summaryrefslogtreecommitdiff
path: root/1309/CH8/EX8.1
diff options
context:
space:
mode:
Diffstat (limited to '1309/CH8/EX8.1')
-rwxr-xr-x1309/CH8/EX8.1/Result8_1.pdfbin0 -> 90656 bytes
-rwxr-xr-x1309/CH8/EX8.1/ch8_1.sce26
2 files changed, 26 insertions, 0 deletions
diff --git a/1309/CH8/EX8.1/Result8_1.pdf b/1309/CH8/EX8.1/Result8_1.pdf
new file mode 100755
index 000000000..8b9737dc4
--- /dev/null
+++ b/1309/CH8/EX8.1/Result8_1.pdf
Binary files differ
diff --git a/1309/CH8/EX8.1/ch8_1.sce b/1309/CH8/EX8.1/ch8_1.sce
new file mode 100755
index 000000000..bf1f1f58b
--- /dev/null
+++ b/1309/CH8/EX8.1/ch8_1.sce
@@ -0,0 +1,26 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example1\n\n\n");
+// Determination of the heat transferred to the wall.
+// air properties at (400+120)/2 =260 degree F = 720 degree R from Appendix Table D1
+rou= 0.0551; // density in Ibm/cu.ft
+cp=0.2420; // specific heat BTU/(lbm-degree Rankine)
+v= 27.88e-5; // viscosity in sq.ft/s
+kf = 0.01944 ; // thermal conductivity in BTU/(hr.ft.degree Rankine)
+a = 1.457; // diffusivity in sq.ft/hr
+Pr = 0.689; // Prandtl Number
+T_inf=120+460; // wall temperature in degree R
+Tw=400+460; // inside wall temperature in degree R
+Beta=1/T_inf;
+printf("\nThe volumetric thermal expansion coefficient is %.5f/degree R",Beta);
+gc=32.2;
+L=1; // length of wall in ft
+W=2; // width in ft
+Gr=(gc*Beta*(Tw-T_inf)*L^3)/v^2;// Grashof Number
+printf("\nThe Grashof number is %.2e",Gr);
+temperature_slope=0.505; //value of temperature slope from table 8.1 corresponding to Pr=.72
+hL=(kf/L)*(4/3)*(Gr/4)^(1/4)*temperature_slope; // The convection coefficient in BTU/(hr.ft^2.degree R)
+printf("\nThe convection coefficient is %.2f BTU/(hr.sq.ft.degree R)",hL);
+A=L*W; // cross sectional area in sq.ft
+qw=hL*A*(Tw-T_inf);
+printf("\nThe heat transferred is %d BTU/hr",qw);