summaryrefslogtreecommitdiff
path: root/389/CH7/EX7.14/Example7_14.sce
diff options
context:
space:
mode:
Diffstat (limited to '389/CH7/EX7.14/Example7_14.sce')
-rwxr-xr-x389/CH7/EX7.14/Example7_14.sce113
1 files changed, 113 insertions, 0 deletions
diff --git a/389/CH7/EX7.14/Example7_14.sce b/389/CH7/EX7.14/Example7_14.sce
new file mode 100755
index 000000000..f3bfd7c51
--- /dev/null
+++ b/389/CH7/EX7.14/Example7_14.sce
@@ -0,0 +1,113 @@
+clear;
+clc;
+
+// Illustration 7.14
+// Page: 256
+
+printf('Illustration 7.14 - Page: 256\n\n');
+
+// solution
+
+//****Data****//
+// a = N2 b = CO
+// Entering gas
+Y1_prime = 0;// [kg water/kg dry air]
+Pt = 1;// [atm]
+Tempg1 = 315;// [OC]
+G_prime = 5;// [square m/s]
+
+// Temp of the tower:
+Templ2 = 18;// [OC]
+Density_L2 = 1000; //[kg/square m]
+viscocity_L2 = 1.056*10^(-3);// [kg/m.s]
+Tempg2 = 27;// [OC]
+
+Mb = 28;// [kg/kmol]
+Ma = 18.02;// [kg/kmol]
+Density_G1 = (Mb/22.41)*(273/(Tempg1+273));// [kg/square m]
+G1 = G_prime*(Density_G1);// [kg/s]
+
+// Since the outlet gas is nearly saturated:
+Y_prime = 0.024;// [kg water/kg dry air]
+Y2_prime = 0.022;// [kg water/kg dry air, assumed]
+G2 = G1*(1+Y2_prime);// [kg/s]
+Mav = (1+Y2_prime)/((1/Mb)+(Y2_prime/Ma));// [kg/kmol]
+Density_G2 = (Mav/22.4)*(273/(Templ2+273));// [kg/square m]
+L2_by_G2 = 2;
+abcissa = L2_by_G2*(Density_G2/(Density_L2-Density_G2))^(1/2);
+// From Fig. 6.34:
+// For a gas pressure drop of 400 N/square m/m
+ordinate = 0.073;
+// From Table 6.3:
+Cf = 65;
+J = 1;
+deff('[y] = f21(G2_prime)','y = ((G2_prime^2)*Cf*(viscocity_L2^0.1)*J/(Density_G2*(Density_L2-Density_G2)))-ordinate');
+// Tentative data:
+G2_prime = fsolve(2,f21);// [kg/square m.s]
+Area = G1/G2_prime;// [square m]
+dia = sqrt(4*Area/%pi);// [m]
+
+// Final data:
+dia = 1.50;// [m]
+Area = %pi*dia^2/4;// [square m]
+Gs_prime = G1/Area;// [kg/square m.s]
+G2_prime = G2/Area;// [kg/square m.s]
+L2_prime = L2_by_G2*G2_prime;// [kg/square m.s]
+// From Eqn. 7.29:
+deff('[y] = f22(L1_prime)','y = (L2_prime-L1_prime)-(Gs_prime*(Y2_prime-Y1_prime))');
+L1_prime = fsolve(2,f22);
+Cb = 1089;// [J/kg.K]
+Ca = 1884;// [J/kg.K]
+Cs1 = Cb+(Y1_prime*Ca);// [J/(kg dry air).K]
+Cs2 = Cb+(Y2_prime*Ca);// [J/(kg dry air).K]
+Tempo = Templ2;// [base temp.,K]
+lambda = 2.46*10^6;// [J/kg]
+CaL = 4187;// [J/kg K]
+// From Eqn. 7.31:
+deff('[y] = f23(Templ1)','y = ((L2_prime*CaL*(Templ2-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs2*(Tempg2-Tempo))+(Y2_prime*lambda)))');
+Templ1 = fsolve(2,f23);
+// At Templ1 = 49.2 OC
+viscocity_L = 0.557*10^(-3);// [kg/m.s]
+Density_L = 989;// [kg/square m]
+K = 0.64;// [w/m.K]
+Prl = CaL*viscocity_L/K;
+
+// For Entering Gas:
+viscocity_G1 = 0.0288*10^(-3);// [kg*/m.s]
+Dab = 0.8089*10^(-4);// [square m/s]
+ScG = viscocity_G1/(Density_G1*Dab);
+PrG = 0.74;
+
+// From Illustration 6.7:
+a = 53.1;// [square m/square m]
+Fga = 0.0736;// [kmol/square m]
+Hga = 4440;// [W/square m.K]
+Hla = 350500;// [W/square m.K]
+// At the bottom, by several trial:
+Tempi = 50.3;// [OC]
+pai = 93.9/760;// [atm]
+paG = 0;// [atm]
+// By Eqn. 7.64:
+dY_prime_by_dZ = -(Ma*Fga/Gs_prime)*log((1-(pai/Pt))/(1-(paG/Pt)));// [(kg H2O/kg dry gas)/m]
+Hg_primea = -(Gs_prime*Ca*dY_prime_by_dZ)/(1-exp((Gs_prime*Ca*dY_prime_by_dZ)/(Hga)));// [W/square m.K]
+dTempg_by_dZ = -(Hg_primea*(Tempg1-Tempi)/(Gs_prime*Cs1));// [OC/m]
+Tempi = (Templ1)+((Gs_prime*(Cs1*dTempg_by_dZ)+((Ca*(Tempg1))-(CaL*(Templ1))+(((CaL-Ca)*(Tempo))+lambda))*dY_prime_by_dZ)/((Gs_prime*CaL*dY_prime_by_dZ)-Hla));// [OC]
+// Assume:
+delta_Tempg = -30;// [OC]
+delta_Z = delta_Tempg/(dTempg_by_dZ);// [m]
+Tempg = Tempg1+delta_Tempg;// [OC]
+Y_prime = Y1_prime+(dY_prime_by_dZ)*delta_Z;// [kg H2O/kg dry gas]
+paG = Y_prime/(Y_prime+(Ma/Mb));// [atm]
+Cs = Cb+Ca*(Y_prime);// [J/(kg dry air).K]
+// Water balance, From Eqn. 7.29:
+deff('[y] = f24(L_prime)','y = (L2_prime-L_prime)-(Gs_prime*(Y_prime-Y1_prime))');
+L_prime = fsolve(2,f24);// [kg/square m.s]
+
+deff('[y] = f25(Templ)','y = ((L_prime*CaL*(Templ-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs*(Tempg-Tempo))+(Y_prime*lambda)))');
+Templ = fsolve(2,f25);
+// This process is repeated several times until gas temp falls to Tempg2
+// The value of Y2_prime was calculated to be 0.0222 which is sufficiently close to the assumed value.
+// Z = sum of all delta_Z
+Z = 1.54;// [m]
+printf("The diameter of tower is %f m\n",dia);
+printf("The packed height is %f m\n",Z); \ No newline at end of file