summaryrefslogtreecommitdiff
path: root/1309/CH8
diff options
context:
space:
mode:
Diffstat (limited to '1309/CH8')
-rwxr-xr-x1309/CH8/EX8.1/Result8_1.pdfbin0 -> 90656 bytes
-rwxr-xr-x1309/CH8/EX8.1/ch8_1.sce26
-rwxr-xr-x1309/CH8/EX8.2/Result8_2.pdfbin0 -> 94280 bytes
-rwxr-xr-x1309/CH8/EX8.2/ch8_2.sce47
-rwxr-xr-x1309/CH8/EX8.3/Result8_3.pdfbin0 -> 91837 bytes
-rwxr-xr-x1309/CH8/EX8.3/ch8_3.sce23
-rwxr-xr-x1309/CH8/EX8.4/Result8_4.pdfbin0 -> 93740 bytes
-rwxr-xr-x1309/CH8/EX8.4/ch8_4.sce41
-rwxr-xr-x1309/CH8/EX8.5/Result8_5.pdfbin0 -> 92666 bytes
-rwxr-xr-x1309/CH8/EX8.5/ch8_5.sce38
-rwxr-xr-x1309/CH8/EX8.6/Result8_6.pdfbin0 -> 93032 bytes
-rwxr-xr-x1309/CH8/EX8.6/ch8_6.sce33
-rwxr-xr-x1309/CH8/EX8.7/Result8_7.pdfbin0 -> 92063 bytes
-rwxr-xr-x1309/CH8/EX8.7/ch8_7.sce23
-rwxr-xr-x1309/CH8/EX8.8/Result8_8.pdfbin0 -> 90933 bytes
-rwxr-xr-x1309/CH8/EX8.8/ch8_8.sce35
16 files changed, 266 insertions, 0 deletions
diff --git a/1309/CH8/EX8.1/Result8_1.pdf b/1309/CH8/EX8.1/Result8_1.pdf
new file mode 100755
index 000000000..8b9737dc4
--- /dev/null
+++ b/1309/CH8/EX8.1/Result8_1.pdf
Binary files differ
diff --git a/1309/CH8/EX8.1/ch8_1.sce b/1309/CH8/EX8.1/ch8_1.sce
new file mode 100755
index 000000000..bf1f1f58b
--- /dev/null
+++ b/1309/CH8/EX8.1/ch8_1.sce
@@ -0,0 +1,26 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example1\n\n\n");
+// Determination of the heat transferred to the wall.
+// air properties at (400+120)/2 =260 degree F = 720 degree R from Appendix Table D1
+rou= 0.0551; // density in Ibm/cu.ft
+cp=0.2420; // specific heat BTU/(lbm-degree Rankine)
+v= 27.88e-5; // viscosity in sq.ft/s
+kf = 0.01944 ; // thermal conductivity in BTU/(hr.ft.degree Rankine)
+a = 1.457; // diffusivity in sq.ft/hr
+Pr = 0.689; // Prandtl Number
+T_inf=120+460; // wall temperature in degree R
+Tw=400+460; // inside wall temperature in degree R
+Beta=1/T_inf;
+printf("\nThe volumetric thermal expansion coefficient is %.5f/degree R",Beta);
+gc=32.2;
+L=1; // length of wall in ft
+W=2; // width in ft
+Gr=(gc*Beta*(Tw-T_inf)*L^3)/v^2;// Grashof Number
+printf("\nThe Grashof number is %.2e",Gr);
+temperature_slope=0.505; //value of temperature slope from table 8.1 corresponding to Pr=.72
+hL=(kf/L)*(4/3)*(Gr/4)^(1/4)*temperature_slope; // The convection coefficient in BTU/(hr.ft^2.degree R)
+printf("\nThe convection coefficient is %.2f BTU/(hr.sq.ft.degree R)",hL);
+A=L*W; // cross sectional area in sq.ft
+qw=hL*A*(Tw-T_inf);
+printf("\nThe heat transferred is %d BTU/hr",qw);
diff --git a/1309/CH8/EX8.2/Result8_2.pdf b/1309/CH8/EX8.2/Result8_2.pdf
new file mode 100755
index 000000000..24bb63631
--- /dev/null
+++ b/1309/CH8/EX8.2/Result8_2.pdf
Binary files differ
diff --git a/1309/CH8/EX8.2/ch8_2.sce b/1309/CH8/EX8.2/ch8_2.sce
new file mode 100755
index 000000000..97c932aba
--- /dev/null
+++ b/1309/CH8/EX8.2/ch8_2.sce
@@ -0,0 +1,47 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example2\n\n\n");
+// Determination of heat lost through the glass per unit area
+// properties of air at 22 + 273 = 295 K = 300 K(approx) and 273 K from appendix table D1
+rou= [1.177 1.295]; // density in kg/cu.m
+cp= [1005 1005.5]; // specific heat in J/(kg*K)
+v= [15.68e-6 12.59e-6]; // viscosity in sq.m/s
+Pr = [0.708 0.713]; // Prandtl Number
+kf= [0.02624 0.02426]; // thermal conductivity in W/(m.K)
+a = [0.22160e-4 0.17661e-4]; // diffusivity in sq.m/s
+T_inf=[22 0]// inside and outside temperature in K
+Beta=[1/(T_inf(1)+273) 1/(T_inf(2)+273)]; // volumetric thermal expansion coefficient at 295 K and 273 K
+printf("\nThe volumetric thermal expansion coefficients at 295 K and 273 K are respectively %.5f and %.5f",Beta(1),Beta(2));
+g=9.81;
+t=0.005; // thickness of glass
+L=0.60; // window length in m
+k=0.81; // thermal conductivity of glass from appendix table B3
+// for first guess
+Tw=[18 4];
+printf("\nFor first guess, the results are:\n");
+for i=1:2
+ Ra(i)=(g*Beta(i)*(Tw(i)-T_inf(i))*L^3)/(v(i)*a(i));
+ hL(i)=(kf(i)/L)*(0.68+((0.67*(abs(Ra(i)))^(1/4))/(1+(0.492/Pr(i))^(9/16))^(4/9)));
+end
+printf("\nThe Rayleigh Numbers are %.3e and %.3e",-Ra(1),Ra(2));
+printf("\nThe convective coefficients are %.2f W/(sq.m.K) and %.2f W/(sq.m.K)",hL(1),hL(2));
+q=(T_inf(1)-T_inf(2))/((1/hL(2))+(t/k)+(1/hL(1)));
+printf("\nThe heat flux is %.1f W/sq.m",q);
+for i=1:2
+ Tw_final(i)=T_inf(i)-q*(1/hL(i));
+ printf("\nThe wall temperature calculated is %.1f",abs(Tw_final(i)));
+ Tw(i)=abs(Tw_final(i)); // second guess
+end
+printf("\nFor second guess, the results are:\n");
+for i=1:2
+ Ra(i)=(g*Beta(i)*(Tw(i)-T_inf(i))*L^3)/(v(i)*a(i));
+ hL(i)=(kf(i)/L)*(0.68+((0.67*(abs(Ra(i)))^(1/4))/(1+(0.492/Pr(i))^(9/16))^(4/9)));
+end
+printf("\nThe Rayleigh Numbers are %.3e and %.3e",-Ra(1),Ra(2));
+printf("\nThe convective coefficients are %.2f W/(sq.m.K) and %.2f W/(sq.m.K)",hL(1),hL(2));
+q=(T_inf(1)-T_inf(2))/((1/hL(2))+(t/k)+(1/hL(1)));
+printf("\nThe heat flux is %.1f W/sq.m",q);
+for i=1:2
+ Tw_final(i)=T_inf(i)-q*(1/hL(i));
+ printf("\nThe wall temperature calculated is %.1f degree celsius",abs(Tw_final(i)));
+end
diff --git a/1309/CH8/EX8.3/Result8_3.pdf b/1309/CH8/EX8.3/Result8_3.pdf
new file mode 100755
index 000000000..5d42a9460
--- /dev/null
+++ b/1309/CH8/EX8.3/Result8_3.pdf
Binary files differ
diff --git a/1309/CH8/EX8.3/ch8_3.sce b/1309/CH8/EX8.3/ch8_3.sce
new file mode 100755
index 000000000..c36c647ce
--- /dev/null
+++ b/1309/CH8/EX8.3/ch8_3.sce
@@ -0,0 +1,23 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example3\n\n\n");
+// determination of heat loss through the side.
+rou= 0.0735; // density in Ibm/cu.ft
+cp=0.240; // specific heat BTU/(lbm-degree Rankine)
+v= 16.88e-5; // viscosity in sq.ft/s
+kf = 0.01516 ; // thermal conductivity in BTU/(hr.ft.degree Rankine)
+a = 0.859; // diffusivity in sq.ft/hr
+Pr = 0.708; // Prandtl Number
+Tw=90;
+T_inf=70;
+g=32.2;
+L=5.5; // length in ft
+W=2+(4/12); // width in ft
+Beta=1/(Tw+460); // volumetric thermal expansion coefficient in per degree Rankine
+printf("\nThe volumetric thermal expansion coefficient is %.5f /degree R",Beta);
+Ra=(g*Beta*(Tw-T_inf)*L^3)/(v*a/3600);
+printf("\nThe Rayleigh Number is %.2e ",Ra);
+hc=(kf/L)*(0.825+((0.387*(Ra)^(1/6))/(1+(0.492/Pr)^(9/16))^(8/27)))^2;
+printf("\nThe value of convection coefficient is %.3f BTU/(hr.sq.ft.degree R)",hc);
+q=hc*L*W*(Tw-T_inf);
+printf("\nThe heat gained is %d BTU/hr",q);
diff --git a/1309/CH8/EX8.4/Result8_4.pdf b/1309/CH8/EX8.4/Result8_4.pdf
new file mode 100755
index 000000000..95f3709c4
--- /dev/null
+++ b/1309/CH8/EX8.4/Result8_4.pdf
Binary files differ
diff --git a/1309/CH8/EX8.4/ch8_4.sce b/1309/CH8/EX8.4/ch8_4.sce
new file mode 100755
index 000000000..f8203d12f
--- /dev/null
+++ b/1309/CH8/EX8.4/ch8_4.sce
@@ -0,0 +1,41 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example4\n\n\n");
+// Determination of the variation of average convection coefficient with distance
+// properties of air at (65 + 20)/2 = 42.5 degree C =315 K. from appendix table D1
+rou= 1123; // density in kg/m^3
+cp= 1006.7; // specific heat in J/(kg*K)
+v= 17.204e-6; // viscosity in m^2/s
+Pr =0.703; // Prandtl Number
+kf= 0.02738; // thermal conductivity in W/(m.K)
+a = 0.2446e-4; // diffusivity in m^2/s
+g=9.81;
+L=5;
+theta=45;
+T_inf=20; // ambient air temperature in degree C
+Tw=65; // roof surface temperature in degree C
+Beta=1/(T_inf+273); // volumetric thermal expansion coefficient in per K
+printf("\nThe volumetric thermal expansion coefficient is %.5f /K",Beta);
+// determination of Laminar-turbulent transition length by Vliet equation Ra=3x10^5xexp(0.1368cos(90-theta))
+x=((3e5*exp(0.1368*cos(90-theta))*v*a)/(g*cos(theta)*Beta*(Tw-T_inf)))^(1/3);
+printf("\nThe Laminar-turbulent transition length by Vliet equation is %.3f m",x);
+i=1;
+N=1;
+n=0;
+X=[0.02 0.04 0.05 0.051 0.1 1.0 3.0 5.0]; // entering values for length(m)
+[n m]=size(X);
+for i=1:m
+ if X(i)<=x then
+ // Laminar Flow regime exists
+ Ra(i)=(g*cos(%pi*45/180)*Beta*(Tw-T_inf)*X(i)^3)/(v*a);
+ hc(i)=(kf/X(i))*(0.68+(0.670*Ra(i)^(1/4))/(1+(0.492/Pr)^(9/16))^(4/9));
+ else
+ // Turbulent Flow regime exists
+ Ra(i)=(g*Beta*(Tw-T_inf)*X(i)^3)/(v*a);
+ hc(i)=(0.02738/X(i))*(0.825+0.324*Ra(i)^(1/6))^2;
+ end
+end
+printf("\n\tx,m\t\tRa\t\thc,W/(sq.m.K)\n");
+for i=1:m
+ printf("\t%.2f\t\t%.2e\t%.2f\n",X(i),Ra(i),hc(i));
+end
diff --git a/1309/CH8/EX8.5/Result8_5.pdf b/1309/CH8/EX8.5/Result8_5.pdf
new file mode 100755
index 000000000..68197655b
--- /dev/null
+++ b/1309/CH8/EX8.5/Result8_5.pdf
Binary files differ
diff --git a/1309/CH8/EX8.5/ch8_5.sce b/1309/CH8/EX8.5/ch8_5.sce
new file mode 100755
index 000000000..b1a8474fc
--- /dev/null
+++ b/1309/CH8/EX8.5/ch8_5.sce
@@ -0,0 +1,38 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example5\n\n\n");
+// determine if heat is lost lose more heat through its upper surface or one of its vertical sides
+// properties of air at (100 + 60)/2 = 80°F = 540 degree R from appendix table D1
+rou= 0.0735; // density in lbm/cu.ft
+cp=0.240; // specific heat BTU/(lbm-degree Rankine)
+v= 16.88e-5; // viscosity in sq.ft/s
+kf = 0.01516 ; // thermal conductivity in BTU/(hr.ft.degree Rankine)
+a = 0.859; // diffusivity in sq.ft/hr
+Pr = 0.708; // Prandtl Number
+Tw=100; // temperature of outside surface temperature of oven in degree F
+T_inf=60; // ambient temperature in degree F
+g=32.2;
+L=2; // length in ft
+W=2; // width in ft
+Beta=1/(T_inf+460); // volumetric thermal expansion coefficient in per degree Rankine
+printf("\nThe volumetric thermal expansion coefficient is %.5f /degree R",Beta);
+Ra=(g*Beta*(Tw-T_inf)*L^3)/(v*a/3600);
+printf("\nThe Rayleigh Number is %.2e ",Ra);
+hc=(kf/L)*(0.68+(0.670*Ra^(1/4))/(1+(0.492/Pr)^(9/16))^(4/9));
+printf("\nThe value of convection coefficient is %.3f BTU/(hr.sq.ft.degree R)",hc);
+q1side=hc*L*W*(Tw-T_inf);
+printf("\nThe heat transferred from one side is %.1f BTU/hr",q1side);
+// For the top, we have a heated surface facing upward, The characteristic length is determined as follows
+Lc=(2*2)/(2+2+2+2);
+Ra_L=(g*Beta*(Tw-T_inf)*Lc^3)/(v*a/3600); // Rayleigh number based on characteristic length
+printf("\nThe Rayleigh Number based on characteristic length is %.2e ",Ra_L);
+hc_L=(kf/Lc)*0.54*(Ra_L)^(1/4);
+printf("\nThe convective coefficient based on characteristic length is %.3f BTU/(hr.sq.ft.degree R)",hc_L);
+qtop=hc_L*L*W*(Tw-T_inf);
+printf("\nThe heat transferred from top is %d BTU/hr",qtop);
+if qtop>q1side then
+ printf("\nThe top transfers heat at a higher rate");
+elseif qtop<q1side
+ printf("\nThe side transfers heat at a higher rate");
+ else printf("\nThe top and side transfer heat at equal rates");
+end
diff --git a/1309/CH8/EX8.6/Result8_6.pdf b/1309/CH8/EX8.6/Result8_6.pdf
new file mode 100755
index 000000000..b0fc1b239
--- /dev/null
+++ b/1309/CH8/EX8.6/Result8_6.pdf
Binary files differ
diff --git a/1309/CH8/EX8.6/ch8_6.sce b/1309/CH8/EX8.6/ch8_6.sce
new file mode 100755
index 000000000..81c659432
--- /dev/null
+++ b/1309/CH8/EX8.6/ch8_6.sce
@@ -0,0 +1,33 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example6\n\n\n");
+// determination of heat lost from the insulation by convection
+// properties of air at (50 + 5)/2 = 27.5 degree C = 300 K from appendix table D1
+rou= 1.177; // density in kg/cu.m
+cp= 1005.7; // specific heat in J/(kg*K)
+v= 15.68e-6; // viscosity in sq.m/s
+Pr =0.708; // Prandtl Number
+kf= 0.02624; // thermal conductivity in W/(m.K)
+a = 0.22160e-4; // diffusivity in sq.m/s
+g=9.81;
+L=4; // length in m
+D=15/100; // diameter in m
+T_inf=5; // ambient air temperature in degree C
+Tw=50; // outside surface temperature in degree C
+Beta=1/(T_inf+273); // volumetric thermal expansion coefficient in per K
+printf("\nThe volumetric thermal expansion coefficient is %.5f /K",Beta);
+Ra=(g*Beta*(Tw-T_inf)*D^3)/(v*a);
+printf("\nThe Rayleigh Number is %.2e ",Ra);
+// for horizontal pipe, the convective coefficient is determined as follows
+hc_h=(kf/D)*(0.60+(0.387*Ra^(1/6))/(1+(0.559/Pr)^(9/16))^(8/27))^2;
+printf("\nThe convection coefficient for horizontal length is %.2f W/(sq.m.K)",hc_h);
+As=%pi*D*L;
+q_hor=hc_h*As*(Tw-T_inf);
+printf("\nThe heat transferred from the horizontal length of 4 m is %d W",q_hor);
+// for vertical pipe, the convective coefficient is determined as follows
+hc_v=(kf/D)*0.6*(Ra*(D/L))^(1/4);
+printf("\nThe convection coefficient for vertical length is %.2f W/(sq.m.K)",hc_v);
+q_ver=hc_v*As*(Tw-T_inf);
+printf("\nThe heat transferred from the vertical length of 4 m is %d W",q_ver);
+q=q_ver+q_hor;
+printf("\nThe total heat lost from the pipe is %d W",q);
diff --git a/1309/CH8/EX8.7/Result8_7.pdf b/1309/CH8/EX8.7/Result8_7.pdf
new file mode 100755
index 000000000..23b1e7ddc
--- /dev/null
+++ b/1309/CH8/EX8.7/Result8_7.pdf
Binary files differ
diff --git a/1309/CH8/EX8.7/ch8_7.sce b/1309/CH8/EX8.7/ch8_7.sce
new file mode 100755
index 000000000..f31f4c697
--- /dev/null
+++ b/1309/CH8/EX8.7/ch8_7.sce
@@ -0,0 +1,23 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example7\n\n\n");
+// Determinion of the convection coefficient about the ice cube
+// properties of air at (0 + 70)/2 = 35°F == 495 degree R from appendix table D1
+rou= 0.0809; // density in lbm/cu.ft
+cp=0.240; // specific heat BTU/(lbm-degree Rankine)
+v= 13.54e-5; // viscosity in sq.ft/s
+kf = 0.01402 ; // thermal conductivity in BTU/(hr.ft.degree Rankine)
+a = 0.685; // diffusivity in sq.ft/hr
+Pr = 0.712; // Prandtl Number
+Tw=0; // temperature of outside surface temperature of oven in degree F
+T_inf=70; // ambient temperature in degree F
+g=32.2;
+Beta=1/(T_inf+460); // volumetric thermal expansion coefficient in per degree Rankine
+printf("\nThe volumetric thermal expansion coefficient is %.5f /degree R",Beta);
+// The characteristic length is found by using King Equation
+Lc=1/((1/1)+(1/1.2));
+printf("\nThe characteristic length is %.3f ft",Lc);
+Ra=(g*Beta*abs(Tw-T_inf)*Lc^3)/(v*a/3600);
+printf("\nThe Rayleigh Number is %.2e ",Ra);
+hc=(kf/Lc)*0.6*(Ra)^(1/4);
+printf("\nThe value of convection coefficient is %.2f BTU/(hr.sq.ft.degree R)",hc);
diff --git a/1309/CH8/EX8.8/Result8_8.pdf b/1309/CH8/EX8.8/Result8_8.pdf
new file mode 100755
index 000000000..48748beb0
--- /dev/null
+++ b/1309/CH8/EX8.8/Result8_8.pdf
Binary files differ
diff --git a/1309/CH8/EX8.8/ch8_8.sce b/1309/CH8/EX8.8/ch8_8.sce
new file mode 100755
index 000000000..26e571626
--- /dev/null
+++ b/1309/CH8/EX8.8/ch8_8.sce
@@ -0,0 +1,35 @@
+clc;
+clear;
+printf("\t\t\tChapter8_example8\n\n\n");
+// determination of the maximum amount of heat that fins can transfer
+// properties of air at (100 + 35)/2 = 67.5 degree C from appendix table D1
+rou= 0.998; // density in kg/cu.m
+cp= 1009.0; // specific heat in J/(kg*K)
+v= 20.76e-6; // viscosity in sq.m/s
+Pr =0.697; // Prandtl Number
+kf= 0.03003; // thermal conductivity in W/(m.K)
+a = 0.2983e-4; // diffusivity in sq.m/s
+g=9.81;
+T_inf=35; // ambient air temperature in degree C
+Tw=100; // surface temperature in degree C
+Beta=1/(T_inf+273); // volumetric thermal expansion coefficient in per K
+printf("\nThe volumetric thermal expansion coefficient is %.5f /K",Beta);
+// properties of aluminium from appendix table B1
+rou_Al=2702; // density in kg/cu.m
+k_Al=236; // thermal conductivity in W/(m.K)
+cp_Al=896;// specific heat in J/(kg*K)
+a_Al=97.5e-6; // diffusivity in sq.m/s
+b=46/100;
+w=24/100;
+// Applying the Bar-Cohen Equations
+zeta=((w*v^2)/(g*Beta*(Tw-T_inf)*Pr))^(1/4);
+printf("\nThe value of zeta is %.2e ",zeta);
+L=1.54*(k_Al/kf)^(1/2)*zeta;
+printf("\nThe fin length is %.3f m",L);
+S=2.89*zeta;
+printf("\nThe fin spacing is %.5f m",S);
+q=(b*w*(Tw-T_inf)*1.3*(k_Al*kf)^(1/2))/(6*zeta);
+printf("\nThe heat transfer rate is %d W",q);
+N=b/(2*S);
+printf("\nThe number of fins can be atmost %d",N);
+