summaryrefslogtreecommitdiff
path: root/389/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /389/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '389/CH7')
-rwxr-xr-x389/CH7/EX7.1/Example7_1.sce21
-rwxr-xr-x389/CH7/EX7.10/Example7_10.sce35
-rwxr-xr-x389/CH7/EX7.11/Example7_11.sce79
-rwxr-xr-x389/CH7/EX7.12/Example7_12.sce38
-rwxr-xr-x389/CH7/EX7.13/Example7_13.sce33
-rwxr-xr-x389/CH7/EX7.14/Example7_14.sce113
-rwxr-xr-x389/CH7/EX7.15/Example7_15.sce107
-rwxr-xr-x389/CH7/EX7.2/Example7_2.sce31
-rwxr-xr-x389/CH7/EX7.3/Example7_3.sce28
-rwxr-xr-x389/CH7/EX7.4/Example7_4.sce43
-rwxr-xr-x389/CH7/EX7.5/Example7_5.sce35
-rwxr-xr-x389/CH7/EX7.6/Example7_6.sce62
-rwxr-xr-x389/CH7/EX7.7/Example7_7.sce23
-rwxr-xr-x389/CH7/EX7.8/Example7_8.sce21
-rwxr-xr-x389/CH7/EX7.9/Example7_9.sce24
15 files changed, 693 insertions, 0 deletions
diff --git a/389/CH7/EX7.1/Example7_1.sce b/389/CH7/EX7.1/Example7_1.sce
new file mode 100755
index 000000000..43373c23a
--- /dev/null
+++ b/389/CH7/EX7.1/Example7_1.sce
@@ -0,0 +1,21 @@
+clear;
+clc;
+
+// Illustration 7.1
+// Page: 222
+
+printf('Illustration 7.1 - Page: 222\n\n');
+
+// Solution
+
+// ****Data****//
+Temp1 = 273+26.1;// [K]
+P1 = 100;// [mm Hg]
+Temp2 = 273+60.6;// [K]
+P2 = 400;// [mm Hg]
+P = 200;// [mm Hg]
+//*****//
+
+deff('[y] = f12(T)','y = ((1/Temp1)-(1/T))/((1/Temp1)-(1/Temp2))-((log(P1)-log(P))/(log(P1)-log(P2)))');
+T = fsolve(37,f12);// [K]
+printf("At %f 0C, the vapour pressure of benzene is 200 mm Hg\n",T-273); \ No newline at end of file
diff --git a/389/CH7/EX7.10/Example7_10.sce b/389/CH7/EX7.10/Example7_10.sce
new file mode 100755
index 000000000..1fd1a55c1
--- /dev/null
+++ b/389/CH7/EX7.10/Example7_10.sce
@@ -0,0 +1,35 @@
+clear;
+clc;
+
+// Illustration 7.10
+// Page:241
+
+printf('Illustration 7.10 - Page:241\n\n');
+
+// solution
+
+//****Data****//
+Tg = 60;// [OC]
+Y_prime = 0.050;// [kg toulene/kg air]
+//*****//
+
+// Wet Bulb temparature
+Dab = 0.92*10^(-5);// [square m/s]
+density_air = 1.060;// [kg/cubic cm];
+viscocity_G = 1.95*10^(-5);// [kg/m.s]
+Sc = viscocity_G/(density_air*Dab);
+// From Eqn. 7.28
+hG_by_kY = 1223*(Sc^0.567);// [J/kg.K]
+// Soln. of Eqn. 7.26 by trial & error method:
+// (Tg-Tw) = (Yas_prime-Y_prime)*(lambda_w/hG_by_kY)
+Tw = 31.8;// [OC]
+printf("Wet Bulb Temparature:%f OC\n",Tw);
+
+// Adiabatic Saturation Temparature
+C_air = 1005;// [J/kg.K]
+C_toulene = 1256;// [J/kg.K]
+Cs = C_air+(C_toulene*Y_prime);// [J/kg.K]
+// Soln. of Eqn. 7.21 by trial & error method:
+// (Tg-Tas) = (Yas_prime-Y_prime)*(lambda_as/Cs)
+Tas = 25.7;// [OC]
+printf("Adiabatic Saturation Temparature: %f OC\n",Tas); \ No newline at end of file
diff --git a/389/CH7/EX7.11/Example7_11.sce b/389/CH7/EX7.11/Example7_11.sce
new file mode 100755
index 000000000..bdb7bba7f
--- /dev/null
+++ b/389/CH7/EX7.11/Example7_11.sce
@@ -0,0 +1,79 @@
+clear;
+clc;
+
+// Illustration 7.11
+// Page: 249
+
+printf('Illustration 7.11 - Page: 249\n\n');
+
+// solution
+
+//****Data****//
+L_min = 2.27;// [kg/square m.s]
+G_min = 2;// [kg/square m.s]
+L2_prime = 15;// [kg/s]
+Q = 270;// [W]
+Templ2 = 45;// [OC]
+Tempg1 = 30;// [OC]
+Tempw1 = 24;// [OC]
+Kya = 0.90;// [kg/cubic m.s]
+//*******//
+
+H1_prime = 72;// [kJ/kg dry air]
+Y1_prime = 0.0160;// [kg water/kg dry air]
+Templ1 = 29;// [OC]
+Cal = 4.187;// [kJ/kg]
+// Equilibrium Data:
+// Data = [Temp.(OC),H_star(kJ/kg)]
+Data_star = [29 100;32.5 114;35 129.8;37.5 147;40 166.8;42.5 191;45 216];
+// The operating line for least slope:
+H2_star = 209.5;// [kJ/kg]
+Data_minSlope = [Templ1 H1_prime;Templ2 H2_star];
+deff('[y] = f14(Gmin)','y = ((L2_prime*Cal)/Gmin)-((H2_star-H1_prime)/(Templ2-Templ1))');
+Gmin = fsolve(2,f14);// [kg/s]
+Gs = 1.5*Gmin;// [kg/s]
+// For the Operating Line:
+y = deff('[y] = f15(H2)','y = ((H2-H1_prime)/(Templ2-Templ1))-((L2_prime*Cal)/Gs)');
+H2 = fsolve(2,f15);// [kJ/kg dry air]
+Data_opline = [Templ1 H1_prime;Templ2 H2];
+scf(4);
+plot(Data_star(:,1),Data_star(:,2),Data_minSlope(:,1),Data_minSlope(:,2),Data_opline(:,1),Data_opline(:,2));
+xgrid();
+legend('Equilibrium line','Minimum Flow Rate Line','Operating Line');
+xlabel("Liquid Temperature, 0C");
+ylabel("Enthalphy Of Air Water vapour, kJ / kg dry air");
+// Tower cross section Area:
+Al = L2_prime/L_min;// [square m]
+Ag = Gs/G_min;// [square m]
+A = min(Al,Ag);// [square m]
+// Data from operating line:
+// Data1 = [Temp.(OC),H_prime(kJ/kg)]
+Data1 = [29 72;32.5 92;35 106.5;37.5 121;40 135.5;42.5 149.5;45 163.5];
+// Driving Force:
+Data2 = zeros(7,2);
+// Data2 = [Temp[OC],driving Force]
+for i = 1:7
+ Data2(i,1) = Data1(i,1);
+ Data2(i,2) = 10^2/(Data_star(i,2)-Data1(i,2));
+end
+// The data for operating line as abcissa is plotted against driving force;
+Area = 3.25;
+// From Eqn. 7.54
+deff('[y] = f16(Z)','y = Area-(Kya*Z/G_min)');
+Z = fsolve(2,f16);
+printf("The height of tower is %f m\n",Z);
+NtoG = 3.25;
+HtoG = G_min/Kya;// [m]
+
+// Make up water
+// Assuming the outlet air is essentially saturated:
+Y2_prime = 0.0475;// [kg water/kg dry air]
+E = G_min*(A)*(Y2_prime-Y1_prime);// [kg/s]
+// Windage loss estimated as 0.2 percent
+W = 0.002*L2_prime;// [kg/s]
+ppm_blowdown = 2000;// [ppm]
+ppm_makeup = 500;// [ppm]
+// Since the weight fraction are proportional to the corresponding ppm values:
+B = (E*ppm_makeup/(ppm_blowdown-ppm_makeup))-W;// [kg/s]
+M = B+E+W;// [kg/s]
+printf("The makeup water is estimated to be %f kg/s\n",M); \ No newline at end of file
diff --git a/389/CH7/EX7.12/Example7_12.sce b/389/CH7/EX7.12/Example7_12.sce
new file mode 100755
index 000000000..ca25c5bb8
--- /dev/null
+++ b/389/CH7/EX7.12/Example7_12.sce
@@ -0,0 +1,38 @@
+clear;
+clc;
+
+// Illustration 7.12
+// Page: 252
+
+printf('Illustration 7.12 - Page: 252\n\n')
+// solution
+
+//****Data****//
+Tempg1 = 32;// [OC]
+Tempw1 = 28;// [OC]
+//******//
+
+H1 = 90;// [kJ/kg]
+H1_prime = 72;// [kJ/kg dry air]
+H2_prime = 163.6;// [kJ/kg dry air]
+deff('y = f17(H2)','y = (H2-H1)-(H2_prime-H1_prime)');
+H2 = fsolve(2,f17);// [kJ/kg dry air]
+// Slope of Operating Line same as Operating Line as Illustration 7.11
+slopeOperat = (163.5-72)/(45-29);
+deff("[y] = f18(Temp)","y = slopeOperat*(Temp-Tempg1)+H1");
+Temp = 30:0.01:45;
+// Equilibrium Data:
+// Data = [Temp.(OC),H_star(kJ/kg)]
+Data_star = [29 100;32.5 114;35 129.8;37.5 147;40 166.8;42.5 191;45 216];
+scf(5);
+plot(Data_star(:,1),Data_star(:,2),Temp,f18);
+xgrid();
+legend("Equilibrium Line","operating Line");
+xlabel("Liquid Temperature, C");
+ylabel("Enthalphy Of Air Water vapour, kJ/kg dry air");
+// The Value for NtoG & HtoG will be same as in Illustration 7.11
+NtoG = 3.25;
+HtoG = 2.22;// [m]
+// By hit & trial method:
+Temp = 37.1;// [OC]
+printf("The Temperature to which water is to be cooled is %f OC\n",Temp); \ No newline at end of file
diff --git a/389/CH7/EX7.13/Example7_13.sce b/389/CH7/EX7.13/Example7_13.sce
new file mode 100755
index 000000000..6e967205b
--- /dev/null
+++ b/389/CH7/EX7.13/Example7_13.sce
@@ -0,0 +1,33 @@
+clear;
+clc;
+
+// Illustration 7.13
+// Page: 254
+
+printf('Illustration 7.13\n\n');
+
+// solution
+
+// Given
+Tempg1=65;// [OC]
+Y1_prime=0.0170;// [kg water/kg dry air]
+// Using adiabatic satursion line on Fig. 7.5 (Pg 232)
+Tempas=32;// [OC]
+Yas_prime=0.0309;// [kg water/kg dry air]
+Tempg2=45;// [OC]
+Z=2;// [m]
+//*******//
+
+Y2_prime=0.0265;// [kg water/kg dry air]
+deff('[y]=f19(Kya_by_Gs)','y=log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)');
+Kya_by_Gs=fsolve(1,f19);// [1/m]
+
+// For the extended chamber:
+Z=4;// [m]
+deff('[y]=f20(Y2_prime)','y=log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)');
+Y2_prime=fsolve(0.029,f20);//[kg water/kg dry air]
+// With the same adiabatic curve:
+Tempg2=34;// [OC]
+printf("The Outlet Conditions are:\n");
+printf("Absolute Humidity is %f kg water/kg dry air\n",Y2_prime);
+printf("Dry Bulb Temperature is %f OC\n",Tempg2); \ No newline at end of file
diff --git a/389/CH7/EX7.14/Example7_14.sce b/389/CH7/EX7.14/Example7_14.sce
new file mode 100755
index 000000000..f3bfd7c51
--- /dev/null
+++ b/389/CH7/EX7.14/Example7_14.sce
@@ -0,0 +1,113 @@
+clear;
+clc;
+
+// Illustration 7.14
+// Page: 256
+
+printf('Illustration 7.14 - Page: 256\n\n');
+
+// solution
+
+//****Data****//
+// a = N2 b = CO
+// Entering gas
+Y1_prime = 0;// [kg water/kg dry air]
+Pt = 1;// [atm]
+Tempg1 = 315;// [OC]
+G_prime = 5;// [square m/s]
+
+// Temp of the tower:
+Templ2 = 18;// [OC]
+Density_L2 = 1000; //[kg/square m]
+viscocity_L2 = 1.056*10^(-3);// [kg/m.s]
+Tempg2 = 27;// [OC]
+
+Mb = 28;// [kg/kmol]
+Ma = 18.02;// [kg/kmol]
+Density_G1 = (Mb/22.41)*(273/(Tempg1+273));// [kg/square m]
+G1 = G_prime*(Density_G1);// [kg/s]
+
+// Since the outlet gas is nearly saturated:
+Y_prime = 0.024;// [kg water/kg dry air]
+Y2_prime = 0.022;// [kg water/kg dry air, assumed]
+G2 = G1*(1+Y2_prime);// [kg/s]
+Mav = (1+Y2_prime)/((1/Mb)+(Y2_prime/Ma));// [kg/kmol]
+Density_G2 = (Mav/22.4)*(273/(Templ2+273));// [kg/square m]
+L2_by_G2 = 2;
+abcissa = L2_by_G2*(Density_G2/(Density_L2-Density_G2))^(1/2);
+// From Fig. 6.34:
+// For a gas pressure drop of 400 N/square m/m
+ordinate = 0.073;
+// From Table 6.3:
+Cf = 65;
+J = 1;
+deff('[y] = f21(G2_prime)','y = ((G2_prime^2)*Cf*(viscocity_L2^0.1)*J/(Density_G2*(Density_L2-Density_G2)))-ordinate');
+// Tentative data:
+G2_prime = fsolve(2,f21);// [kg/square m.s]
+Area = G1/G2_prime;// [square m]
+dia = sqrt(4*Area/%pi);// [m]
+
+// Final data:
+dia = 1.50;// [m]
+Area = %pi*dia^2/4;// [square m]
+Gs_prime = G1/Area;// [kg/square m.s]
+G2_prime = G2/Area;// [kg/square m.s]
+L2_prime = L2_by_G2*G2_prime;// [kg/square m.s]
+// From Eqn. 7.29:
+deff('[y] = f22(L1_prime)','y = (L2_prime-L1_prime)-(Gs_prime*(Y2_prime-Y1_prime))');
+L1_prime = fsolve(2,f22);
+Cb = 1089;// [J/kg.K]
+Ca = 1884;// [J/kg.K]
+Cs1 = Cb+(Y1_prime*Ca);// [J/(kg dry air).K]
+Cs2 = Cb+(Y2_prime*Ca);// [J/(kg dry air).K]
+Tempo = Templ2;// [base temp.,K]
+lambda = 2.46*10^6;// [J/kg]
+CaL = 4187;// [J/kg K]
+// From Eqn. 7.31:
+deff('[y] = f23(Templ1)','y = ((L2_prime*CaL*(Templ2-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs2*(Tempg2-Tempo))+(Y2_prime*lambda)))');
+Templ1 = fsolve(2,f23);
+// At Templ1 = 49.2 OC
+viscocity_L = 0.557*10^(-3);// [kg/m.s]
+Density_L = 989;// [kg/square m]
+K = 0.64;// [w/m.K]
+Prl = CaL*viscocity_L/K;
+
+// For Entering Gas:
+viscocity_G1 = 0.0288*10^(-3);// [kg*/m.s]
+Dab = 0.8089*10^(-4);// [square m/s]
+ScG = viscocity_G1/(Density_G1*Dab);
+PrG = 0.74;
+
+// From Illustration 6.7:
+a = 53.1;// [square m/square m]
+Fga = 0.0736;// [kmol/square m]
+Hga = 4440;// [W/square m.K]
+Hla = 350500;// [W/square m.K]
+// At the bottom, by several trial:
+Tempi = 50.3;// [OC]
+pai = 93.9/760;// [atm]
+paG = 0;// [atm]
+// By Eqn. 7.64:
+dY_prime_by_dZ = -(Ma*Fga/Gs_prime)*log((1-(pai/Pt))/(1-(paG/Pt)));// [(kg H2O/kg dry gas)/m]
+Hg_primea = -(Gs_prime*Ca*dY_prime_by_dZ)/(1-exp((Gs_prime*Ca*dY_prime_by_dZ)/(Hga)));// [W/square m.K]
+dTempg_by_dZ = -(Hg_primea*(Tempg1-Tempi)/(Gs_prime*Cs1));// [OC/m]
+Tempi = (Templ1)+((Gs_prime*(Cs1*dTempg_by_dZ)+((Ca*(Tempg1))-(CaL*(Templ1))+(((CaL-Ca)*(Tempo))+lambda))*dY_prime_by_dZ)/((Gs_prime*CaL*dY_prime_by_dZ)-Hla));// [OC]
+// Assume:
+delta_Tempg = -30;// [OC]
+delta_Z = delta_Tempg/(dTempg_by_dZ);// [m]
+Tempg = Tempg1+delta_Tempg;// [OC]
+Y_prime = Y1_prime+(dY_prime_by_dZ)*delta_Z;// [kg H2O/kg dry gas]
+paG = Y_prime/(Y_prime+(Ma/Mb));// [atm]
+Cs = Cb+Ca*(Y_prime);// [J/(kg dry air).K]
+// Water balance, From Eqn. 7.29:
+deff('[y] = f24(L_prime)','y = (L2_prime-L_prime)-(Gs_prime*(Y_prime-Y1_prime))');
+L_prime = fsolve(2,f24);// [kg/square m.s]
+
+deff('[y] = f25(Templ)','y = ((L_prime*CaL*(Templ-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs*(Tempg-Tempo))+(Y_prime*lambda)))');
+Templ = fsolve(2,f25);
+// This process is repeated several times until gas temp falls to Tempg2
+// The value of Y2_prime was calculated to be 0.0222 which is sufficiently close to the assumed value.
+// Z = sum of all delta_Z
+Z = 1.54;// [m]
+printf("The diameter of tower is %f m\n",dia);
+printf("The packed height is %f m\n",Z); \ No newline at end of file
diff --git a/389/CH7/EX7.15/Example7_15.sce b/389/CH7/EX7.15/Example7_15.sce
new file mode 100755
index 000000000..bbfab304a
--- /dev/null
+++ b/389/CH7/EX7.15/Example7_15.sce
@@ -0,0 +1,107 @@
+clear;
+clc;
+
+// Illustration 7.15
+// Page: 267
+
+printf('Illustration 7.15 - Page: 267\n\n');
+
+// solution
+
+//***Data***//
+w = 0.75;// [m]
+OD = 19.05/1000;// [m]
+l = 3.75;// [m]
+n = 20;
+t = 1.65/1000;// [m]
+Ws = 2.3;// [kg/s]
+Wal = 10;// [kg/s]
+Wt = 4;// [kg/s]
+Density = 800;// [kg/cubic m]
+viscocity = 0.005;// [kg/m.s]
+K = 0.1436;// [W/m.K]
+Ct = 2010;// [J/kg.K]
+Cal = 4187;// [J/kg.K]
+Y1_prime = 0.01;// [kg H2O/kg dry air]
+Y2_prime = 0.06;// [kg H2O/kg dry air]
+TempT = 95;// [OC]
+//*****//
+
+Free_area = (w-(n*OD))*l;// [square m]
+Gs_min = 2.3/Free_area;// [kg/square m.s]
+Yav_prime = (Y1_prime+Y2_prime)/2;// [kg H2O/kg dry air]
+// From Eqn. 7.86:
+ky = 0.0493*(Gs_min*(1+Yav_prime))^0.905;// [kg/square m.s.delta_Y_prime]
+// From Fig. 7.5:
+H1_prime = 56000;// [J/kg]
+Ao = 400*%pi*OD*l;// [square m]
+// Cooling water is distributed over 40 tubes & since tubes are staggered
+geta = Wal/(40*2*l);// [kg/m.s]
+geta_by_OD = geta/OD;// [kg/square m.s]
+// Assume:
+TempL = 28;// [OC]
+// From Eqn. 7.84:
+hL_prime = (982+(15.58*TempL))*(geta_by_OD^(1/3));// [W/square m.K]
+// From Eqn. 7.85:
+hL_dprime = 11360;// [W/square m.K]
+// From Fig. 7.5 (Pg 232)
+m = 5000;// [J/kg.K]
+Ky = 1/((1/ky)+(m/hL_dprime));
+ID = (OD-(2*t));// [m]
+Ai = %pi*(ID^2)/4;// [square m]
+Gt_prime = Wt/(n*Ai);// [kg/square m.s]
+Re = ID*Gt_prime/viscocity;
+Pr = Ct*viscocity/K;
+// From a standard correlation:
+hT = 364;// [W/square m.K]
+Dav = (ID+OD)/2;// [m]
+Zm = (OD-ID)/2;// [m]
+Km = 112.5;// [W/m.K]
+// From Eqn. 7.67:
+Uo = 1/((OD/(ID*hT))+((OD/Dav)*(Zm/Km))+(1/hL_prime));// [W/square m.K]
+// From Eqn. 7.75:
+alpha1 = -(((Uo*Ao)/(Wt*Ct))+((Uo*Ao)/(Wal*Cal)));
+alpha2 = m*Uo*Ao/(Wt*Ct);
+// From Eqn. 7.76:
+beeta1 = Ky*Ao/(Wal*Cal);
+beeta2 = -((m*Ky*Ao/(Wal*Cal))-(Ky*Ao/Ws));
+y = deff('[y] = f26(r)','y = (r^2)+((alpha1+beeta2)*r)+((alpha1*beeta2)-(alpha2*beeta1))');
+r1 = fsolve(10,f26);
+r2 = fsolve(0,f26);
+beeta2 = 1.402;
+// From Eqn. 7.83:
+// N1-(M1*(r1+alpha1)/beeta1) = 0............................................(1)
+// N2-(M2*(r2+alpha2)/beeta2) = 0............................................(2)
+// From Eqn. 7.77:
+// At the top:
+x1 = 1;
+// TempL2+(M1*exp(r1*x1))+(M2*exp(-(r2*x1))) = TempL.........................(3)
+// From Eqn. 7.78:
+// At the bottom:
+x2 = 0;
+// H1_star-N1-N2 = H1_prime..................................................(4)
+// From Eqn. 7.80:
+// ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1)) = (Tempt-TempL)...............(5)
+// From Eqn. 7.81:
+// ((N1/r1)*(exp(r1)-1))+((N2*r2)*(exp(r2)-1)) = (H1_star-H1_prime)..........(6)
+// From Eqn. 7.91 & Eqn. 7.92:
+// Uo*Ao*(TempT-TempL)=Ky*Ao*(H1_star-H1_prime)..............................(7)
+
+// Elimination of M's & N's by solving Eqn. (1) to (4) and (7) simultaneously:
+// and from Fig. 7.5 (Pg 232):
+TempL1=28;// [OC]
+H1_star=(Uo*Ao*(TempT-TempL)/(Ky*Ao))+H1_prime;// [J/kmol]
+// Solving (1) to (4) simultaneously:
+a = [1 -(r1+alpha1)/beeta1 0 0;0 0 1 -(r2+alpha1)/beeta1;0 exp(r1*x1) 0 exp(r2*x1);1 0 1 0];
+b = [0;0;TempT-TempL1;H1_star-H1_prime];
+soln = a\b;
+N1 = soln(1);
+M1 = soln(2);
+N2 = soln(3);
+M2 = soln(4);
+// By Eqn. 5
+delta_Temp = ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1));// [OC]
+Q = Uo*delta_Temp*Ao;
+TempT1 = TempT-(Q/(Wt*Ct));// [OC]
+H2_prime = Q/(Ws)+H1_prime;// [J/kg]
+printf("Temparature to which oil was cooled: %f OC\n",TempT1); \ No newline at end of file
diff --git a/389/CH7/EX7.2/Example7_2.sce b/389/CH7/EX7.2/Example7_2.sce
new file mode 100755
index 000000000..0cc483112
--- /dev/null
+++ b/389/CH7/EX7.2/Example7_2.sce
@@ -0,0 +1,31 @@
+clear;
+clc;
+
+// Illustration 7.2:
+// Page: 223
+
+printf('Illustration 7.2 - Page: 223\n\n');
+printf('Illustration 7.2 (b)\n\n');
+
+// Solution (b)
+
+// At 100 OC,
+PH2O = 760;// [Vapour pressure of water, mm of Hg]
+// From Fig. 7.2 (Pg 224)
+// At this value,
+PC6H6 = 1400;// [Vapour pressure of benzene, mm of Hg]
+printf("Vapour Pressure of benzene at 100 OC is %d mm of Hg\n\n", PC6H6);
+
+printf('Illustration 7.2 (c)\n\n');
+
+// Solution (c)
+
+// Reference: H20
+// At 25 OC
+m = 0.775;
+Mr = 18.02;// [kg/kmol]
+lambdar = 2443000;// [N/m.kg]
+M = 78.05;// [kg/kmol]
+// From Eqn. 7.6:
+lambda = m*lambdar*Mr/M;// [N/m.kg]
+printf("Latent Heat of Vaporization at 25 OC is %f kN/m.kg\n",lambda/1000); \ No newline at end of file
diff --git a/389/CH7/EX7.3/Example7_3.sce b/389/CH7/EX7.3/Example7_3.sce
new file mode 100755
index 000000000..24d34674e
--- /dev/null
+++ b/389/CH7/EX7.3/Example7_3.sce
@@ -0,0 +1,28 @@
+clear;
+clc;
+
+// Illustration 7.3
+// Page: 226
+
+printf('Illustration 7.3 - Page: 226\n\n');
+
+// solution
+
+// ****Data****//
+m = 10;// [kg]
+Cvap = 1.256;// [kJ/kg.K]
+Cliq = 1.507;// [kJ/kg.K]
+Temp1 = 100;// [OC]
+Temp4 = 10;// [OC]
+//******//
+
+// Using Fig 7.2 (Pg 224):
+Temp2 = 25;// [OC]
+// Using the notation of Fig. 7.3:
+H1_diff_H2 = Cvap*(Temp1-Temp2);// [kJ/kg]
+// From Illustration 7.2:
+H2_diff_H3 = 434;// [Latent Heat of Vaporisation, kJ/kg]
+H3_diff_H4 = Cliq*(Temp2-Temp4);// [kJ/kg]
+H1_diff_H4 = H1_diff_H2+H2_diff_H3+H3_diff_H4;// [kJ/kg]
+H = m*H1_diff_H4;// [kJ]
+printf("Heat evolved for 10 kg Benzene is %f kJ\n",H); \ No newline at end of file
diff --git a/389/CH7/EX7.4/Example7_4.sce b/389/CH7/EX7.4/Example7_4.sce
new file mode 100755
index 000000000..cb544325e
--- /dev/null
+++ b/389/CH7/EX7.4/Example7_4.sce
@@ -0,0 +1,43 @@
+clear;
+clc;
+
+// Illustration 7.4
+// Page: 227
+
+printf('Illustration 7.4 - Page: 227\n\n');
+
+// solution
+
+//****Data****//
+// A = benzene vapour; B = Nitrogen Gas
+P = 800;// [mm Hg]
+Temp = 273+60;// [K]
+pA = 100;// [mm Hg]
+//******//
+
+pB = P-pA;// [mm Hg]
+MA = 78.05;// [kg/kmol]
+MB = 28.08;// [kg/kmol]
+
+// Mole Fraction
+printf("On the Basis of Mole Fraction\n");
+yAm = pA/P;
+yBm = pB/P;
+printf("Mole Fraction of Benzene is %f\n",yAm);
+printf("Mole Fraction of Nitrogen is %f\n",yBm);
+printf("\n");
+
+// Volume Fraction
+printf("On the Basis of Volume Fraction\n");
+// Volume fraction is same as mole Fraction
+yAv = yAm;
+yBv = yBm;
+printf("Volume Fraction of Benzene is %f\n",yAv);
+printf("Volume Fraction of Nitrogen is %f\n",yBv);
+printf("\n");
+
+// Absolute Humidity
+printf("On the basis of Absolute humidity\n")
+Y = pA/pB;// [mol benzene/mol nitrogen]
+Y_prime = Y*(MA/MB);// [kg benzene/kg nitrogen]
+printf("The concentration of benzene is %f kg benzene/kg nitrogen\n",Y_prime); \ No newline at end of file
diff --git a/389/CH7/EX7.5/Example7_5.sce b/389/CH7/EX7.5/Example7_5.sce
new file mode 100755
index 000000000..cf90effd9
--- /dev/null
+++ b/389/CH7/EX7.5/Example7_5.sce
@@ -0,0 +1,35 @@
+clear;
+clc;
+
+// Illustration 7.5
+// Page: 228
+
+printf('Illustration 7.5 - Page: 228\n\n');
+
+printf('Illustration 7.5 (a)\n\n');
+// solution(a)
+
+//****Data****//
+// A = benzene vapour; B = Nitrogen Gas
+P = 1;// [atm]
+//*****//
+
+MA = 78.05;// [kg/kmol]
+MB = 28.02;// [kg/kmol]
+// Since gas is saturated, from Fig. 7.2 (Pg 224):
+pA = 275/760;// [atm]
+Y = pA/(P-pA);// [kmol benzene/kmol nitrogen]
+Y_prime = Y*(MA/MB);// [kg benzene/kg nitrogen]
+printf("The concentration of benzene is %f kg benzene/kg nitrogen\n\n",Y_prime);
+
+printf('Illustration 7.5 (b)\n\n');
+// solution(b)
+
+// A = benzene vapour; B = CO2
+MA = 78.05;// [kg/kmol]
+MB = 44.01;// [kg/kmol]
+// Since gas is saturated, from Fig. 7.2:
+pA = 275/760;// [atm]
+Y = pA/(P-pA);// [kmol benzene/kmol CO2]
+Y_prime = Y*(MA/MB);// [kg benzene/kg CO2]
+printf("The concentration of benzene is %f kg benzene/kg CO2\n",Y_prime); \ No newline at end of file
diff --git a/389/CH7/EX7.6/Example7_6.sce b/389/CH7/EX7.6/Example7_6.sce
new file mode 100755
index 000000000..009a721ef
--- /dev/null
+++ b/389/CH7/EX7.6/Example7_6.sce
@@ -0,0 +1,62 @@
+clear;
+clc;
+
+// Illustration 7.6
+// Page: 234
+
+printf('Illustration 7.6 - Page: 234\n\n');
+
+// solution
+
+//****Data****//
+// A = water vapour; B = air
+TempG = 55;// [OC]
+P = 1.0133*10^(5);// [N/square m]
+Y_prime = 0.030;// [kg water/kg dry air]
+//******//
+
+MA = 18.02;// [kg/kmol]
+MB = 28.97;// [kg/kmol]
+
+// Percent Humidity
+// From psychrometric chart, at 55 OC
+Ys_prime = 0.115;// [kg water/kg dry air]
+percent_Humidity = (Y_prime/Ys_prime)*100;
+printf("The sample has percent Humidity = %f %%\n",percent_Humidity);
+
+// Molal Absolute Humidity
+Y = Y_prime*(MB/MA);// [kmol water/kmol dry air]
+printf("Molal Absolute Humidity of the sample is %f kmol water/kmol dry air\n",Y);
+
+// Partial Pressure
+pA = Y*P/(1+Y);// [N/square m]
+printf("The Partial Pressure Of Water is %f N/square m\n",pA);
+
+// Relative Humidity
+pa = 118*133.3;// [vapour pressure of water at 55 OC,N/square m]
+relative_Humidity = (pA/pa)*100;
+printf("The sample has relative Humidity = %f %%\n",relative_Humidity);
+
+// Dew Point
+// From psychrometric chart,
+dew_point = 31.5;// [OC]
+printf("Dew point Of the Sample is %f Oc\n",dew_point);
+
+// Humid Volume
+// At 55 OC
+vB = 0.93;// [specific volume of dry air,cubic m/kg]
+vsB = 1.10;// [specific volume of saturated air,cubic m/kg]
+vH = vB+((vsB-vB)*(percent_Humidity/100));// [cubic m/kg]
+printf("The Humid Volume of the Sample is %f cubic m/kg\n",vH);
+
+// Humid Heat
+CB = 1005;// [J/kg.K]
+CA = 1884;// [J/kg.K]
+Cs = CB+(Y_prime*CA);// [J/kg]
+printf("The Humid Heat is %f J/kg dry air.K\n",Cs);
+
+// Enthalpy
+HA = 56000;// [J/kg dry air]
+HsA = 352000;// [J/kg dry air]
+H_prime = HA+((HsA-HA)*(percent_Humidity/100));// [J/kg dry air]
+printf("The Enthalphy of the sample is %f J/kg dry air\n",H_prime); \ No newline at end of file
diff --git a/389/CH7/EX7.7/Example7_7.sce b/389/CH7/EX7.7/Example7_7.sce
new file mode 100755
index 000000000..5128817c8
--- /dev/null
+++ b/389/CH7/EX7.7/Example7_7.sce
@@ -0,0 +1,23 @@
+clear;
+clc;
+
+// Illustration 7.7
+// Page: 236
+
+printf('Illustration 7.7 - Page: 236\n\n');
+
+// solution
+
+//****Data****//
+// A = water vapour; B = air
+V = 100;// [m^3]
+Tempi = 55;// [OC]
+Tempf = 110;// [OC]
+//*****//
+
+// From Illustration 7.6
+vH = 0.974;// [m^3/kg]
+Cs = 1061.5;// [J/kg]
+WB = V/vH;// [kg]
+Q = WB*Cs*(Tempf-Tempi);// [J]
+printf("Heat recquired is %e J\n",Q); \ No newline at end of file
diff --git a/389/CH7/EX7.8/Example7_8.sce b/389/CH7/EX7.8/Example7_8.sce
new file mode 100755
index 000000000..c458eda0d
--- /dev/null
+++ b/389/CH7/EX7.8/Example7_8.sce
@@ -0,0 +1,21 @@
+clear;
+clc;
+
+// Illustration 7.8
+// Page: 237
+
+printf('Illustration 7.8 - Page: 237\n\n');
+
+// solution
+
+//****Data****//
+Y_prime1 = 0.030;// [kg water/kg dry air]
+Temp1 = 83;// [OC]
+//*******//
+
+// From the psychrometric chart, the condition at 90 OC
+Temp2 = 41.5;// [OC]
+Y_prime2 = 0.0485;// [kg water/kg dry air]
+printf("The Outlet Air condition are:\n");
+printf("Temp. = %f OC\n",Temp2);
+printf("Absolute Humidity = %f kg water/kg dry air\n",Y_prime2); \ No newline at end of file
diff --git a/389/CH7/EX7.9/Example7_9.sce b/389/CH7/EX7.9/Example7_9.sce
new file mode 100755
index 000000000..098a6d1bf
--- /dev/null
+++ b/389/CH7/EX7.9/Example7_9.sce
@@ -0,0 +1,24 @@
+clear;
+clc;
+
+// Illustration 7.9
+// Page:240
+
+printf('Illustration 7.9 - Page:240\n\n');
+
+// solution
+
+//****Data****//
+Tempw = 35;// [OC]
+Tempg = 65;// [OC]
+//******//
+
+// From psychrometric chart
+lambda_w = 2419300;// [J/kg]
+Y_prime_w = 0.0365;// [kg H2O/kg dry air]
+// From fig 7.5(a)
+hG_by_kY = 950;// [J/kg]
+// From Eqn. 7.26
+deff('[y] = f13(Y_prime)','y = (Tempg-Tempw)-((lambda_w*(Y_prime_w-Y_prime))/hG_by_kY)');
+Y_prime = fsolve(2,f13);// [kg H2O/kg dry air]
+printf("Humidity of air is %f kg H2O/kg dry air\n",Y_prime); \ No newline at end of file