root/1445/CH2/EX2.15/Ex2_15.sce
blob: 02d922e8ab4a1c79cc204813ab5f2fe17531bd27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 15

clc;
disp("CHAPTER 2");
disp("EXAMPLE 15");

//VARIABLE INITIALIZATION
I=2;                                //in Amperes
angle_I=60;                         //in degrees
v1=200;                             //in Volts
f1=50;                              //in Hertz
v2=100;                             //in Volts
f2=25;                              //in Hertz

//SOLUTION

//solution (i): when supply is 200V and frequency is 50 Hz
z1=v1/I;  
disp(sprintf("(i) When the supply is 200V and frequency is 50 Hz:"));             
disp(sprintf("The impedance is %d Ω, %d degrees",z1,angle_I));
function [x,y]=pol2rect(mag,angle);  //function 'pol2rect()' converts impedance in polar form to rectangular form
x=mag*cos(angle*(%pi/180));          //to convert the angle from degrees to radians
y=mag*sin(angle*(%pi/180));
endfunction;
[r,x1]=pol2rect(z1,angle_I);
disp(sprintf("The resistance is %d Ω",r));
L=x1/(2*%pi*f1);
disp(sprintf("The inductance is %f H",L));

//solution (ii): when supply is 100V and frequency is 25 Hz
x2=2*%pi*f2*L;
z2=sqrt((r^2)+(x2^2)); 
angle=atan(x2/r); 
I1=v2/z2;
p=v2*I1*cos(-angle);
disp(sprintf("(ii) When supply is 100V and frequency is 25 Hz:"));
disp(sprintf("The power consumed is %f W",p));

//Answer may be slightly different due to precision of floating point numbers

//END