diff options
Diffstat (limited to '1309/CH8/EX8.1/ch8_1.sce')
-rwxr-xr-x | 1309/CH8/EX8.1/ch8_1.sce | 26 |
1 files changed, 26 insertions, 0 deletions
diff --git a/1309/CH8/EX8.1/ch8_1.sce b/1309/CH8/EX8.1/ch8_1.sce new file mode 100755 index 000000000..bf1f1f58b --- /dev/null +++ b/1309/CH8/EX8.1/ch8_1.sce @@ -0,0 +1,26 @@ +clc; +clear; +printf("\t\t\tChapter8_example1\n\n\n"); +// Determination of the heat transferred to the wall. +// air properties at (400+120)/2 =260 degree F = 720 degree R from Appendix Table D1 +rou= 0.0551; // density in Ibm/cu.ft +cp=0.2420; // specific heat BTU/(lbm-degree Rankine) +v= 27.88e-5; // viscosity in sq.ft/s +kf = 0.01944 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) +a = 1.457; // diffusivity in sq.ft/hr +Pr = 0.689; // Prandtl Number +T_inf=120+460; // wall temperature in degree R +Tw=400+460; // inside wall temperature in degree R +Beta=1/T_inf; +printf("\nThe volumetric thermal expansion coefficient is %.5f/degree R",Beta); +gc=32.2; +L=1; // length of wall in ft +W=2; // width in ft +Gr=(gc*Beta*(Tw-T_inf)*L^3)/v^2;// Grashof Number +printf("\nThe Grashof number is %.2e",Gr); +temperature_slope=0.505; //value of temperature slope from table 8.1 corresponding to Pr=.72 +hL=(kf/L)*(4/3)*(Gr/4)^(1/4)*temperature_slope; // The convection coefficient in BTU/(hr.ft^2.degree R) +printf("\nThe convection coefficient is %.2f BTU/(hr.sq.ft.degree R)",hL); +A=L*W; // cross sectional area in sq.ft +qw=hL*A*(Tw-T_inf); +printf("\nThe heat transferred is %d BTU/hr",qw); |