From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 389/CH7/EX7.1/Example7_1.sce | 21 ++++++++ 389/CH7/EX7.10/Example7_10.sce | 35 +++++++++++++ 389/CH7/EX7.11/Example7_11.sce | 79 ++++++++++++++++++++++++++++ 389/CH7/EX7.12/Example7_12.sce | 38 ++++++++++++++ 389/CH7/EX7.13/Example7_13.sce | 33 ++++++++++++ 389/CH7/EX7.14/Example7_14.sce | 113 +++++++++++++++++++++++++++++++++++++++++ 389/CH7/EX7.15/Example7_15.sce | 107 ++++++++++++++++++++++++++++++++++++++ 389/CH7/EX7.2/Example7_2.sce | 31 +++++++++++ 389/CH7/EX7.3/Example7_3.sce | 28 ++++++++++ 389/CH7/EX7.4/Example7_4.sce | 43 ++++++++++++++++ 389/CH7/EX7.5/Example7_5.sce | 35 +++++++++++++ 389/CH7/EX7.6/Example7_6.sce | 62 ++++++++++++++++++++++ 389/CH7/EX7.7/Example7_7.sce | 23 +++++++++ 389/CH7/EX7.8/Example7_8.sce | 21 ++++++++ 389/CH7/EX7.9/Example7_9.sce | 24 +++++++++ 15 files changed, 693 insertions(+) create mode 100755 389/CH7/EX7.1/Example7_1.sce create mode 100755 389/CH7/EX7.10/Example7_10.sce create mode 100755 389/CH7/EX7.11/Example7_11.sce create mode 100755 389/CH7/EX7.12/Example7_12.sce create mode 100755 389/CH7/EX7.13/Example7_13.sce create mode 100755 389/CH7/EX7.14/Example7_14.sce create mode 100755 389/CH7/EX7.15/Example7_15.sce create mode 100755 389/CH7/EX7.2/Example7_2.sce create mode 100755 389/CH7/EX7.3/Example7_3.sce create mode 100755 389/CH7/EX7.4/Example7_4.sce create mode 100755 389/CH7/EX7.5/Example7_5.sce create mode 100755 389/CH7/EX7.6/Example7_6.sce create mode 100755 389/CH7/EX7.7/Example7_7.sce create mode 100755 389/CH7/EX7.8/Example7_8.sce create mode 100755 389/CH7/EX7.9/Example7_9.sce (limited to '389/CH7') diff --git a/389/CH7/EX7.1/Example7_1.sce b/389/CH7/EX7.1/Example7_1.sce new file mode 100755 index 000000000..43373c23a --- /dev/null +++ b/389/CH7/EX7.1/Example7_1.sce @@ -0,0 +1,21 @@ +clear; +clc; + +// Illustration 7.1 +// Page: 222 + +printf('Illustration 7.1 - Page: 222\n\n'); + +// Solution + +// ****Data****// +Temp1 = 273+26.1;// [K] +P1 = 100;// [mm Hg] +Temp2 = 273+60.6;// [K] +P2 = 400;// [mm Hg] +P = 200;// [mm Hg] +//*****// + +deff('[y] = f12(T)','y = ((1/Temp1)-(1/T))/((1/Temp1)-(1/Temp2))-((log(P1)-log(P))/(log(P1)-log(P2)))'); +T = fsolve(37,f12);// [K] +printf("At %f 0C, the vapour pressure of benzene is 200 mm Hg\n",T-273); \ No newline at end of file diff --git a/389/CH7/EX7.10/Example7_10.sce b/389/CH7/EX7.10/Example7_10.sce new file mode 100755 index 000000000..1fd1a55c1 --- /dev/null +++ b/389/CH7/EX7.10/Example7_10.sce @@ -0,0 +1,35 @@ +clear; +clc; + +// Illustration 7.10 +// Page:241 + +printf('Illustration 7.10 - Page:241\n\n'); + +// solution + +//****Data****// +Tg = 60;// [OC] +Y_prime = 0.050;// [kg toulene/kg air] +//*****// + +// Wet Bulb temparature +Dab = 0.92*10^(-5);// [square m/s] +density_air = 1.060;// [kg/cubic cm]; +viscocity_G = 1.95*10^(-5);// [kg/m.s] +Sc = viscocity_G/(density_air*Dab); +// From Eqn. 7.28 +hG_by_kY = 1223*(Sc^0.567);// [J/kg.K] +// Soln. of Eqn. 7.26 by trial & error method: +// (Tg-Tw) = (Yas_prime-Y_prime)*(lambda_w/hG_by_kY) +Tw = 31.8;// [OC] +printf("Wet Bulb Temparature:%f OC\n",Tw); + +// Adiabatic Saturation Temparature +C_air = 1005;// [J/kg.K] +C_toulene = 1256;// [J/kg.K] +Cs = C_air+(C_toulene*Y_prime);// [J/kg.K] +// Soln. of Eqn. 7.21 by trial & error method: +// (Tg-Tas) = (Yas_prime-Y_prime)*(lambda_as/Cs) +Tas = 25.7;// [OC] +printf("Adiabatic Saturation Temparature: %f OC\n",Tas); \ No newline at end of file diff --git a/389/CH7/EX7.11/Example7_11.sce b/389/CH7/EX7.11/Example7_11.sce new file mode 100755 index 000000000..bdb7bba7f --- /dev/null +++ b/389/CH7/EX7.11/Example7_11.sce @@ -0,0 +1,79 @@ +clear; +clc; + +// Illustration 7.11 +// Page: 249 + +printf('Illustration 7.11 - Page: 249\n\n'); + +// solution + +//****Data****// +L_min = 2.27;// [kg/square m.s] +G_min = 2;// [kg/square m.s] +L2_prime = 15;// [kg/s] +Q = 270;// [W] +Templ2 = 45;// [OC] +Tempg1 = 30;// [OC] +Tempw1 = 24;// [OC] +Kya = 0.90;// [kg/cubic m.s] +//*******// + +H1_prime = 72;// [kJ/kg dry air] +Y1_prime = 0.0160;// [kg water/kg dry air] +Templ1 = 29;// [OC] +Cal = 4.187;// [kJ/kg] +// Equilibrium Data: +// Data = [Temp.(OC),H_star(kJ/kg)] +Data_star = [29 100;32.5 114;35 129.8;37.5 147;40 166.8;42.5 191;45 216]; +// The operating line for least slope: +H2_star = 209.5;// [kJ/kg] +Data_minSlope = [Templ1 H1_prime;Templ2 H2_star]; +deff('[y] = f14(Gmin)','y = ((L2_prime*Cal)/Gmin)-((H2_star-H1_prime)/(Templ2-Templ1))'); +Gmin = fsolve(2,f14);// [kg/s] +Gs = 1.5*Gmin;// [kg/s] +// For the Operating Line: +y = deff('[y] = f15(H2)','y = ((H2-H1_prime)/(Templ2-Templ1))-((L2_prime*Cal)/Gs)'); +H2 = fsolve(2,f15);// [kJ/kg dry air] +Data_opline = [Templ1 H1_prime;Templ2 H2]; +scf(4); +plot(Data_star(:,1),Data_star(:,2),Data_minSlope(:,1),Data_minSlope(:,2),Data_opline(:,1),Data_opline(:,2)); +xgrid(); +legend('Equilibrium line','Minimum Flow Rate Line','Operating Line'); +xlabel("Liquid Temperature, 0C"); +ylabel("Enthalphy Of Air Water vapour, kJ / kg dry air"); +// Tower cross section Area: +Al = L2_prime/L_min;// [square m] +Ag = Gs/G_min;// [square m] +A = min(Al,Ag);// [square m] +// Data from operating line: +// Data1 = [Temp.(OC),H_prime(kJ/kg)] +Data1 = [29 72;32.5 92;35 106.5;37.5 121;40 135.5;42.5 149.5;45 163.5]; +// Driving Force: +Data2 = zeros(7,2); +// Data2 = [Temp[OC],driving Force] +for i = 1:7 + Data2(i,1) = Data1(i,1); + Data2(i,2) = 10^2/(Data_star(i,2)-Data1(i,2)); +end +// The data for operating line as abcissa is plotted against driving force; +Area = 3.25; +// From Eqn. 7.54 +deff('[y] = f16(Z)','y = Area-(Kya*Z/G_min)'); +Z = fsolve(2,f16); +printf("The height of tower is %f m\n",Z); +NtoG = 3.25; +HtoG = G_min/Kya;// [m] + +// Make up water +// Assuming the outlet air is essentially saturated: +Y2_prime = 0.0475;// [kg water/kg dry air] +E = G_min*(A)*(Y2_prime-Y1_prime);// [kg/s] +// Windage loss estimated as 0.2 percent +W = 0.002*L2_prime;// [kg/s] +ppm_blowdown = 2000;// [ppm] +ppm_makeup = 500;// [ppm] +// Since the weight fraction are proportional to the corresponding ppm values: +B = (E*ppm_makeup/(ppm_blowdown-ppm_makeup))-W;// [kg/s] +M = B+E+W;// [kg/s] +printf("The makeup water is estimated to be %f kg/s\n",M); \ No newline at end of file diff --git a/389/CH7/EX7.12/Example7_12.sce b/389/CH7/EX7.12/Example7_12.sce new file mode 100755 index 000000000..ca25c5bb8 --- /dev/null +++ b/389/CH7/EX7.12/Example7_12.sce @@ -0,0 +1,38 @@ +clear; +clc; + +// Illustration 7.12 +// Page: 252 + +printf('Illustration 7.12 - Page: 252\n\n') +// solution + +//****Data****// +Tempg1 = 32;// [OC] +Tempw1 = 28;// [OC] +//******// + +H1 = 90;// [kJ/kg] +H1_prime = 72;// [kJ/kg dry air] +H2_prime = 163.6;// [kJ/kg dry air] +deff('y = f17(H2)','y = (H2-H1)-(H2_prime-H1_prime)'); +H2 = fsolve(2,f17);// [kJ/kg dry air] +// Slope of Operating Line same as Operating Line as Illustration 7.11 +slopeOperat = (163.5-72)/(45-29); +deff("[y] = f18(Temp)","y = slopeOperat*(Temp-Tempg1)+H1"); +Temp = 30:0.01:45; +// Equilibrium Data: +// Data = [Temp.(OC),H_star(kJ/kg)] +Data_star = [29 100;32.5 114;35 129.8;37.5 147;40 166.8;42.5 191;45 216]; +scf(5); +plot(Data_star(:,1),Data_star(:,2),Temp,f18); +xgrid(); +legend("Equilibrium Line","operating Line"); +xlabel("Liquid Temperature, C"); +ylabel("Enthalphy Of Air Water vapour, kJ/kg dry air"); +// The Value for NtoG & HtoG will be same as in Illustration 7.11 +NtoG = 3.25; +HtoG = 2.22;// [m] +// By hit & trial method: +Temp = 37.1;// [OC] +printf("The Temperature to which water is to be cooled is %f OC\n",Temp); \ No newline at end of file diff --git a/389/CH7/EX7.13/Example7_13.sce b/389/CH7/EX7.13/Example7_13.sce new file mode 100755 index 000000000..6e967205b --- /dev/null +++ b/389/CH7/EX7.13/Example7_13.sce @@ -0,0 +1,33 @@ +clear; +clc; + +// Illustration 7.13 +// Page: 254 + +printf('Illustration 7.13\n\n'); + +// solution + +// Given +Tempg1=65;// [OC] +Y1_prime=0.0170;// [kg water/kg dry air] +// Using adiabatic satursion line on Fig. 7.5 (Pg 232) +Tempas=32;// [OC] +Yas_prime=0.0309;// [kg water/kg dry air] +Tempg2=45;// [OC] +Z=2;// [m] +//*******// + +Y2_prime=0.0265;// [kg water/kg dry air] +deff('[y]=f19(Kya_by_Gs)','y=log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)'); +Kya_by_Gs=fsolve(1,f19);// [1/m] + +// For the extended chamber: +Z=4;// [m] +deff('[y]=f20(Y2_prime)','y=log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)'); +Y2_prime=fsolve(0.029,f20);//[kg water/kg dry air] +// With the same adiabatic curve: +Tempg2=34;// [OC] +printf("The Outlet Conditions are:\n"); +printf("Absolute Humidity is %f kg water/kg dry air\n",Y2_prime); +printf("Dry Bulb Temperature is %f OC\n",Tempg2); \ No newline at end of file diff --git a/389/CH7/EX7.14/Example7_14.sce b/389/CH7/EX7.14/Example7_14.sce new file mode 100755 index 000000000..f3bfd7c51 --- /dev/null +++ b/389/CH7/EX7.14/Example7_14.sce @@ -0,0 +1,113 @@ +clear; +clc; + +// Illustration 7.14 +// Page: 256 + +printf('Illustration 7.14 - Page: 256\n\n'); + +// solution + +//****Data****// +// a = N2 b = CO +// Entering gas +Y1_prime = 0;// [kg water/kg dry air] +Pt = 1;// [atm] +Tempg1 = 315;// [OC] +G_prime = 5;// [square m/s] + +// Temp of the tower: +Templ2 = 18;// [OC] +Density_L2 = 1000; //[kg/square m] +viscocity_L2 = 1.056*10^(-3);// [kg/m.s] +Tempg2 = 27;// [OC] + +Mb = 28;// [kg/kmol] +Ma = 18.02;// [kg/kmol] +Density_G1 = (Mb/22.41)*(273/(Tempg1+273));// [kg/square m] +G1 = G_prime*(Density_G1);// [kg/s] + +// Since the outlet gas is nearly saturated: +Y_prime = 0.024;// [kg water/kg dry air] +Y2_prime = 0.022;// [kg water/kg dry air, assumed] +G2 = G1*(1+Y2_prime);// [kg/s] +Mav = (1+Y2_prime)/((1/Mb)+(Y2_prime/Ma));// [kg/kmol] +Density_G2 = (Mav/22.4)*(273/(Templ2+273));// [kg/square m] +L2_by_G2 = 2; +abcissa = L2_by_G2*(Density_G2/(Density_L2-Density_G2))^(1/2); +// From Fig. 6.34: +// For a gas pressure drop of 400 N/square m/m +ordinate = 0.073; +// From Table 6.3: +Cf = 65; +J = 1; +deff('[y] = f21(G2_prime)','y = ((G2_prime^2)*Cf*(viscocity_L2^0.1)*J/(Density_G2*(Density_L2-Density_G2)))-ordinate'); +// Tentative data: +G2_prime = fsolve(2,f21);// [kg/square m.s] +Area = G1/G2_prime;// [square m] +dia = sqrt(4*Area/%pi);// [m] + +// Final data: +dia = 1.50;// [m] +Area = %pi*dia^2/4;// [square m] +Gs_prime = G1/Area;// [kg/square m.s] +G2_prime = G2/Area;// [kg/square m.s] +L2_prime = L2_by_G2*G2_prime;// [kg/square m.s] +// From Eqn. 7.29: +deff('[y] = f22(L1_prime)','y = (L2_prime-L1_prime)-(Gs_prime*(Y2_prime-Y1_prime))'); +L1_prime = fsolve(2,f22); +Cb = 1089;// [J/kg.K] +Ca = 1884;// [J/kg.K] +Cs1 = Cb+(Y1_prime*Ca);// [J/(kg dry air).K] +Cs2 = Cb+(Y2_prime*Ca);// [J/(kg dry air).K] +Tempo = Templ2;// [base temp.,K] +lambda = 2.46*10^6;// [J/kg] +CaL = 4187;// [J/kg K] +// From Eqn. 7.31: +deff('[y] = f23(Templ1)','y = ((L2_prime*CaL*(Templ2-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs2*(Tempg2-Tempo))+(Y2_prime*lambda)))'); +Templ1 = fsolve(2,f23); +// At Templ1 = 49.2 OC +viscocity_L = 0.557*10^(-3);// [kg/m.s] +Density_L = 989;// [kg/square m] +K = 0.64;// [w/m.K] +Prl = CaL*viscocity_L/K; + +// For Entering Gas: +viscocity_G1 = 0.0288*10^(-3);// [kg*/m.s] +Dab = 0.8089*10^(-4);// [square m/s] +ScG = viscocity_G1/(Density_G1*Dab); +PrG = 0.74; + +// From Illustration 6.7: +a = 53.1;// [square m/square m] +Fga = 0.0736;// [kmol/square m] +Hga = 4440;// [W/square m.K] +Hla = 350500;// [W/square m.K] +// At the bottom, by several trial: +Tempi = 50.3;// [OC] +pai = 93.9/760;// [atm] +paG = 0;// [atm] +// By Eqn. 7.64: +dY_prime_by_dZ = -(Ma*Fga/Gs_prime)*log((1-(pai/Pt))/(1-(paG/Pt)));// [(kg H2O/kg dry gas)/m] +Hg_primea = -(Gs_prime*Ca*dY_prime_by_dZ)/(1-exp((Gs_prime*Ca*dY_prime_by_dZ)/(Hga)));// [W/square m.K] +dTempg_by_dZ = -(Hg_primea*(Tempg1-Tempi)/(Gs_prime*Cs1));// [OC/m] +Tempi = (Templ1)+((Gs_prime*(Cs1*dTempg_by_dZ)+((Ca*(Tempg1))-(CaL*(Templ1))+(((CaL-Ca)*(Tempo))+lambda))*dY_prime_by_dZ)/((Gs_prime*CaL*dY_prime_by_dZ)-Hla));// [OC] +// Assume: +delta_Tempg = -30;// [OC] +delta_Z = delta_Tempg/(dTempg_by_dZ);// [m] +Tempg = Tempg1+delta_Tempg;// [OC] +Y_prime = Y1_prime+(dY_prime_by_dZ)*delta_Z;// [kg H2O/kg dry gas] +paG = Y_prime/(Y_prime+(Ma/Mb));// [atm] +Cs = Cb+Ca*(Y_prime);// [J/(kg dry air).K] +// Water balance, From Eqn. 7.29: +deff('[y] = f24(L_prime)','y = (L2_prime-L_prime)-(Gs_prime*(Y_prime-Y1_prime))'); +L_prime = fsolve(2,f24);// [kg/square m.s] + +deff('[y] = f25(Templ)','y = ((L_prime*CaL*(Templ-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs*(Tempg-Tempo))+(Y_prime*lambda)))'); +Templ = fsolve(2,f25); +// This process is repeated several times until gas temp falls to Tempg2 +// The value of Y2_prime was calculated to be 0.0222 which is sufficiently close to the assumed value. +// Z = sum of all delta_Z +Z = 1.54;// [m] +printf("The diameter of tower is %f m\n",dia); +printf("The packed height is %f m\n",Z); \ No newline at end of file diff --git a/389/CH7/EX7.15/Example7_15.sce b/389/CH7/EX7.15/Example7_15.sce new file mode 100755 index 000000000..bbfab304a --- /dev/null +++ b/389/CH7/EX7.15/Example7_15.sce @@ -0,0 +1,107 @@ +clear; +clc; + +// Illustration 7.15 +// Page: 267 + +printf('Illustration 7.15 - Page: 267\n\n'); + +// solution + +//***Data***// +w = 0.75;// [m] +OD = 19.05/1000;// [m] +l = 3.75;// [m] +n = 20; +t = 1.65/1000;// [m] +Ws = 2.3;// [kg/s] +Wal = 10;// [kg/s] +Wt = 4;// [kg/s] +Density = 800;// [kg/cubic m] +viscocity = 0.005;// [kg/m.s] +K = 0.1436;// [W/m.K] +Ct = 2010;// [J/kg.K] +Cal = 4187;// [J/kg.K] +Y1_prime = 0.01;// [kg H2O/kg dry air] +Y2_prime = 0.06;// [kg H2O/kg dry air] +TempT = 95;// [OC] +//*****// + +Free_area = (w-(n*OD))*l;// [square m] +Gs_min = 2.3/Free_area;// [kg/square m.s] +Yav_prime = (Y1_prime+Y2_prime)/2;// [kg H2O/kg dry air] +// From Eqn. 7.86: +ky = 0.0493*(Gs_min*(1+Yav_prime))^0.905;// [kg/square m.s.delta_Y_prime] +// From Fig. 7.5: +H1_prime = 56000;// [J/kg] +Ao = 400*%pi*OD*l;// [square m] +// Cooling water is distributed over 40 tubes & since tubes are staggered +geta = Wal/(40*2*l);// [kg/m.s] +geta_by_OD = geta/OD;// [kg/square m.s] +// Assume: +TempL = 28;// [OC] +// From Eqn. 7.84: +hL_prime = (982+(15.58*TempL))*(geta_by_OD^(1/3));// [W/square m.K] +// From Eqn. 7.85: +hL_dprime = 11360;// [W/square m.K] +// From Fig. 7.5 (Pg 232) +m = 5000;// [J/kg.K] +Ky = 1/((1/ky)+(m/hL_dprime)); +ID = (OD-(2*t));// [m] +Ai = %pi*(ID^2)/4;// [square m] +Gt_prime = Wt/(n*Ai);// [kg/square m.s] +Re = ID*Gt_prime/viscocity; +Pr = Ct*viscocity/K; +// From a standard correlation: +hT = 364;// [W/square m.K] +Dav = (ID+OD)/2;// [m] +Zm = (OD-ID)/2;// [m] +Km = 112.5;// [W/m.K] +// From Eqn. 7.67: +Uo = 1/((OD/(ID*hT))+((OD/Dav)*(Zm/Km))+(1/hL_prime));// [W/square m.K] +// From Eqn. 7.75: +alpha1 = -(((Uo*Ao)/(Wt*Ct))+((Uo*Ao)/(Wal*Cal))); +alpha2 = m*Uo*Ao/(Wt*Ct); +// From Eqn. 7.76: +beeta1 = Ky*Ao/(Wal*Cal); +beeta2 = -((m*Ky*Ao/(Wal*Cal))-(Ky*Ao/Ws)); +y = deff('[y] = f26(r)','y = (r^2)+((alpha1+beeta2)*r)+((alpha1*beeta2)-(alpha2*beeta1))'); +r1 = fsolve(10,f26); +r2 = fsolve(0,f26); +beeta2 = 1.402; +// From Eqn. 7.83: +// N1-(M1*(r1+alpha1)/beeta1) = 0............................................(1) +// N2-(M2*(r2+alpha2)/beeta2) = 0............................................(2) +// From Eqn. 7.77: +// At the top: +x1 = 1; +// TempL2+(M1*exp(r1*x1))+(M2*exp(-(r2*x1))) = TempL.........................(3) +// From Eqn. 7.78: +// At the bottom: +x2 = 0; +// H1_star-N1-N2 = H1_prime..................................................(4) +// From Eqn. 7.80: +// ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1)) = (Tempt-TempL)...............(5) +// From Eqn. 7.81: +// ((N1/r1)*(exp(r1)-1))+((N2*r2)*(exp(r2)-1)) = (H1_star-H1_prime)..........(6) +// From Eqn. 7.91 & Eqn. 7.92: +// Uo*Ao*(TempT-TempL)=Ky*Ao*(H1_star-H1_prime)..............................(7) + +// Elimination of M's & N's by solving Eqn. (1) to (4) and (7) simultaneously: +// and from Fig. 7.5 (Pg 232): +TempL1=28;// [OC] +H1_star=(Uo*Ao*(TempT-TempL)/(Ky*Ao))+H1_prime;// [J/kmol] +// Solving (1) to (4) simultaneously: +a = [1 -(r1+alpha1)/beeta1 0 0;0 0 1 -(r2+alpha1)/beeta1;0 exp(r1*x1) 0 exp(r2*x1);1 0 1 0]; +b = [0;0;TempT-TempL1;H1_star-H1_prime]; +soln = a\b; +N1 = soln(1); +M1 = soln(2); +N2 = soln(3); +M2 = soln(4); +// By Eqn. 5 +delta_Temp = ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1));// [OC] +Q = Uo*delta_Temp*Ao; +TempT1 = TempT-(Q/(Wt*Ct));// [OC] +H2_prime = Q/(Ws)+H1_prime;// [J/kg] +printf("Temparature to which oil was cooled: %f OC\n",TempT1); \ No newline at end of file diff --git a/389/CH7/EX7.2/Example7_2.sce b/389/CH7/EX7.2/Example7_2.sce new file mode 100755 index 000000000..0cc483112 --- /dev/null +++ b/389/CH7/EX7.2/Example7_2.sce @@ -0,0 +1,31 @@ +clear; +clc; + +// Illustration 7.2: +// Page: 223 + +printf('Illustration 7.2 - Page: 223\n\n'); +printf('Illustration 7.2 (b)\n\n'); + +// Solution (b) + +// At 100 OC, +PH2O = 760;// [Vapour pressure of water, mm of Hg] +// From Fig. 7.2 (Pg 224) +// At this value, +PC6H6 = 1400;// [Vapour pressure of benzene, mm of Hg] +printf("Vapour Pressure of benzene at 100 OC is %d mm of Hg\n\n", PC6H6); + +printf('Illustration 7.2 (c)\n\n'); + +// Solution (c) + +// Reference: H20 +// At 25 OC +m = 0.775; +Mr = 18.02;// [kg/kmol] +lambdar = 2443000;// [N/m.kg] +M = 78.05;// [kg/kmol] +// From Eqn. 7.6: +lambda = m*lambdar*Mr/M;// [N/m.kg] +printf("Latent Heat of Vaporization at 25 OC is %f kN/m.kg\n",lambda/1000); \ No newline at end of file diff --git a/389/CH7/EX7.3/Example7_3.sce b/389/CH7/EX7.3/Example7_3.sce new file mode 100755 index 000000000..24d34674e --- /dev/null +++ b/389/CH7/EX7.3/Example7_3.sce @@ -0,0 +1,28 @@ +clear; +clc; + +// Illustration 7.3 +// Page: 226 + +printf('Illustration 7.3 - Page: 226\n\n'); + +// solution + +// ****Data****// +m = 10;// [kg] +Cvap = 1.256;// [kJ/kg.K] +Cliq = 1.507;// [kJ/kg.K] +Temp1 = 100;// [OC] +Temp4 = 10;// [OC] +//******// + +// Using Fig 7.2 (Pg 224): +Temp2 = 25;// [OC] +// Using the notation of Fig. 7.3: +H1_diff_H2 = Cvap*(Temp1-Temp2);// [kJ/kg] +// From Illustration 7.2: +H2_diff_H3 = 434;// [Latent Heat of Vaporisation, kJ/kg] +H3_diff_H4 = Cliq*(Temp2-Temp4);// [kJ/kg] +H1_diff_H4 = H1_diff_H2+H2_diff_H3+H3_diff_H4;// [kJ/kg] +H = m*H1_diff_H4;// [kJ] +printf("Heat evolved for 10 kg Benzene is %f kJ\n",H); \ No newline at end of file diff --git a/389/CH7/EX7.4/Example7_4.sce b/389/CH7/EX7.4/Example7_4.sce new file mode 100755 index 000000000..cb544325e --- /dev/null +++ b/389/CH7/EX7.4/Example7_4.sce @@ -0,0 +1,43 @@ +clear; +clc; + +// Illustration 7.4 +// Page: 227 + +printf('Illustration 7.4 - Page: 227\n\n'); + +// solution + +//****Data****// +// A = benzene vapour; B = Nitrogen Gas +P = 800;// [mm Hg] +Temp = 273+60;// [K] +pA = 100;// [mm Hg] +//******// + +pB = P-pA;// [mm Hg] +MA = 78.05;// [kg/kmol] +MB = 28.08;// [kg/kmol] + +// Mole Fraction +printf("On the Basis of Mole Fraction\n"); +yAm = pA/P; +yBm = pB/P; +printf("Mole Fraction of Benzene is %f\n",yAm); +printf("Mole Fraction of Nitrogen is %f\n",yBm); +printf("\n"); + +// Volume Fraction +printf("On the Basis of Volume Fraction\n"); +// Volume fraction is same as mole Fraction +yAv = yAm; +yBv = yBm; +printf("Volume Fraction of Benzene is %f\n",yAv); +printf("Volume Fraction of Nitrogen is %f\n",yBv); +printf("\n"); + +// Absolute Humidity +printf("On the basis of Absolute humidity\n") +Y = pA/pB;// [mol benzene/mol nitrogen] +Y_prime = Y*(MA/MB);// [kg benzene/kg nitrogen] +printf("The concentration of benzene is %f kg benzene/kg nitrogen\n",Y_prime); \ No newline at end of file diff --git a/389/CH7/EX7.5/Example7_5.sce b/389/CH7/EX7.5/Example7_5.sce new file mode 100755 index 000000000..cf90effd9 --- /dev/null +++ b/389/CH7/EX7.5/Example7_5.sce @@ -0,0 +1,35 @@ +clear; +clc; + +// Illustration 7.5 +// Page: 228 + +printf('Illustration 7.5 - Page: 228\n\n'); + +printf('Illustration 7.5 (a)\n\n'); +// solution(a) + +//****Data****// +// A = benzene vapour; B = Nitrogen Gas +P = 1;// [atm] +//*****// + +MA = 78.05;// [kg/kmol] +MB = 28.02;// [kg/kmol] +// Since gas is saturated, from Fig. 7.2 (Pg 224): +pA = 275/760;// [atm] +Y = pA/(P-pA);// [kmol benzene/kmol nitrogen] +Y_prime = Y*(MA/MB);// [kg benzene/kg nitrogen] +printf("The concentration of benzene is %f kg benzene/kg nitrogen\n\n",Y_prime); + +printf('Illustration 7.5 (b)\n\n'); +// solution(b) + +// A = benzene vapour; B = CO2 +MA = 78.05;// [kg/kmol] +MB = 44.01;// [kg/kmol] +// Since gas is saturated, from Fig. 7.2: +pA = 275/760;// [atm] +Y = pA/(P-pA);// [kmol benzene/kmol CO2] +Y_prime = Y*(MA/MB);// [kg benzene/kg CO2] +printf("The concentration of benzene is %f kg benzene/kg CO2\n",Y_prime); \ No newline at end of file diff --git a/389/CH7/EX7.6/Example7_6.sce b/389/CH7/EX7.6/Example7_6.sce new file mode 100755 index 000000000..009a721ef --- /dev/null +++ b/389/CH7/EX7.6/Example7_6.sce @@ -0,0 +1,62 @@ +clear; +clc; + +// Illustration 7.6 +// Page: 234 + +printf('Illustration 7.6 - Page: 234\n\n'); + +// solution + +//****Data****// +// A = water vapour; B = air +TempG = 55;// [OC] +P = 1.0133*10^(5);// [N/square m] +Y_prime = 0.030;// [kg water/kg dry air] +//******// + +MA = 18.02;// [kg/kmol] +MB = 28.97;// [kg/kmol] + +// Percent Humidity +// From psychrometric chart, at 55 OC +Ys_prime = 0.115;// [kg water/kg dry air] +percent_Humidity = (Y_prime/Ys_prime)*100; +printf("The sample has percent Humidity = %f %%\n",percent_Humidity); + +// Molal Absolute Humidity +Y = Y_prime*(MB/MA);// [kmol water/kmol dry air] +printf("Molal Absolute Humidity of the sample is %f kmol water/kmol dry air\n",Y); + +// Partial Pressure +pA = Y*P/(1+Y);// [N/square m] +printf("The Partial Pressure Of Water is %f N/square m\n",pA); + +// Relative Humidity +pa = 118*133.3;// [vapour pressure of water at 55 OC,N/square m] +relative_Humidity = (pA/pa)*100; +printf("The sample has relative Humidity = %f %%\n",relative_Humidity); + +// Dew Point +// From psychrometric chart, +dew_point = 31.5;// [OC] +printf("Dew point Of the Sample is %f Oc\n",dew_point); + +// Humid Volume +// At 55 OC +vB = 0.93;// [specific volume of dry air,cubic m/kg] +vsB = 1.10;// [specific volume of saturated air,cubic m/kg] +vH = vB+((vsB-vB)*(percent_Humidity/100));// [cubic m/kg] +printf("The Humid Volume of the Sample is %f cubic m/kg\n",vH); + +// Humid Heat +CB = 1005;// [J/kg.K] +CA = 1884;// [J/kg.K] +Cs = CB+(Y_prime*CA);// [J/kg] +printf("The Humid Heat is %f J/kg dry air.K\n",Cs); + +// Enthalpy +HA = 56000;// [J/kg dry air] +HsA = 352000;// [J/kg dry air] +H_prime = HA+((HsA-HA)*(percent_Humidity/100));// [J/kg dry air] +printf("The Enthalphy of the sample is %f J/kg dry air\n",H_prime); \ No newline at end of file diff --git a/389/CH7/EX7.7/Example7_7.sce b/389/CH7/EX7.7/Example7_7.sce new file mode 100755 index 000000000..5128817c8 --- /dev/null +++ b/389/CH7/EX7.7/Example7_7.sce @@ -0,0 +1,23 @@ +clear; +clc; + +// Illustration 7.7 +// Page: 236 + +printf('Illustration 7.7 - Page: 236\n\n'); + +// solution + +//****Data****// +// A = water vapour; B = air +V = 100;// [m^3] +Tempi = 55;// [OC] +Tempf = 110;// [OC] +//*****// + +// From Illustration 7.6 +vH = 0.974;// [m^3/kg] +Cs = 1061.5;// [J/kg] +WB = V/vH;// [kg] +Q = WB*Cs*(Tempf-Tempi);// [J] +printf("Heat recquired is %e J\n",Q); \ No newline at end of file diff --git a/389/CH7/EX7.8/Example7_8.sce b/389/CH7/EX7.8/Example7_8.sce new file mode 100755 index 000000000..c458eda0d --- /dev/null +++ b/389/CH7/EX7.8/Example7_8.sce @@ -0,0 +1,21 @@ +clear; +clc; + +// Illustration 7.8 +// Page: 237 + +printf('Illustration 7.8 - Page: 237\n\n'); + +// solution + +//****Data****// +Y_prime1 = 0.030;// [kg water/kg dry air] +Temp1 = 83;// [OC] +//*******// + +// From the psychrometric chart, the condition at 90 OC +Temp2 = 41.5;// [OC] +Y_prime2 = 0.0485;// [kg water/kg dry air] +printf("The Outlet Air condition are:\n"); +printf("Temp. = %f OC\n",Temp2); +printf("Absolute Humidity = %f kg water/kg dry air\n",Y_prime2); \ No newline at end of file diff --git a/389/CH7/EX7.9/Example7_9.sce b/389/CH7/EX7.9/Example7_9.sce new file mode 100755 index 000000000..098a6d1bf --- /dev/null +++ b/389/CH7/EX7.9/Example7_9.sce @@ -0,0 +1,24 @@ +clear; +clc; + +// Illustration 7.9 +// Page:240 + +printf('Illustration 7.9 - Page:240\n\n'); + +// solution + +//****Data****// +Tempw = 35;// [OC] +Tempg = 65;// [OC] +//******// + +// From psychrometric chart +lambda_w = 2419300;// [J/kg] +Y_prime_w = 0.0365;// [kg H2O/kg dry air] +// From fig 7.5(a) +hG_by_kY = 950;// [J/kg] +// From Eqn. 7.26 +deff('[y] = f13(Y_prime)','y = (Tempg-Tempw)-((lambda_w*(Y_prime_w-Y_prime))/hG_by_kY)'); +Y_prime = fsolve(2,f13);// [kg H2O/kg dry air] +printf("Humidity of air is %f kg H2O/kg dry air\n",Y_prime); \ No newline at end of file -- cgit