diff options
Diffstat (limited to '1309/CH8')
-rwxr-xr-x | 1309/CH8/EX8.1/Result8_1.pdf | bin | 0 -> 90656 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.1/ch8_1.sce | 26 | ||||
-rwxr-xr-x | 1309/CH8/EX8.2/Result8_2.pdf | bin | 0 -> 94280 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.2/ch8_2.sce | 47 | ||||
-rwxr-xr-x | 1309/CH8/EX8.3/Result8_3.pdf | bin | 0 -> 91837 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.3/ch8_3.sce | 23 | ||||
-rwxr-xr-x | 1309/CH8/EX8.4/Result8_4.pdf | bin | 0 -> 93740 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.4/ch8_4.sce | 41 | ||||
-rwxr-xr-x | 1309/CH8/EX8.5/Result8_5.pdf | bin | 0 -> 92666 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.5/ch8_5.sce | 38 | ||||
-rwxr-xr-x | 1309/CH8/EX8.6/Result8_6.pdf | bin | 0 -> 93032 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.6/ch8_6.sce | 33 | ||||
-rwxr-xr-x | 1309/CH8/EX8.7/Result8_7.pdf | bin | 0 -> 92063 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.7/ch8_7.sce | 23 | ||||
-rwxr-xr-x | 1309/CH8/EX8.8/Result8_8.pdf | bin | 0 -> 90933 bytes | |||
-rwxr-xr-x | 1309/CH8/EX8.8/ch8_8.sce | 35 |
16 files changed, 266 insertions, 0 deletions
diff --git a/1309/CH8/EX8.1/Result8_1.pdf b/1309/CH8/EX8.1/Result8_1.pdf Binary files differnew file mode 100755 index 000000000..8b9737dc4 --- /dev/null +++ b/1309/CH8/EX8.1/Result8_1.pdf diff --git a/1309/CH8/EX8.1/ch8_1.sce b/1309/CH8/EX8.1/ch8_1.sce new file mode 100755 index 000000000..bf1f1f58b --- /dev/null +++ b/1309/CH8/EX8.1/ch8_1.sce @@ -0,0 +1,26 @@ +clc; +clear; +printf("\t\t\tChapter8_example1\n\n\n"); +// Determination of the heat transferred to the wall. +// air properties at (400+120)/2 =260 degree F = 720 degree R from Appendix Table D1 +rou= 0.0551; // density in Ibm/cu.ft +cp=0.2420; // specific heat BTU/(lbm-degree Rankine) +v= 27.88e-5; // viscosity in sq.ft/s +kf = 0.01944 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) +a = 1.457; // diffusivity in sq.ft/hr +Pr = 0.689; // Prandtl Number +T_inf=120+460; // wall temperature in degree R +Tw=400+460; // inside wall temperature in degree R +Beta=1/T_inf; +printf("\nThe volumetric thermal expansion coefficient is %.5f/degree R",Beta); +gc=32.2; +L=1; // length of wall in ft +W=2; // width in ft +Gr=(gc*Beta*(Tw-T_inf)*L^3)/v^2;// Grashof Number +printf("\nThe Grashof number is %.2e",Gr); +temperature_slope=0.505; //value of temperature slope from table 8.1 corresponding to Pr=.72 +hL=(kf/L)*(4/3)*(Gr/4)^(1/4)*temperature_slope; // The convection coefficient in BTU/(hr.ft^2.degree R) +printf("\nThe convection coefficient is %.2f BTU/(hr.sq.ft.degree R)",hL); +A=L*W; // cross sectional area in sq.ft +qw=hL*A*(Tw-T_inf); +printf("\nThe heat transferred is %d BTU/hr",qw); diff --git a/1309/CH8/EX8.2/Result8_2.pdf b/1309/CH8/EX8.2/Result8_2.pdf Binary files differnew file mode 100755 index 000000000..24bb63631 --- /dev/null +++ b/1309/CH8/EX8.2/Result8_2.pdf diff --git a/1309/CH8/EX8.2/ch8_2.sce b/1309/CH8/EX8.2/ch8_2.sce new file mode 100755 index 000000000..97c932aba --- /dev/null +++ b/1309/CH8/EX8.2/ch8_2.sce @@ -0,0 +1,47 @@ +clc; +clear; +printf("\t\t\tChapter8_example2\n\n\n"); +// Determination of heat lost through the glass per unit area +// properties of air at 22 + 273 = 295 K = 300 K(approx) and 273 K from appendix table D1 +rou= [1.177 1.295]; // density in kg/cu.m +cp= [1005 1005.5]; // specific heat in J/(kg*K) +v= [15.68e-6 12.59e-6]; // viscosity in sq.m/s +Pr = [0.708 0.713]; // Prandtl Number +kf= [0.02624 0.02426]; // thermal conductivity in W/(m.K) +a = [0.22160e-4 0.17661e-4]; // diffusivity in sq.m/s +T_inf=[22 0]// inside and outside temperature in K +Beta=[1/(T_inf(1)+273) 1/(T_inf(2)+273)]; // volumetric thermal expansion coefficient at 295 K and 273 K +printf("\nThe volumetric thermal expansion coefficients at 295 K and 273 K are respectively %.5f and %.5f",Beta(1),Beta(2)); +g=9.81; +t=0.005; // thickness of glass +L=0.60; // window length in m +k=0.81; // thermal conductivity of glass from appendix table B3 +// for first guess +Tw=[18 4]; +printf("\nFor first guess, the results are:\n"); +for i=1:2 + Ra(i)=(g*Beta(i)*(Tw(i)-T_inf(i))*L^3)/(v(i)*a(i)); + hL(i)=(kf(i)/L)*(0.68+((0.67*(abs(Ra(i)))^(1/4))/(1+(0.492/Pr(i))^(9/16))^(4/9))); +end +printf("\nThe Rayleigh Numbers are %.3e and %.3e",-Ra(1),Ra(2)); +printf("\nThe convective coefficients are %.2f W/(sq.m.K) and %.2f W/(sq.m.K)",hL(1),hL(2)); +q=(T_inf(1)-T_inf(2))/((1/hL(2))+(t/k)+(1/hL(1))); +printf("\nThe heat flux is %.1f W/sq.m",q); +for i=1:2 + Tw_final(i)=T_inf(i)-q*(1/hL(i)); + printf("\nThe wall temperature calculated is %.1f",abs(Tw_final(i))); + Tw(i)=abs(Tw_final(i)); // second guess +end +printf("\nFor second guess, the results are:\n"); +for i=1:2 + Ra(i)=(g*Beta(i)*(Tw(i)-T_inf(i))*L^3)/(v(i)*a(i)); + hL(i)=(kf(i)/L)*(0.68+((0.67*(abs(Ra(i)))^(1/4))/(1+(0.492/Pr(i))^(9/16))^(4/9))); +end +printf("\nThe Rayleigh Numbers are %.3e and %.3e",-Ra(1),Ra(2)); +printf("\nThe convective coefficients are %.2f W/(sq.m.K) and %.2f W/(sq.m.K)",hL(1),hL(2)); +q=(T_inf(1)-T_inf(2))/((1/hL(2))+(t/k)+(1/hL(1))); +printf("\nThe heat flux is %.1f W/sq.m",q); +for i=1:2 + Tw_final(i)=T_inf(i)-q*(1/hL(i)); + printf("\nThe wall temperature calculated is %.1f degree celsius",abs(Tw_final(i))); +end diff --git a/1309/CH8/EX8.3/Result8_3.pdf b/1309/CH8/EX8.3/Result8_3.pdf Binary files differnew file mode 100755 index 000000000..5d42a9460 --- /dev/null +++ b/1309/CH8/EX8.3/Result8_3.pdf diff --git a/1309/CH8/EX8.3/ch8_3.sce b/1309/CH8/EX8.3/ch8_3.sce new file mode 100755 index 000000000..c36c647ce --- /dev/null +++ b/1309/CH8/EX8.3/ch8_3.sce @@ -0,0 +1,23 @@ +clc; +clear; +printf("\t\t\tChapter8_example3\n\n\n"); +// determination of heat loss through the side. +rou= 0.0735; // density in Ibm/cu.ft +cp=0.240; // specific heat BTU/(lbm-degree Rankine) +v= 16.88e-5; // viscosity in sq.ft/s +kf = 0.01516 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) +a = 0.859; // diffusivity in sq.ft/hr +Pr = 0.708; // Prandtl Number +Tw=90; +T_inf=70; +g=32.2; +L=5.5; // length in ft +W=2+(4/12); // width in ft +Beta=1/(Tw+460); // volumetric thermal expansion coefficient in per degree Rankine +printf("\nThe volumetric thermal expansion coefficient is %.5f /degree R",Beta); +Ra=(g*Beta*(Tw-T_inf)*L^3)/(v*a/3600); +printf("\nThe Rayleigh Number is %.2e ",Ra); +hc=(kf/L)*(0.825+((0.387*(Ra)^(1/6))/(1+(0.492/Pr)^(9/16))^(8/27)))^2; +printf("\nThe value of convection coefficient is %.3f BTU/(hr.sq.ft.degree R)",hc); +q=hc*L*W*(Tw-T_inf); +printf("\nThe heat gained is %d BTU/hr",q); diff --git a/1309/CH8/EX8.4/Result8_4.pdf b/1309/CH8/EX8.4/Result8_4.pdf Binary files differnew file mode 100755 index 000000000..95f3709c4 --- /dev/null +++ b/1309/CH8/EX8.4/Result8_4.pdf diff --git a/1309/CH8/EX8.4/ch8_4.sce b/1309/CH8/EX8.4/ch8_4.sce new file mode 100755 index 000000000..f8203d12f --- /dev/null +++ b/1309/CH8/EX8.4/ch8_4.sce @@ -0,0 +1,41 @@ +clc; +clear; +printf("\t\t\tChapter8_example4\n\n\n"); +// Determination of the variation of average convection coefficient with distance +// properties of air at (65 + 20)/2 = 42.5 degree C =315 K. from appendix table D1 +rou= 1123; // density in kg/m^3 +cp= 1006.7; // specific heat in J/(kg*K) +v= 17.204e-6; // viscosity in m^2/s +Pr =0.703; // Prandtl Number +kf= 0.02738; // thermal conductivity in W/(m.K) +a = 0.2446e-4; // diffusivity in m^2/s +g=9.81; +L=5; +theta=45; +T_inf=20; // ambient air temperature in degree C +Tw=65; // roof surface temperature in degree C +Beta=1/(T_inf+273); // volumetric thermal expansion coefficient in per K +printf("\nThe volumetric thermal expansion coefficient is %.5f /K",Beta); +// determination of Laminar-turbulent transition length by Vliet equation Ra=3x10^5xexp(0.1368cos(90-theta)) +x=((3e5*exp(0.1368*cos(90-theta))*v*a)/(g*cos(theta)*Beta*(Tw-T_inf)))^(1/3); +printf("\nThe Laminar-turbulent transition length by Vliet equation is %.3f m",x); +i=1; +N=1; +n=0; +X=[0.02 0.04 0.05 0.051 0.1 1.0 3.0 5.0]; // entering values for length(m) +[n m]=size(X); +for i=1:m + if X(i)<=x then + // Laminar Flow regime exists + Ra(i)=(g*cos(%pi*45/180)*Beta*(Tw-T_inf)*X(i)^3)/(v*a); + hc(i)=(kf/X(i))*(0.68+(0.670*Ra(i)^(1/4))/(1+(0.492/Pr)^(9/16))^(4/9)); + else + // Turbulent Flow regime exists + Ra(i)=(g*Beta*(Tw-T_inf)*X(i)^3)/(v*a); + hc(i)=(0.02738/X(i))*(0.825+0.324*Ra(i)^(1/6))^2; + end +end +printf("\n\tx,m\t\tRa\t\thc,W/(sq.m.K)\n"); +for i=1:m + printf("\t%.2f\t\t%.2e\t%.2f\n",X(i),Ra(i),hc(i)); +end diff --git a/1309/CH8/EX8.5/Result8_5.pdf b/1309/CH8/EX8.5/Result8_5.pdf Binary files differnew file mode 100755 index 000000000..68197655b --- /dev/null +++ b/1309/CH8/EX8.5/Result8_5.pdf diff --git a/1309/CH8/EX8.5/ch8_5.sce b/1309/CH8/EX8.5/ch8_5.sce new file mode 100755 index 000000000..b1a8474fc --- /dev/null +++ b/1309/CH8/EX8.5/ch8_5.sce @@ -0,0 +1,38 @@ +clc; +clear; +printf("\t\t\tChapter8_example5\n\n\n"); +// determine if heat is lost lose more heat through its upper surface or one of its vertical sides +// properties of air at (100 + 60)/2 = 80°F = 540 degree R from appendix table D1 +rou= 0.0735; // density in lbm/cu.ft +cp=0.240; // specific heat BTU/(lbm-degree Rankine) +v= 16.88e-5; // viscosity in sq.ft/s +kf = 0.01516 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) +a = 0.859; // diffusivity in sq.ft/hr +Pr = 0.708; // Prandtl Number +Tw=100; // temperature of outside surface temperature of oven in degree F +T_inf=60; // ambient temperature in degree F +g=32.2; +L=2; // length in ft +W=2; // width in ft +Beta=1/(T_inf+460); // volumetric thermal expansion coefficient in per degree Rankine +printf("\nThe volumetric thermal expansion coefficient is %.5f /degree R",Beta); +Ra=(g*Beta*(Tw-T_inf)*L^3)/(v*a/3600); +printf("\nThe Rayleigh Number is %.2e ",Ra); +hc=(kf/L)*(0.68+(0.670*Ra^(1/4))/(1+(0.492/Pr)^(9/16))^(4/9)); +printf("\nThe value of convection coefficient is %.3f BTU/(hr.sq.ft.degree R)",hc); +q1side=hc*L*W*(Tw-T_inf); +printf("\nThe heat transferred from one side is %.1f BTU/hr",q1side); +// For the top, we have a heated surface facing upward, The characteristic length is determined as follows +Lc=(2*2)/(2+2+2+2); +Ra_L=(g*Beta*(Tw-T_inf)*Lc^3)/(v*a/3600); // Rayleigh number based on characteristic length +printf("\nThe Rayleigh Number based on characteristic length is %.2e ",Ra_L); +hc_L=(kf/Lc)*0.54*(Ra_L)^(1/4); +printf("\nThe convective coefficient based on characteristic length is %.3f BTU/(hr.sq.ft.degree R)",hc_L); +qtop=hc_L*L*W*(Tw-T_inf); +printf("\nThe heat transferred from top is %d BTU/hr",qtop); +if qtop>q1side then + printf("\nThe top transfers heat at a higher rate"); +elseif qtop<q1side + printf("\nThe side transfers heat at a higher rate"); + else printf("\nThe top and side transfer heat at equal rates"); +end diff --git a/1309/CH8/EX8.6/Result8_6.pdf b/1309/CH8/EX8.6/Result8_6.pdf Binary files differnew file mode 100755 index 000000000..b0fc1b239 --- /dev/null +++ b/1309/CH8/EX8.6/Result8_6.pdf diff --git a/1309/CH8/EX8.6/ch8_6.sce b/1309/CH8/EX8.6/ch8_6.sce new file mode 100755 index 000000000..81c659432 --- /dev/null +++ b/1309/CH8/EX8.6/ch8_6.sce @@ -0,0 +1,33 @@ +clc; +clear; +printf("\t\t\tChapter8_example6\n\n\n"); +// determination of heat lost from the insulation by convection +// properties of air at (50 + 5)/2 = 27.5 degree C = 300 K from appendix table D1 +rou= 1.177; // density in kg/cu.m +cp= 1005.7; // specific heat in J/(kg*K) +v= 15.68e-6; // viscosity in sq.m/s +Pr =0.708; // Prandtl Number +kf= 0.02624; // thermal conductivity in W/(m.K) +a = 0.22160e-4; // diffusivity in sq.m/s +g=9.81; +L=4; // length in m +D=15/100; // diameter in m +T_inf=5; // ambient air temperature in degree C +Tw=50; // outside surface temperature in degree C +Beta=1/(T_inf+273); // volumetric thermal expansion coefficient in per K +printf("\nThe volumetric thermal expansion coefficient is %.5f /K",Beta); +Ra=(g*Beta*(Tw-T_inf)*D^3)/(v*a); +printf("\nThe Rayleigh Number is %.2e ",Ra); +// for horizontal pipe, the convective coefficient is determined as follows +hc_h=(kf/D)*(0.60+(0.387*Ra^(1/6))/(1+(0.559/Pr)^(9/16))^(8/27))^2; +printf("\nThe convection coefficient for horizontal length is %.2f W/(sq.m.K)",hc_h); +As=%pi*D*L; +q_hor=hc_h*As*(Tw-T_inf); +printf("\nThe heat transferred from the horizontal length of 4 m is %d W",q_hor); +// for vertical pipe, the convective coefficient is determined as follows +hc_v=(kf/D)*0.6*(Ra*(D/L))^(1/4); +printf("\nThe convection coefficient for vertical length is %.2f W/(sq.m.K)",hc_v); +q_ver=hc_v*As*(Tw-T_inf); +printf("\nThe heat transferred from the vertical length of 4 m is %d W",q_ver); +q=q_ver+q_hor; +printf("\nThe total heat lost from the pipe is %d W",q); diff --git a/1309/CH8/EX8.7/Result8_7.pdf b/1309/CH8/EX8.7/Result8_7.pdf Binary files differnew file mode 100755 index 000000000..23b1e7ddc --- /dev/null +++ b/1309/CH8/EX8.7/Result8_7.pdf diff --git a/1309/CH8/EX8.7/ch8_7.sce b/1309/CH8/EX8.7/ch8_7.sce new file mode 100755 index 000000000..f31f4c697 --- /dev/null +++ b/1309/CH8/EX8.7/ch8_7.sce @@ -0,0 +1,23 @@ +clc; +clear; +printf("\t\t\tChapter8_example7\n\n\n"); +// Determinion of the convection coefficient about the ice cube +// properties of air at (0 + 70)/2 = 35°F == 495 degree R from appendix table D1 +rou= 0.0809; // density in lbm/cu.ft +cp=0.240; // specific heat BTU/(lbm-degree Rankine) +v= 13.54e-5; // viscosity in sq.ft/s +kf = 0.01402 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) +a = 0.685; // diffusivity in sq.ft/hr +Pr = 0.712; // Prandtl Number +Tw=0; // temperature of outside surface temperature of oven in degree F +T_inf=70; // ambient temperature in degree F +g=32.2; +Beta=1/(T_inf+460); // volumetric thermal expansion coefficient in per degree Rankine +printf("\nThe volumetric thermal expansion coefficient is %.5f /degree R",Beta); +// The characteristic length is found by using King Equation +Lc=1/((1/1)+(1/1.2)); +printf("\nThe characteristic length is %.3f ft",Lc); +Ra=(g*Beta*abs(Tw-T_inf)*Lc^3)/(v*a/3600); +printf("\nThe Rayleigh Number is %.2e ",Ra); +hc=(kf/Lc)*0.6*(Ra)^(1/4); +printf("\nThe value of convection coefficient is %.2f BTU/(hr.sq.ft.degree R)",hc); diff --git a/1309/CH8/EX8.8/Result8_8.pdf b/1309/CH8/EX8.8/Result8_8.pdf Binary files differnew file mode 100755 index 000000000..48748beb0 --- /dev/null +++ b/1309/CH8/EX8.8/Result8_8.pdf diff --git a/1309/CH8/EX8.8/ch8_8.sce b/1309/CH8/EX8.8/ch8_8.sce new file mode 100755 index 000000000..26e571626 --- /dev/null +++ b/1309/CH8/EX8.8/ch8_8.sce @@ -0,0 +1,35 @@ +clc; +clear; +printf("\t\t\tChapter8_example8\n\n\n"); +// determination of the maximum amount of heat that fins can transfer +// properties of air at (100 + 35)/2 = 67.5 degree C from appendix table D1 +rou= 0.998; // density in kg/cu.m +cp= 1009.0; // specific heat in J/(kg*K) +v= 20.76e-6; // viscosity in sq.m/s +Pr =0.697; // Prandtl Number +kf= 0.03003; // thermal conductivity in W/(m.K) +a = 0.2983e-4; // diffusivity in sq.m/s +g=9.81; +T_inf=35; // ambient air temperature in degree C +Tw=100; // surface temperature in degree C +Beta=1/(T_inf+273); // volumetric thermal expansion coefficient in per K +printf("\nThe volumetric thermal expansion coefficient is %.5f /K",Beta); +// properties of aluminium from appendix table B1 +rou_Al=2702; // density in kg/cu.m +k_Al=236; // thermal conductivity in W/(m.K) +cp_Al=896;// specific heat in J/(kg*K) +a_Al=97.5e-6; // diffusivity in sq.m/s +b=46/100; +w=24/100; +// Applying the Bar-Cohen Equations +zeta=((w*v^2)/(g*Beta*(Tw-T_inf)*Pr))^(1/4); +printf("\nThe value of zeta is %.2e ",zeta); +L=1.54*(k_Al/kf)^(1/2)*zeta; +printf("\nThe fin length is %.3f m",L); +S=2.89*zeta; +printf("\nThe fin spacing is %.5f m",S); +q=(b*w*(Tw-T_inf)*1.3*(k_Al*kf)^(1/2))/(6*zeta); +printf("\nThe heat transfer rate is %d W",q); +N=b/(2*S); +printf("\nThe number of fins can be atmost %d",N); + |